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Chapter 18

Randomness and Structure

Carla Gomes and Toby Walsh

This chapter covers research in constraint programming (CP) and related areas involving
random problems. Such research has played a significant role in the development of more
efficient and effective algorithms, as well as in understanding the source of hardness in
solving combinatorially challenging problems.

Random problems have proved useful in a number of different ways. Firstly, they pro-
vide a relatively “unbiased” sample for benchmarking algorithms. In the early days of CP,
many algorithms were compared using only a limited sample of problem instances. In
some cases, this may have lead to premature conclusions. Random problems, by compar-
ison, permit algorithms to be tested on statistically significant samples of hard problems.
However, as we outline in the rest of this chapter, there remain pitfalls waiting the unwary
in their use. For example, random problems may not contain structures found in many
real world problems, and these structures can make problems much easier or much harder
to solve. As a second example, the process of generating random problems may itself be
“flawed”, giving problem instances which are not, at least asymptotically, combinatorially
hard.

Random problems have also provided insight into problem hardness. For example, the
influential paper by Cheeseman, Kanefsky and Taylor [12] highlighted the computational
difficulty of problems which are on the “knife-edge” between satisfiability and unsatisfi-
ability [84]. There is even hope within certain quarters that random problems may be one
of the links in resolving the P=NP question.

Finally, insight into problem hardness provided by random problems has helped inform
the design of better algorithms and heuristics. For example, the design of a number of
branching heuristics for the Davis Logemann Loveland satisfiability (DPLL) procedure has
been heavily influenced by the hardness of random problems. As a second example, the
rapid randomization and restart (RRR) strategy [45, 44] was motivated by the discovery
of heavy-tailed runtime distributions in backtracking style search procedures on random
quasigroup completion problems.
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18.1 Random Constraint Satisfaction

We begin by introducing the random problems classes studied in constraint satisfaction,
and discussing various empirical and theoretical results surrounding them.

18.1.1 Models A to D

Most experimental and theoretical studies use one of four simple models of random con-
straint satisfaction problems. In each, we generate a constraint graph G, and then for
each edge in this graph, we choose pairs of incompatible values for the associated conflict
matrix. The models differ in how we generate the constraint graph and how we choose
incompatible values. In each case, we can describe problems by the tuple 〈n,m, p1, p2〉,
where n is the number of variables, m is the uniform domain size, p1 is a measure of the
density of the constraint graph, and p2 is a measure of the tightness of the constraints.

model A: we independently select each one of the n(n − 1)/2 possible edges in G with
probability p1, and for each selected edge we pick each one of the m2 possible pairs
of values, independently with probability p2, as being incompatible;

model B: we randomly select exactly p1n(n − 1)/2 edges for G, and for each selected
edge we randomly pick exactly p2m

2 pairs of values as incompatible;

model C: we select each one of the n(n − 1)/2 possible edges in G independently with
probability p1, and for each selected edge we randomly pick exactly p2m

2 pairs of
values as incompatible;

model D: we randomly select exactly p1n(n − 1)/2 edges for G, and for each selected
edge we pick each one of the m2 possible pairs of values, independently with prob-
ability p2, as being incompatible;

Whilst p1 and p2 can be either a probability or a fraction, similar results are observed
with the four different models. Most experimental studies typically fix n and m, and vary
p1 and/or p2. Typical parameter ranges include 〈10, 10, p1, p2〉, 〈20, 10, p1, p2〉, 〈10 −
200, 3, p1, 1/9〉, and 〈10 − 200, 3, p1, 2/9〉. The penultimate of these parameter ranges
resembles graph 3-colouring. See Table 1 in [27] for a more extensive survey.

18.1.2 Phase Transition

Random problems generated in this way exhibit phase transition behaviour similar to that
seen in statistical mechanics [12]. Loosely constrained problems are almost surely satisfi-
able. As we increase the parameters and constrain the problems more, problems become
almost surely unsatisfiable. As n increase, the transition between satisfiable and unsatisfi-
able problems becomes sharper and sharper. In the limit, it is a step function [22]. Using a
Markov first moment method, the location of this phase transition can be predicted to oc-
cur where the expected number of solutions is approximately 1 [73, 80]. Associated with
this rapid transition in satisfiability of problems, is a peak in problem hardness for a wide
range both of systematic and local search methods [12, 67, 73, 80]. Such problems are
on the “knife-edge” between satisfiability and unsatisfiability [84]. It is very hard to tell if
they are satisfiable or unsatisfiable. If we branch on a variable, the resulting subproblem is
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smaller but otherwise tends to look similar. We can only determine if the current subprob-
lem is satisfiable deep in the search tree. See Figure 18.1 for some graphs displaying the
“easy-hard-easy” pattern associated with phase transitions.

Figure 18.1: Phase transition for Model B problems with 〈n, 3, p1, 2/9〉 (a) percentage
satisfiability and (b) median search effort for FC-CBJ with the fail-first heuristic against
p1, and n from 10 to 110. Graphs taken from [27].

