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ABSTRACT
The stable marriage problem is a well-known problem of
matching men to women so that no man and woman, who
are not married to each other, both prefer each other. Such
a problem has a wide variety of practical applications, rang-
ing from matching resident doctors to hospitals, to matching
students to schools or more generally to any two-sided mar-
ket. In the classical stable marriage problem, both men and
women express a strict preference order over the members
of the other sex, in a qualitative way. Here we consider
stable marriage problems with weighted preferences: each
man (resp., woman) provides a score for each woman (resp.,
man). In this context, we consider the manipulability prop-
erties of the procedures that return stable marriages. While
we know that all procedures are manipulable by modifying
the preference lists or by truncating them, here we consider if
manipulation can occur also by just modifying the weights
while preserving the ordering and avoiding truncation. It
turns out that, by adding weights, we indeed increase the
possibility of manipulating and this cannot be avoided by
any reasonable restriction on the weights.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Modal Logic; F.4.1 [Mathe-
matical Logic]: Proof Theory; I.2.3 [Artificial Intelli-
gence]: Deduction and Theorem Proving

General Terms
Theory
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1. INTRODUCTION
The stable marriage problem (SM) [3] is a well-known

problem of matching the elements of two sets. It is called
the stable marriage problem since the standard formulation
is in terms of men and women, and the matching is inter-
preted in terms of a set of marriages. Given n men and n

women, where each person expresses a strict ordering over
the members of the opposite sex, the problem is to match the
men to the women so that there are no two people of oppo-
site sex who would both rather be matched with each other
than with their current partners. If there are no such people,
all the marriages are said to be stable. In [1] Gale and Shap-
ley proved that it is always possible to find a matching that
makes all marriages stable, and provided a polynomial time
algorithm which can be used to find one of two extreme sta-
ble marriages, the so-called male-optimal or female-optimal
solutions. The Gale-Shapley algorithm has been used in
many real-life scenarios [13], such as in matching hospitals
to resident doctors [12, 6], medical students to hospitals,
sailors to ships [8], primary school students to secondary
schools [14], as well as in market trading [15].

In the classical stable marriage problem, both men and
women express a strict preference order over the members
of the other sex in a qualitative way. Here we consider stable
marriage problems with weighted preferences (SMWs). In
such problems, each man (resp., woman) provides a score for
each woman (resp., man). Stable marriage problems with
weighted preferences are more general than classical stable
marriage problems. Moreover, they are useful in some real-
life situations where it is more natural to express scores,
that can model notions such as profit or cost, rather than a
qualitative preference ordering.

In [10] we have defined new notions of stability for SMWs
which depend on the scores given by the agents. In this pa-
per, we study if the stable marriage procedures which return
one of these new stable marriages are manipulable. In [11]
Roth has shown that, when there are at least three men and
three women, every stable marriage procedure is manipula-
ble, i.e., there is a profile in which an agent can mis-report
his preferences and obtain a stable marriage which is better
than or equal to the one obtained by telling the truth. In
this setting, mis-reporting preferences means changing the
preference ordering [11] or truncating the preference list [2].

In this paper, we consider a possible additional way of



mis-reporting one’s own preferences, which is by just modi-
fying the weights, in a way such that the orderings are pre-
served and the lists remain complete. We show that it is
actually possible to manipulate by just doing this. Thus
adding weights makes stable marriage procedures less resis-
tant to manipulation. Moreover, we show that there are no
reasonable restrictions on the weights that can prevent such
manipulation.

2. STABLE MARRIAGE PROBLEMS WITH
WEIGHTED PREFERENCES

A stable marriage problem (SM) [3] of size n is the problem
of finding a stable matching between n men and n women.
The men and women each have a preference ordering over
the members of the other sex. A matching is a one-to-one
correspondence between men and women. Given a matching
M , a man m, and a woman w, the pair (m, w) is a blocking
pair for M if m prefers w to his partner in M and w prefers
m to her partner in M . A matching is said to be stable if it
does not contain blocking pairs. The sequence of preference
orderings of all the men and women is called a profile. In the
case of the classical stable marriage problem (SM), a profile
is a sequence of strict total orders. Given a SM P , there
may be many stable matchings for P , and always at least
one. The Gale-Shapley (GS) algorithm [1] is a well-known
algorithm that finds a stable matching in polynomial time.
Given any procedure f to find a stable matching for an SM
problem P , we will denote by f(P ) the matching returned
by f .