Whilst the hardest problems typically occur close to this rapid transition in satisfiability,
hard problems can occur elsewhere. In particular, in the easy and satisfiable region, prob-
lems can occasionally be very hard to solve, especially for systematic search procedures
like forward checking [32, 47, 46]. Such exceptionally hard problems (EHPs) appear to
be a consequence of early branching mistakes. Better branching heuristics, more informed
backtracking mechanisms, greater constraint propagation and restart strategies can all re-
duce the impact of EHPs greatly. Since curves of median search effort may disguise the
appearance of EHPs, experimentalists are encouraged to look for outliers.

18.1.3 Constrainedness

Williams and Hogg introduced the first comprehensive theoretical model of such phase
transition behaviour for constraint satisfaction problems [86]. More recently, Gent et al.
presented a theory that works across a wide range of problems and complexity classes in-
cluding constraint satisfaction and satisfiability problems [30]. This theory is based around
the definition of the “constrainedness” of a problem using the parameter κ. For an ensem-
ble of problems:

κ = 1− log2(〈Sol〉)
N

Where 〈Sol〉 is the expected number of solutions for a problem in the ensemble, and N is
the number of bits needed to represent a solution (or equivalently the log base 2 of the size
of the state space). For instance, for model B, this is:

κ =
n− 1

2
p1 logm(

1

1− p2
)



642 18. Randomness and Structure

This constrainedness parameter, κ lies in the interval [0,∞). For κ < 1, problems are
under-constrained and are typically easy to show satisfiable. For κ > 1, problems are over-
constrained and are typically relatively easy to show unsatisfiable. For κ ≈ 1, problems
are critically constrained and exhibit a sharp transition in satisfiability. For instance, for
random constraint satisfaction problem, graph k-colouring problems, number partitioning,
and travelling salesperson problems, a rapid phase transition in problem satisfiability has
been observed around κ ≈ 1 [27].

Exact theoretical results about the location of the phase transition and of the hardness
of random constraint satisfaction problems have been harder to obtain than either empirical
results or approximate results using “theories” like that of constrainedness. One exception
is work in resolution complexity. Most of the standard backtracking algorithms like for-
ward checking and conflict-directed backjumping explore search trees bounded in size by
the size of a corresponding resolution refutation. Resolution complexity results can thus be
used to place (lower) bounds on problem hardness. For example, random constraint prob-
lems almost surely have an exponential resolution complexity when the constraint tightness
is small compared to the domain size [68, 66, 25, 89].

18.1.4 Finite-Size Scaling

The scaling of the phase transition with problem size can be modelled using finite-size
scaling methods taken from statistical mechanics [60, 30]. In particular, around some
critical value of constrainedness κc, problems of all sizes are indistinguishable except for a
simple change of scale given by a power law in N . Once rescaled, macroscopic properties
like the probability that a problem is satisfiable obey simple equations. For example, the
probability of satisfiability can be modelled with the simple equation:

prob(Sol > 0) = f(
κ− κc
κc

N1/ν)

Where f is some universal function, κ−κcκc
plays the roles of the reduced temperature T−Tc

Tc

as it rescales around the critical point, and N 1/ν is a simple power law that describes the
scaling with problem size. See Figure 18.2 for some graphs which illustrate this finite-
size scaling. Finite-size scaling is used in statistical mechanics to describe systems like
Ising magnets with 1020 or more atoms (and thus with 21020

or so states). It is remarkable
therefore that similar mathematics can be used to describe a constraint satisfaction problem
with tens or hundreds of variables and therefore just 2100 or so states.

Finite-size scaling also appears to be useful to model the change in problem hardness
with problem size and problem constrainedness [31]. Finally, parameters like κ and proxies
for them which are cheaper to compute appear useful as branching heuristics [27]. A good
heuristic is to branch on the “most constrained” variable. This will encourage propagation
and tend to give a new subproblem to solve which is much smaller.

18.1.5 Flaws and Flawless Methods

Random problems may contain structures which make them artificially easy. One issue
is trivial flaws which a polynomial algorithm could easily discover. In a binary constraint
satisfaction problem, the assignment of a value to a variable is said to be flawed if there
exists another variable that cannot be assigned a value without violating a constraint. The
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Figure 18.2: Finite-size scaling of the phase transition for Model B problems with
〈n, 3, p1, 2/9〉. (a) percentage satisfiability and (b) median search effort for FC-CBJ with
the fail-first heuristic against the rescaled parameter, κ−κc

κc
N1/ν for κc = 0.625 and

ν = 2.3. Graphs taken from [27].

value is supported otherwise. A variable is flawed iff each value is flawed. A problem
with a flawed variable cannot have a solution. Achlioptas et al. [4] identify a potential
shortcoming of all four random models. They prove that if p2 ≥ 1/m then, as n goes to
infinity, there almost surely exists a flawed variable. Such problems are not intrinsically
hard as a simple arc-consistency algorithm can solve them in polynomial time.

Fortunately, such flaws are unlikely in the size of problems used in practice [27]. We
can also define parameters for existing methods and new generation methods which prevent
flaws. For example:

model B: the parameter scheme m = nα, p1 = β log(n)/(n − 1) for some constants α,
β [91, 89]; Xu and Li also present a similar parameter scheme for model D in which
domain size grows polynomially with the number of variables; such problems are
guaranteed to have a phase transition and to give problems which almost surely have
an exponential resolution complexity;

model D: Smith proposes a somewhat more complex scheme which increases m and the
average degree of the constraint graph with n [81];

model E: a new generation method in which we select uniformly, independently and with
repetition, exactly pm2n(n − 1)/2 nogoods out of the m2n(n − 1)/2 possible for
some fixed p [4];

modified models A to D: we ensure the conflict matrix of each constraint is flawless by
randomly choosing a permutation πi of 1 tom, and insist that (i, πi) is a good before
we randomly pick nogoods from the other entries in the conflict matrix; each value
is thereby guaranteed to have some support [27].

Model E is very similar to the one studied by Williams and Hogg [86]. One possible
shortcoming of Model E is that it generates problems with a complete constraint graph for
quite small values of p. It is hard therefore to test the performance of algorithms on sparse
problems using Model E [27].
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The modified versions of models A to D are guaranteed not to contain trivial flaws
which would be uncovered by enforcing arc-consistency. However, more recent results
have shown that such problems may still be asymptotically unsatisfiable and can be solved
in polynomial time using a path consistency algorithm [25]. In response, Gao and Culber-
son propose a method to generate random problems which are weakly path-consistent, and
which almost surely have an exponential resolution complexity.

18.1.6 Related Problems

Phase transition behaviour has also been observed in other problems associated with con-
straint satisfaction problems. This includes problems in both higher and lower complexity
classes. For example, phase transition behaviour has been observed in polynomial prob-
lems like establishing the arc-consistency of random constraint satisfaction problems [29].
The probability that the problem can be made arc-consistent goes through a rapid transition,
and this is associated with a peak for the complexity of coarse grained arc-consistency al-
gorithms. As a second example, phase transition behaviour has been observed in PSPACE-
complete problems like the satisfiability of quantified Boolean formulae. We have to be
again carefully of generating flawed problems, but if we do, there is a rapid transition in
satisfiability, and this is associated with a complexity peak for many search algorithms [37].
As a third and final example, phase transition behaviour has been observed in PP-complete
problems like deciding if a Boolean formulae can be satisfied by at least the square-root of
the total number of assignments [8].

18.2 Random Satisfiability

One type of constraint satisfaction problem with a special but very simple structure is
propositional satisfiability (SAT). In a SAT problem, variables are only Boolean, and con-
straints are propositional formulae, typically clauses. Many problems of practical and
theoretical importance can be easily mapped into SAT. Random SAT problems have been
the subject of extensive research. As a result, some of our deepest understanding has come
in this area.

18.2.1 Random k-SAT

There exist a number of different classes of random SAT problem. One such problem class
is the “constant probability” model in which each variable is included in a clause with a
fixed probability. However, this gives problems which are often easy to solve. Following
[67], research has focused on the random k-SAT problem class. A random k-SAT problem
in n variables consists of m clauses, each of which contains exactly k Boolean variables
drawn uniformly and at random from the set of all possible k-clauses. A rapid transition
in satisfiability is observed to occur around a fixed ratio of clauses to variables and this
appears to be correlated with a peak in search hardness [67]. Such problems are routinely
used to benchmark SAT algorithms.

For random 2-SAT, which is polynomial, the phase transition has been proven to occur
at exactly m/n = 1 [14, 38]. For random k-SAT for k ≥ 3, exact results have been
harder to obtain. For k = 3, the phase transition occurs between 3.42 ≤ m/n ≤ 4.51.
Experiments suggest that the transition is atm/n = 4.26. Asymptotically, the satisfiability
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transition is “sharp” (that is, it is a step function) [22]. A very recent result proves that
the threshold is at 2k log(2) − O(k), confirming “approximate” results from statistical
mechanics using replica methods [5]. Finite-size scaling methods can again be used to
model the sharpening of the phase transition with problem size [60].
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Figure 18.3: Median search cost for DPLL to solve 50 variable random 3-SAT problems
and fraction of unsatisfiable clauses, both plotted against the ratio of clauses to variables.
Graphs adapted from [67].

At least one note of caution needs to be sounded about the using random 3-SAT as
the distribution of solutions is highly skewed. In particular, at the phase transition, the
expected number of solutions is exponentially large [57]. Thus, whilst many problems
have no solutions, a few problems will have exponentially many.

18.2.2 Backbone

A possible “order parameter” for such phase transitions is the backbone. For a satisfiable
problem, the backbone is the fraction of variables which take fixed values in all satisfying
assignments. Such variables must be assigned correctly if we are to find a solution. For
an unsatisfiable problem, the backbone is the fraction of variables which take fixed values
in all assignments which maximize the number of satisfied clauses. A satisfiable problem
with a large backbone is likely to be hard to solve for systematic methods like DPLL since
there are many variables to branch incorrectly upon. For random 3-SAT, the backbone
size jumps discontinuously at the phase transition, suggesting that it behaves like a first-
order (or discontinuous) phase transition in statistical mechanics. For random 2-SAT, on
the other hand, the backbone size varies smoothly over the phase transition suggesting that
it behaves like a second-order (or continuous) phase transition. However, the order (or
continuity) of the phase transition does not appear to be directly connected to the problem
complexity as there are NP-complete problems with second-order (or continuous) phase
transitions.
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18.2.3 2+p-SAT