Example 1 Assume n = 3 and let {w1, w2, w3} and {m1,

m2, m3} be respectively the set of women and men. The
following sequence of strict total orders defines a profile:

• m1 : w1 > w2 > w3 (i.e., man m1 prefers woman w1

to w2 to w3);

• m2 : w2 > w1 > w3;

• m3 : w3 > w2 > w1;

• w1 : m1 > m2 > m3;

• w2 : m3 > m1 > m2;

• w3 : m2 > m1 > m3.

This profile has two stable matchings: the male-optimal solu-
tion which is {(m1, w1), (m2, w2), (m3, w3)} and the female-
optimal which is {(m1, w1), (m2, w3), (m3, w2)}. 2

In SMs, each preference ordering is a strict total order
over the members of the other sex. More general notions of
SMs allow preference orderings to have ties [9, 5, 4]. We will
denote with SMT a stable marriage problem with ties. A
matching M for a SMT is said to be weakly-stable if it does
not contain blocking pairs. Given a man m and a woman
w, the pair (m, w) is a blocking pair for M if m and w are
not married to each other in M and each one strictly prefers
the other to his/her current partner.

A stable marriage problem with weighted preferences (SMW)
[7] is like a classical SM except that every man/woman gives
also a numerical preference value for every member of the
other sex, that represents how much he/she prefers such a

person. Such preference values are natural numbers and
higher preference values denote a more preferred item. The
preference value for man m (resp., woman w) of woman w

(resp., man m) will be denoted by p(m, w) (resp., p(w, m)).

Example 2 Let {w1, w2} and {m1, m2} be respectively the
set of women and men. An instance of an SMW is the
following:

• {m1 : w
[9]
1 > w

[1]
2 (i.e., man m1 prefers woman w1 to

woman w2, and he prefers w1 with weight 9 and w2

with weight 1);

• m2 : w
[3]
1 > w

[2]
2 ;

• w1 : m
[2]
2 > m

[1]
1 ;

• w2 : m
[3]
1 > m

[1]
2 . 2

In [10] we defined two notions of stability for SMWs based
on weights. The first one is a simple generalization of the
classical notion of stability: a blocking pair is a man and a
woman that each prefer to be married to each other more
than α with respect to being married to their current part-
ner.

Definition 1 (α-stability) Let us consider a natural num-
ber α with α ≥ 1. Given a matching M , a man m, and a
woman w, the pair (m, w) is an α-blocking pair for M if the
following conditions hold:

• m prefers w to his partner in M , say w′, by at least α

(i.e., p(m, w) − p(m, w′) ≥ α), and

• w prefers m to her partner in M , say m′, by at least
α (i.e., p(w, m) − p(w, m′) ≥ α).

A matching is α-stable if it does not contain α-blocking pairs.

In Example 2, if α = 1, the only α-stable matching is
{(m1, w2), (m2, w1)}. If instead α ≥ 2, then all matchings
are α-stable.

To find an α-stable matching, it is useful to relate the
α-stable matchings of an SMW to the stable matchings of
a suitable classical stable marriage problem, so we can use
classical stable marriage procedures. Given an SMW P ,
let us denote with c(P ) the classical SM problem obtained
from P by considering only the preference orderings induced
by the weights of P . If α is equal to 1, then the α-stable
matchings of P coincide with the stable matchings of c(P ).
In general, α-stability gives us more matchings that are sta-
ble, since we have a stronger notion of blocking pair. If we
denote with α(P ) the SMT obtained from an SMW P by
setting as indifferent every pair of people whose weight differ
for less than α, the α-stable matchings of P coincide with
the weakly stable matchings of α(P ).

The second notion of stability based on the weights, de-
fined in [10], considers the happiness of a whole pair (a man
and a woman) rather than that of each single person in the
pair. Thus this notion depends on what we call the strength
of a pair, rather than the preferences of each of two members
of the pair.



Definition 2 (link-additive stability) Given a man m

and a woman w, the link-additive strength of the pair (m, w),
denoted by la(m, w), is the value obtained by summing the
weight that m gives to w and the weight that w gives to m,
i.e., la(m, w) = p(m, w) + p(w, m). Given a matching M ,
the link-additive value of M , denoted by la(M), is the sum of
the links of all its pairs, i.e.,

P

{(m,w)∈M} la(m, w). Given a

matching M , a man m, and a woman w, the pair (m, w) is a
link-additive blocking pair for M if the following conditions
hold:

• la(m, w) > la(m′, w), and

• la(m, w) > la(m, w′),

where m′ is the partner of w in M and w′ is the partner of
m in M . A matching is link-additive stable if it does not
contain any link-additive blocking pair.