Significant insight into phase transition behaviour has come from “interpolating” between
random 2-SAT (which is polynomial and quite well understood theoretically) and random
3-SAT (which is NP-hard and much less well understood theoretically). The random 2+p-
SAT problem class consists of SAT problems with a mixture of (1 − p)m clauses with 2
variables and pm clauses with 3 variables, each clause drawn uniformly and at random
from the space of all possible clauses of the given size. For p = 0, we have random 2-SAT.
For p = 1, we have random 3-SAT. For 0 < p < 1, we have problems with a mixture
of both 2-clauses and 3-clauses. From the perspective of worst-case complexity, 2+p-SAT
is rather unexciting. For any fixed p > 0, the problem class is NP-complete. However,
problems appear to be behave polynomially for p < 0.4 [69, 3]. It is only for p ≥ 0.4 that
problems appear hard to solve. This increase in problem hardness has been correlated with
a rapid transition in the size of the backbone, and with a change from a continuous to a
discontinuous phase transition [69]. For 0 ≤ p ≤ 0.4, the satisfiability phase transition for
random 2+p-SAT occurs at a simple lower bound, 1/(1−p) constructed by simply consid-
ering the satisfiability of the embedded 2-SAT subproblem. In other words, the 2-clauses
alone determine satisfiability. It is not perhaps so surprising therefore that average search
costs appears to be polynomial. Note that, having made some branching decisions on a
3-SAT problem, DPLL is effectively solving a 2+p-SAT subproblem. The performance of
such procedures can thus be modelled by mapping trajectories through p and m/n space
[15].
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Figure 18.4: Median computational cost for DPLL to solve random 2+p-SAT problems
plotted against the number of variables, N for a range of values of p. Graph adapted from
[15].

18.2.4 Beyond k-SAT

Phase transition behaviour has been observed in other satisfiability problems including:

1 in k-SAT: each “clause” contains k literals, exactly one of which must be true. This was
the first problem NP-complete class in which the exact location of its satisfiability



C. Gomes, T. Walsh 647

phase transition was proven [1]. For all k ≥ 3, random 1 in k-SAT problems have a
sharp, second-order or continuous phase transition at m/n = 2/k(k − 1).

NAE-SAT: each “clause” contains k literals, all of which cannot take the same truth value.
For k = 3, the phase transition for random NAE SAT problems occurs somewhere
between 1.514 < m/n < 2.215 [1]. Empirical results put the phase transition at
around m/n ≈ 2.1. A NAE SAT problem can be mapped into a SAT problem with
twice the number of clauses. Although these clauses are correlated, it is remark-
able that these correlations appear to be largely irrelevant and the phase transition
occurs at almost exactly half the clause to variable ratio of the random 3-SAT phase
transition.

XOR SAT: each “clause” contains k literals, an odd number of which must be true in
any satisfying assignment. For k = 3, random NAE SAT has a sharp threshold
in the interval 0.8894 ≤ m/n ≤ 0.9278 [17]. Experiments put the transition at
m/n ≈ 0.92, whilst statistical mechanical calculations put it at m/n = 0.918 [21].

non-clausal SAT: formulae have a fixed shape (a given structure of and and or connec-
tives) which are labelled with literals at random [71]. This model displays a phase
transition in satisfiability with an associated easy-hard-easy pattern in search cost.

quantified SAT: in a quantified Boolean formula (QBF) we have variables which are both
existentially quantified and universally quantified. If we generate random QBF for-
mulae, we need to throw out clauses containing just universally quantified variables
(as these are trivially unsatisfiable). If we eliminate such “flaws”, there is a rapid
phase transition, and an associated complexity peak [37]

18.2.5 Satisfiable Problems

Random problems have been a driving force in the design of better algorithms. To bench-
mark incomplete local search procedures, standard random problem generators are unsuit-
able as they produce both satisfiable and unsatisfiable instances. We could simply filter
out unsatisfiable instances using a complete method. However, we are then unable to
benchmark incomplete search methods on problems that are beyond the reach of complete
methods. Designing generators, on the other hand, that generate only satisfiable problems
has proven surprisingly difficult.

One approach is to “hide” at least one solution in a problem instance. For example, we
can choose a random truth assignment T ∈ {0, 1}n and then generate a formula with n
variables and αm random clauses, rejecting any clause that violates T . Unfortunately, this
method is highly biased to generating formulas with many assignments. They are much
easier for local search methods like Walksat [74] than formulas of comparable size obtained
by filtering a random 3-SAT generator. More sophisticated versions of this “1-hidden as-
signment” scheme provide improvements but still lead to biased samples [7]. Achlioptas
et al. [6] proposed a “2-hidden assignment” approach in which clauses that violate both
T and its complement are rejected. Whilst DPLL solvers find such problems as hard as
regular random 3-SAT problems, local search methods find them easy. An improved ap-
proach, called “q-hidden” [56], hides a single assignment but biases the distribution so that
each variable is as likely to appear positively as as negatively, and the formula no longer
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points toward the satisfying assignment T . Indeed, we can even make it more likely that a
variable occurrence disagrees with T , so that the formula becomes “deceptive” and points
away from the hidden assignment. Empirical results suggest that the q-hidden model pro-
duces formulas that are much harder for Walksat.