If we consider again Example 2, the pair (m1, w1) has
link-additive strength equal to 10 (that is, 9+1), while pair
(m2, w2) has strength 3 (that is, 2+1). The matching {(m1,

w1), (m2, w2)} has link-additive value 13 and it is link-
additive stable. The other matching is not link-additive sta-
ble, since (m1, w1) is a link-additive blocking pair.

The reason why we used the terminology link-additive is
that we compute the strength of a pair, as well as the value of
a matching, by using the sum. However, we could use other
operators, such as the maximum or the product. If we use
the maximum, we will use link-max instead of link-additive.

Again, we can relate the link-additive (resp., link-max)
stable matchings of an SMW to the stable matchings of a
suitable classical SM problem. Given an SMW P , let us de-
note with Linka(P ) (resp., Linkm(P )) the stable marriage
problem with ties obtained from P by taking the preference
orderings induced by the link-additive (link-max) strengths
of the pairs. Then, a matching is link-additive (resp., link-
max) stable iff it is a weakly stable matching of Linka(P ).
An optimal link-additive (resp. link-max) stable matching
is one with maximal link-additive (resp., link-max) value.

3. W-MANIPULATION
We know that, with at least three men and three women,

every stable marriage procedure is manipulable [11], i.e.,
there is a profile where an agent, mis-reporting his pref-
erences, obtains a stable matching which is better than the
one obtained by telling the truth. In stable marriage prob-
lems, agents can try to manipulate in two ways: by changing
the preference ordering [11], or by truncating the preference
list [2].

In SMW problems, there is another way of lying: changing
the weights. We show this gives the agents an additional
power to manipulate even if the manipulator just changes
the weights, while preserving the preference ordering and
does not truncate the preference list.

A stable marriage procedure f is w-manipulable (resp.,
strictly w-manipulable) if there is a pair of profiles p and p′

that contain the same preference orderings but differ in the
weights of an agent, say w, such that f(p′) is better than or
equal to (resp., better than) f(p) for w.

4. W-MANIPULATION FOR α-STABILITY
We first assume that the agents know the value of α.

Theorem 1 Let α be any natural number > 1. Every pro-
cedure which returns an α-stable matching is w-manipulable,
and there is at least one procedure which is strictly w-manipulable.

Proof. Let {w1, w2} and {m1, m2} be, respectively, the
set of women and men. Consider the following instance of
an SMW, say P ,

• m1 : w
[x+α]
1 > w

[x]
2 ;

• m2 : w
[x+α]
1 > w

[x]
2 ;

• w1 : m
[x+α]
1 > m

[x+1]
2 ;

• w2 : m
[x+α]
1 > m

[x]
2 ,

where x is any value greater than 0. P has two α-stable
matchings: M1 = {(m1, w1), (m2, w2)} and M2 = {(m1, w2),
(m2, w1)}. Assume that w1 mis-reports her preferences as

follows: w1 : m
[x+α]
1 > m

[x]
2 , i.e., assume that she changes

the weight given to m2 from x+1 to x. Let us denote with P ′

the resulting problem. P ′ has a unique α-stable matching,
that is M1, which is the best α-stable matching for w1 in P .
Therefore, it is possible for w1 to change her weights to get
a better or equal result than the one obtained by telling the
truth. Also, since P ′ has a unique α-stable matching, every
procedure which returns an α-stable matching returns such
a matching. Thus, every procedure is w-manipulable. More-
over, if we take the procedure which returns M2 in the first
profile, this example shows that this procedure is strictly w-
manipulable. 2

Thus, when using weights, agents can manipulate by just
modifying the weights, if they know which α will be used.