Recently Xu et al [90] gave modifications of the random models B and D to gener-
ate “forced” solvable instances whose hardness is comparable to “unforced” solvable in-
stances, based on the theoretical argument that the number of expected solutions in both
cases is identical. They also provide empirical results showing that the unforced solvable
instances, unforced solvable and unsolvable instances, and forced solvable instances ex-
hibit a similar hardness pattern. In section 18.3 we will discuss a quite different strategy
for generating guaranteed satisfiable random instances for structured CSP problems.

18.2.6 Optimization Problems

Phase transition behaviour has also been identified in a range of optimization problems.
Some of our best understanding has come in satisfiability problems related to optimization
like MAX-SAT (for example, [94, 79]. However, insight has also come from other domains
like number partitioning [34, 36] and the symmetric and asymmetric travelling salesperson
problems [35, 96, 95]. The simplest view is that optimization problems naturally push
us to the phase boundary [33]. For systematic backtracking algorithms like branch and
bound, we essentially solve a pair of decision problems right at the phase transition: we
first find a solution to the decision problem with an optimal objective and then prove that
the decision problem with any smaller objective is unsatisfiable. A more sophisticated view
is that optimization problems like MAX-SAT can be viewed as bounded by a sequence of
decision problems at successive objective values [94].

The concept of backbone has also been generalized to deal with optimization problems
[78]. As with decision problems, transitions in problem hardness have been correlated
with rapid transitions in backbone size [78, 94, 95]. These views suggest that there is
a relatively simple connection between the hardness of decision and the corresponding
optimization problem. Indeed, by solving (easy) decision problems away from the phase
boundary, we can often predict the cost of finding optimal solutions [77].

18.3 Random Problems with Structure

Uniform random problems like random k-SAT are unlikely to contain structures found in
many real world problems. Such structures can make problems much easier or much harder
to solve. Researchers have therefore looked at ways of generating structured random prob-
lems. For example, the question of the existence of discrete structures like quasigroups
with particular properties gives some of the most challenging search problems [76]. How-
ever, such problems may be too uniform and highly structured when compared to messy
real-world problems. In order to bridge this gap, a number of random problem classes
have been proposed that incorporate structures rarely seen in purely uniform random prob-
lems. For example, Gomes and Selman [39] proposed the quasigroup completion problem
(QCP). As another example, Walsh proposed small-world search problems [85].
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18.3.1 Quasigroup Completion

An order n quasigroup, or Latin Square , is defined by n× n multiplication in which each
row and column is a permutation of the n symbols. A partial Latin square with p pre-
assigned cells is an n×nmatrix in which p cells of the matrix have been assigned symbols
such that no symbol occurs repeated in a row or a column. The Quasigroup Completion
Problem (QCP) is to determine if the remaining n2−p cells (or “holes”) can be assigned to
obtain a complete Latin square (see Figure18.5). QCP is NP-complete [16]. The structure
in QCP is similar to that found in real-world domains like scheduling, timetabling, routing,
and experimental design. One problem that directly maps onto the QCP is that of assigning
wavelengths to routes in fiber-optic networks [61].

Figure 18.5: Quasigroup Completion Problem of order 4, with 5 holes.

To generate a random QCP instance, we randomly select p cells and assign each a sym-
bol. We have a choice in the level of consistency enforced between such assignments to
eliminate “obvious” inconsistencies. The most commonly used model enforces forward
checking [39]. Shaw et al [75] studied a model which enforces generalized arc consis-
tency on the all-different constraints on the rows and the columns of the matrix. This
gives harder problems but biases the sampling. Empirical studies have identified phase
transition behaviour in QCP [39]. The computationally hardest instances again lie at the
phase transition. almost all unsolvable (“over-constrained” region). Figure 18.6 shows the
computational cost (median number of backtracks) and phase transition in solvability for
solving QCP instances of different orders.

18.3.2 Quasigroup with Holes

The QCP model generates both satisfiable and unsatisfiable instances. A different model,
the Quasigroup With Holes problem (QWH), generates only satisfiable instances with good
computational properties [2]. QWH instances are generated by starting with a full quasi-
group and “punching” holes into it. Achlioptas et al [2] proposed the following QWH
generator: (1) Generate a complete Latin square uniformly from the space of all Latin
squares using a Markov chain; (2) punch a fraction p of “holes” into the full Latin square
(i.e., unassign some of the entries) in a uniform way. The resulting partial Latin square
is guaranteed to be satisfiable. Achlioptas et al [2] demonstrated a rapid transition in the
size of the backbone of QWH instances, coinciding with the hardest problem instances for
both incomplete and complete search methods. Note that this transition is different from
the standard transition in satisfiability as QWH only contains satisfiable instances. The
location of this transition appears to scale as n2 − p/n1.55 [2].
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Figure 18.6: Top panel: computational cost of solving QCP instances (order 11–15). X-
axis: fraction of pre-assigned cells; Y-axis - median number of backtracks for solution
(log scale). Bottom panel: phase transition in solvability for QCP instances (order 12–
15). X-axis: fraction of pre-assigned cells; Y-axis - fraction of instances for which the
partial Latin square could not be completed into a full Latin square. (Each data point was
computed based on 100 instances. Graphs from [39].)
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18.3.3 Other Structured Problems

A number of other random problem classes with structure have been studied. For instance,
Walsh looked at search problems like graph coloring where the underlying graph has a
“small-world” structure [85]. Although small-world graphs are sparse, their nodes tend to
be clustered and the path length between any two nodes short. Walsh showed that a small-
world structure often occurs in graphs associated with many real-world search problems.
Unfortunately the cost of coloring random graphs with a small-world structure can have
a heavy-tailed distribution (see next section) in which a few runs are exceptionally long.
However, the strategy of randomization and restarts can eliminate these heavy tails.

To generate random small-world graphs, Walsh merged together random graphs with a
structured ring lattice [85]. Inspired by this method, Gent et al. proposed a general method
called morphing to introduce structure or randomness into a wide variety of problems [28].
They show that a mixture of structure and randomness can often make search problems
very hard to solve. A little structure added to a random problem, or a little randomness
added to a structured problem may be enough to mislead search heuristics. They argue that
morphing provides many of the advantages of random and structured problem classes with-
out some of the disadvantages. As in random problem classes, we can generate large, and
statistically significant samples with ease. However, unlike random problems, morphed
problems can contain many of the structures met in practice.

18.4 Runtime Variability

Broadly speaking, random problems tend to display “easy-hard-easy” patterns in difficulty.
However, there has been some research into variability within this simple picture, and into
ways such variability can be exploited.



652 18. Randomness and Structure

18.4.1 Randomization

A randomized complete algorithm can be viewed as a probability distribution on a set of
deterministic algorithms. Behaviour can vary even on a single input, depending on the
random choices made by the algorithm. The classical adversary argument for establishing
lower bounds on the run-time of a deterministic algorithm is based on the construction
of a input on which the algorithm performs poorly. While an adversary may be able to
construct an input that foils one (or a small fraction) of the deterministic algorithms in
the set, it is more difficult to devise inputs that are likely to defeat a randomly chosen
algorithm. Furthermore, as we will discuss below, the introduction of a “small” random
element allows one to run the randomized method on the same instance several times,
isolating the variance inherent in the search procedure from e.g., the variance that would
result from considering different instances.

There are several opportunities to introduce randomization in a backtrack search method.
For example, we can add randomization to the branching heuristic for tie-breaking [41, 43].
Even this simple modification can dramatically change the behavior of a search algorithm.
If the branching heuristic is particular decisive, it may rarely need to tie-break. In this case,
we can tie-break between some of the top ranked choices. The look-ahead and look-back
procedures can also be randomized. Lynce et al. random backtracking which randomizes
the backtracking points, and unrestricted backtracking which combines learning to main-
tain completeness [64, 65]. Another example is restarts of a deterministic backtrack solver
with clause learning: each time the solver is restarted, with the additional learned clauses, it
behaves quite differently from the previous run, appearing to behave “randomly” [70, 65].

18.4.2 Fat and Heavy Tailed Behavior

The study of the runtime distributions instead of just medians and means often provides
a better characterization of search methods and much useful information in the design of
algorithms. For instance, complete backtrack search methods exhibit fat and heavy-tailed
behavior [47, 41, 23]. Fat-tailedness is based on the kurtosis of a distribution. This is
defined as µ4/µ

2
2 where µ4 is the fourth central moment about the mean and µ2 is the

second central moment about the mean, i.e., the variance. If a distribution has a high
central peak and long tails, than the kurtosis is large. The kurtosis of the standard normal
distribution is 3. A distribution with a kurtosis larger than 3 is fat-tailed or leptokurtic.
Examples of distributions that are characterized by fat-tails are the exponential distribution,
the lognormal distribution, and the Weibull distribution. Heavy-tailed distributions have
“heaver” tails than fat-tailed distributions; in fact they have some infinite moments. More
precisely, a random variable X is heavy-tailed if it has Pareto like decay in its distribution,
i.e:

1− F (x) = P [X > x] ∼ Cx−α, x > 0,

where α > 0 and C > 0 are constants. When 1 < α < 2, X has infinite variance, and
infinite mean and variance when 0 < α <= 1. The log-log plot of 1 − F (x) of a Pareto-
like distribution (i.e., the survival function) shows linear behavior with slope determined
by α.

Backtrack search methods exhibit dramatically different statistical regimes across the
constrainedness regions of random CSP models [11]. Figure 18.8 illustrates the phe-
nomenon. In the first regime (the bottom two curves in figure 18.8, p ≤ 0.07), we see
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Figure 18.8: Heavy-tailed (linear behavior) and non-heavy-tailed regime in the runtime of
instances of model E 〈17, 8, p〉. CDF stands for Cumulative Density Function. Graphs
adapted from [11].

heavy-tailed behavior. This means that the runtime distributions decay slowly. When we
increase the constrainedness of our model towards the phase transition (higher p), we en-
counter a different statistical regime in the runtime distributions, where the heavy-tails
disappear. In this region, the instances become inherently hard for the backtrack search
algorithm, all the runs become homogeneously long, the variance of the backtrack search
algorithm decreases and the tails of its survival function decay rapidly (see top two curves
in figure 18.8, with p = 0.19 and p = 0.24; tails decay exponentially).