Let us now see whether there is any syntactical restriction
over the profiles that can prevent this additional form of ma-
nipulation. First, we may notice that this manipulation is
only related to the fact that some distances between adja-
cent weights are made larger or smaller. This, depending
on the chosen α, may imply that some elements are consid-
ered in a tie or ordered in α(P ). Thus, a manipulator may
introduce a tie that was not in its real preference ordering,
or may eliminate a tie from this ordering. Based on this
consideration, we can consider restricting our attention to
profiles where ties are not allowed. But this would simply
mean eliminating the weights, since in this case the α-stable
matchings would coincide with the stable matchings of the
SM obtained by just forgetting the weights. We can thus
consider what happens if we allow at most one tie (that is, a
difference less than α) in each preference ordering. Even this
strong restriction does not avoid w-manipulation, since the
example in the proof of Theorem 1 respects this restriction.
A weaker restriction would be to allow at most one tie in
the whole profile, but this would mean requiring coordina-
tion between the agents or knowing who is the manipulator.
Also, again the same example obeys this restriction. Sum-
marizing, if agents know the value of α, there is no way to
prevent w-manipulation!

Some hope remains for when α is not known by the agents.
Assume that this is the case, but agents know that α is
bounded by a certain value, say αmax. Unfortunately, again
the example in the proof of Theorem 1 (where we replace
every α with αmax) holds. Thus every procedure is still
w-manipulable, and some are also strictly w-manipulable.



Also, restricting to at most one tie per agent will not avoid
w-manipulation, since again the same example holds.

The most promising case is when agents have no informa-
tion about α. In this case, we need to define what it means
for a procedure to be manipulable: a procedure which re-
turns an α-stable matching is α-w-manipulable if it is w-
manipulable for all α and it is strictly w-manipulable for at
least one α.

Theorem 2 There is a procedure which returns an α-stable
matching which is α-w-manipulable.

Proof. Let {w1, w2} and {m1, m2} be, respectively, the
set of women and men. Consider the following instance of
an SMW, P ,

• m1 : w
[3]
1 > w

[2]
2 ;

• m2 : w
[3]
2 > w

[2]
1 ;

• w1 : m
[3]
2 > m

[2]
1 ;

• w2 : m
[3]
1 > m

[2]
2 .

For every α, P has two α-stable matchings: M1 = {(m1, w1),
(m2, w2)} and M2 = {(m1, w2), (m2, w1)}. When α = 1, M2

is strictly better than M1 for w1 in P , while when α > 1,
M2 is equally preferred to M1 for w1 in P .

Assume that w1 mis-reports her preferences as follows:

w1 : m
[3]
2 > m

[1]
1 . Let us denote with P ′ the problem ob-

tained from P by using this mis-reported preference for w1.
When α ∈ {1, 2}, M2 is strictly better than M1 for w1 in
P ′, while when α > 2, M2 is equally preferred to M1 for w1

in P ′.
Let us consider a procedure, that we call mGS, which

works as the Gale-Shapley algorithm over all the profiles ex-
cept on P and P ′, where it works as follows: if a matching is
strictly better than another matching in terms of α for w1,
then it returns the best one, while if a matching is equally
preferred to another matching in terms of α for w1, then it
returns the worst one for w1 w.r.t. the strict preference or-
dering induced by the weights. Therefore, when α = 1, mGS
returns M2 in both P and P ′, when α = 2 mGS returns M1

in P and M2 in P ′, while when α > 2 mGS returns M1 in
both P and P ′. Therefore, if w1 lies, for every α, he obtains
a partner that is better than or equal to the one obtained
by telling the truth, and there is a value α (i.e., α=2) where
he obtains a partner that is better than the one obtained
by telling the truth. Therefore, the mGS procedure is α-w-
manipulable. 2

As in the case when α is known, we may consider restrict-
ing to profiles with at most one tie per agent. However, the
example in the above proof satisfies this restriction, so it
shows that α-w-manipulability is possible also with such a
severe restriction.

Summarizing, in the context of α-stability, no matter whether
we have information about α or not, it is possible to have
w-manipulability, even if we severely restrict the profiles.

5. W-MANIPULATION FOR LINK-ADDITI-
VE STABILITY

We next show that every procedure for link-additive sta-
bility is strictly w-manipulable.

Theorem 3 Every procedure that returns a link-additive sta-
ble matching is strictly w-manipulable.

Proof. Let {w1, w2} and {m1, m2} be, respectively, the
set of women and men. Consider the following instance of
an SMW, say P :

• m1 : w
[6]
2 > w

[4]
1 ;

• m2 : w
[5]
2 > w

[4]
1 ;

• w1 : m
[4]
1 > m

[3]
2 ,

• w2 : m
[3]
1 > m

[2]
2 .