Heavy-tailed behavior in combinatorial search has been observed in several other do-
mains, in both random instances and real-world instances: QCP [41], scheduling [45],
planning[44], graph coloring [85, 55], and inductive logic programming [92]. Several for-
mal models generating heavy-tailed behavior in search have been proposed [13, 87, 88,
55, 11, 51]. If a runtime distribution of a backtrack search method is heavy-tailed, it will
produce runs over several orders of magnitude, some extremely long but also some ex-
tremely short. Methods like randomization and restarts try to exploit this phenomenon.
(See section 18.4.4.)

18.4.3 Backdoors

Insight into heavy-tailed behaviour comes from considering backdoor variables. These are
variables which, when set, give us a polynomial subproblem. Intuitively, a small backdoor
set explains how a backtrack search method can get “lucky” on certain runs, where back-
door variables are identified early on in the search and set the right way. Formally, the
definition of a backdoor depends on a particular algorithm, referred to as sub-solver, that
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solves a tractable subcase of the general constraint satisfaction problem [87].

Definition 18.1. A sub-solver A given as input a CSP, C, satisfies the following:
• (Trichotomy) A either rejects the input C, or “determines” C correctly (as unsatisfi-

able or satisfiable, returning a solution if satisfiable),
• (Efficiency) A runs in polynomial time,
• (Trivial solvability) A can determine if C is trivially true (has no constraints) or

trivially false (has a contradictory constraint),
• (Self-reducibility) if A determines C, then for any variable x and value v, then A

determines C[v/x].1

For instance, A could be an algorithm that performs unit propagation, or arc consis-
tency, or hyper-arc consistency for the alldiff constraint, or an algorithm that solves a
linear programming problem, or any algorithm satisfying the above four properties. Using
the definition of sub-solver we can now formally define the concept of backdoor set. Let A
be a sub-solver, and C be a CSP. A nonempty subset S of the variables is a backdoor in C
for A if for some aS : S → D, A returns a satisfying assignment of C[aS ]. Intuitively, the
backdoor corresponds to a set of variables, such that when set correctly, the sub-solver can
solve the remaining problem. A stronger notion of the backdoor, considers both satisfiable
and unsatisfiable (inconsistent) problem instances. A nonempty subset S of the variables
is a strong backdoor in C for A if for all aS : S → D, A returns a satisfying assignment
or concludes unsatisfiability of C[aS]. From a logical perspective, there is no formal con-
nection between the backbone and the backdoor of a problem. Indeed, whilst it is possible
to exhibit problems where they are identical, it is also possible to exhibit problems where
they are disjoint. In practice, the overlap between backbones and backdoors appears to be
slight [59].

Cutsets [18] are a particular kind of backdoor sets. A cutset is a set of variables such
that, once they are removed from the constraint graph, the remaining graph has a property
that enables efficient reasoning, an induced width of at most a constant bound b; for exam-
ple, if b = 1 then the graph is cycle-free, i.e., it can be viewed as a tree, and therefore it
can be solved using directed arc consistency. Backdoor sets can thus be seen as a general-
ization of cutsets, i.e., any cutset is a backdoor set. Backdoors are more general than the
notion of cutsets since they consider any kind of polynomial time sub-solver. Note that,
while cutsets (and W-cutsets) use a notion of tractability based solely on the topology of
the underlying constraint graph, backdoor sets rely on a polynomial time solver to define
the notion of tractability. A related issue is the fact that backdoor sets factor in the values
of variables and the semantics of constraints (via the propagation triggered by the polytime
solver) and therefore backdoor sets can be significantly smaller than cutsets. For exam-
ple, if we have a constraint graph that contains a clique of size k, the cutset has at least
k − 2 variables, while the backdoor set can be substantially smaller. Another example,
considering CNF theories, is that while a Horn theory can have a cutset of size O(n), the
backdoor with respect to unit propagation has size 0 - unit propagation immediately detects
(in)consistency of Horn theories. Stated differently, given two CNF theories, one of them a
Horn theory and the other one an arbitrary CNF theory but with the same constraint graph
as the Horn theory, there is no difference between the two theories from the perspective of

1We use the notation C[v/x] to denote the simplified CSP obtained from a CSP, C, by setting the value of
variable x to value v.
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cutsets, but the difference between them from the perspective of backdoors is likely to be
substantial.

EQ

NEQ

EQ - equal

NEQ - not equal

cutset variable backdoor variable

EQ

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

	�	�	
	�	�	
	�	�	


�
�


�
�


�
�


�������������������������

�������������������������


�
�


�
�


�
�


�����
�����
�����

Figure 18.9: Cutset vs. backdoor sets. Any cutset is a backdoor set. However, backdoor
sets can be considerably smaller since they factor in the semantics of the constraints, via
the propagation triggered by the sub-solver. Any clique of size k has a cutset of size k− 2.
In this picture, the size of the cutset is 4 while the size of the backdoor set is 1 if the
sub-solver performs forward checking or anything stronger.