P has a unique link-additive stable matching, which is M1 =
{(m1, w2), (m2, w1)}. Assume that w1 mis-reports her pref-

erences as follows: w1 : m
[5000]
1 > m

[2]
2 . Then, in the new

problem, that we call P ′, there is only one stable matching,
which is M2 = {(m1, w1), (m2, w2)}, and M2 is better than
M1 for w1 in P . Since there is only one stable matching
in both P and P ′, every procedure which returns a link-
additive stable matching will return M2 in P and M1 in P ′,
and thus it is strictly w-manipulable. 2

The example in the proof of the above theorem shows
a very intuitive and dangerous manipulation scheme: the
manipulator sets a very high weight (higher than twice the
highest of the other weights in the profile) for its top choice.
In this way, it will surely be matched to its top choice, no
matter the procedure used or the preferences of the other
agents over the alternatives that are not their top choices.

This form of manipulation can be avoided by forcing the
same weight for all top choices of all agents. This restriction
however does not prevent all forms of w-manipulation.

Theorem 4 If we restrict to profiles with the same weight
for all top choices, every procedure that returns a link-additive
stable matching is w-manipulable, and there is at least one
procedure which is strictly w-manipulable.

Proof. Let {w1, w2, w3} and {m1, m2, m3} be, respec-
tively, the set of women and men. Consider the following
instance of an SMW, P ,

• m1 : w
[7]
3 > w

[6]
2 > w

[5]
1 ;

• m2 : w
[7]
3 > w

[6]
2 > w

[5]
1 ;

• m3 : w
[7]
3 > w

[6]
2 > w

[5]
1 ;

• w1 : m
[7]
3 > m

[5]
1 > m

[4]
2 ;

• w2 : m
[7]
3 > m

[5]
1 > m

[4]
2 ;

• w3 : m
[7]
3 > m

[6]
1 > m

[5]
2 .

P has an unique link-additive stable matching, which is
M1 = {(m1, w2), (m2, w1), (m3, w3)}. Assume that w1 mis-

reports her preferences as follows: w1 : m
[7]
3 > m

[6]
1 >

m
[4]
2 . Then, in the new problem, that we call P ′, there

are only two link-additive stable matchings, i.e., M1 and
M2 = {(m1, w1), (m2, w2),(m3, w3)}, where M2 is better
than M1 for w1. Thus every procedure is w-manipulable.
If we consider the procedure that returns matching M2 in



P ′, this pair of profiles shows that this procedure is strictly
w-manipulable. 2

Notice that, if we consider profiles where all top choices
have the same weight and all differences (of weights of adja-
cent items in the preference lists) are exactly 1, then weights
are fixed and are thus irrelevant. Also, obviously w-mani-
pulation cannot occur, since agents cannot modify the weights.
We may wonder whether, by restricting to profiles which are
close to this extreme case, we may avoid w-manipulation.
Unfortunately, this is not so. In fact, we can consider just
profiles with the same weight for all top choices and where at
most one difference is 2, while all the others are 1, for every
agent. This holds for the example in the proof of Theorem
4. This shows that even this strong restriction is not enough
to avoid w-manipulation.

If we restrict our attention to procedures that return opti-
mal link-additive or link-max stable matchings, we can still
prove that all such procedures are strictly w-manipulable,
and they are w-manipulable when all top choices have the
same weight. In fact, the same examples in the proofs of
Theorem 3 and 4 still hold.

6. CONCLUSIONS AND FUTURE WORK
We have investigated the manipulation properties of sta-

ble marriage problems with weighted preferences, and con-
sidered two different notions of stability. We have shown
that, in both cases, adding weights to classical stable mar-
riage problems increases the possibility of manipulating the
resulting matching, since agents can manipulate even by just
modifying the weights, without changing or truncating the
preference lists. We have also shown that reasonable restric-
tions over the weights do not avoid such additional forms of
manipulation. However, in the case of link-additive stabil-
ity, forcing all top choices to have the same weight for all
agents prevents an extreme form of w-manipulation, which
would allow the manipulator to dictate its own partner in
every link-additive stable matching.

We plan to investigate the computational complexity of w-
manipulation. We also plan to use scoring-based voting rules
to choose among the stable matchings, and to adapt existing
results about manipulation complexity for such voting rules
to weighted stable marriage problems.
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