A key issue is therefore the size of the backdoor set. Random formulas do not appear
to have small backdoor sets. For example, for random 3-SAT problems, the backdoor set
appears to be a constant fraction (roughly 30%) of the total number of variables [53]. This
may explain why the current DPLL based solvers have not made significant progress on
hard randomly generated instances. Seizer considers the parameterized complexity of the
problem of whether a SAT instance has a weak or strong backdoor set of size k or less
for DPLL style sub-solvers, i.e., subsolvers based on unit propagation and/or pure literal
elimination [82]. He shows that detection of weak and strong backdoor sets is unlikely to
be fixed-parameter tractable. Nishimura et al. [72] provide more positive results for de-
tecting backdoor sets where the sub-solver solves Horn or 2-cnf formulas, both of which
are linear time problems. They prove that the detection of such a strong backdoor set is
fixed-parameter tractable, whilst the detection of a weak backdoor set is not. The expla-
nation that they offer for such a discrepancy is quite interesting: for strong backdoor sets
one only has to guarantee that the chosen set of variables gives a subproblem with the cho-
sen syntactic class; for weak backdoor sets, one also has to guarantee satisfiability of the
simplified formula, a property that cannot be described syntactically.

Empirical results based on real-world instances suggest a more positive picture. Struc-
tured problem instances can have surprisingly small sets of backdoor variables, which may
explain why current state of the art solvers are able to solve very large real-world instances.
For example the logistics-d planning problem instance, (log.d) has a backdoor set of just 12
variables, compared to a total of nearly 7,000 variables in the formula, using the polytime
propagation techniques of the SAT solver, Satz [62]. Hoffmann et al proved the existence
of strong backdoor sets of size just O(log(n) for certain families of logistics planning
problems and blocks world problems domains [54].

Even though, computing backdoor sets is typically intractable, even if we bound the
size of the backdoor [82], heuristics and techniques like randomization and restarts may
nevertheless be able to uncover a small backdoor in practice [87, 59, 52]. For example
one can obtain a complete randomized restart strategy that runs in polynomial time when
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(a) (b) (c)

Figure 18.10: Constraint graph of a real-world instance from the logistics planning do-
main. The instance in the plot has 843 vars and 7,301 clauses. One backdoor set for this
instance w.r.t. unit propagation has size 16 (not necessarily the minimum backdoor set).
(a) Constraint graph of the original constraint graph of the instance. (b) Constraint graph
after setting 5 variables and performing unit propagation on the graph. (c) Constraint graph
after setting 14 variables and performing unit propagation on the graph.

the backdoor set contains at most log(n) variables [87]. Dequen and Dubois introduced
a heuristic for DPLL based solvers that exploits the notion of backbone that outperforms
other heuristics on random 3-SAT problems [19, 20].

18.4.4 Restarts

One way to exploit heavy-tailed behaviour is to add restarts to a backtracking procedure. A
sequence of short runs instead of a single long run may be a more effective use of compu-
tational resources. Gomes et al. proposed a rapid randomization and restart (RRR) to take
advantage of heavy-tailed behaviour and boost the efficiency of complete backtrack search
procedures [44]. In practice, one gradually increases the cutoff to maintain completeness
([44]). Gomes et al. have proved formally that a restart strategy with a fix cutoff eliminates
heavy-tail behavior and therefore all the moments of a restart strategy are finite [43].

When the underlying runtime distribution of the randomized procedure is fully known,
the optimal restart policy is a fixed cutoff [63]. When there is no a priori knowledge
about the distribution, Luby et al. also provide a universal strategy which minimizes the
expected cost. This consists of runs whose lengths are powers of two, and each time a pair
of runs of a given length has been completed, a run of twice that length is immediately
executed. The universal strategy is of the form: 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, · · · . Although
the universal strategy of Luby et al. is provably within a constant log factor of the the
optimal fixed cutoff, the schedule often converges too slowly in practice. Walsh introduced
a restart strategy, inspired by Luby et al.’s analysis, in which the cutoff value increases
geometrically [85]. The advantage of such a strategy is that it is less sensitive to the details
of the underlying distribution. State-of-the-art SAT solvers now routinely use restarts.
In practice, the solvers use a default cutoff value, which is increased, linearly, every given
number of restarts, guaranteeing the completeness of the solver in the limit ( [70]). Another
important feature is that they learn clauses across restarts. The work on backdoor sets also
provides formal results on restart strategies. In particular, even though finding a small
set of backdoor variables is computationally hard, the presence of a small backdoor in a
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problem provides a concrete computational advantage in solving it with restarts [87].
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Figure 18.11: Restarts: (a) Tail (1− F (x)) as a function of the total number of backtracks
for a QCP instance, log-log scale; the left curve is for a cutoff value of 4; and, the right
curve is without restarts. (b) The effect of different cutoff values on solution cost for the
logistics.d planning problem. Graph adapted from [41, 43].

In reality, we will be somewhere between full and no knowledge of the runtime distri-
bution. [48] introduce a Bayesian framework for learning predictive models of randomized
backtrack solvers based on this situation. Extending that work, [58], considered restart
policies that can factor in information based on real-time observations about a solver’s
behavior. In particular, they introduce an optimal policy for dynamic restarts that consid-
ers observations about solver behavior. They also consider the dependency between runs.
They give a dynamic programming approach to generate the optimal restart strategy, and
combine the resulting policy with real-time observations to boost performance of backtrack
search methods.

Variants of restart strategies include randomized backtracking [64], and the random
jump strategy [93] which has been used to solve a dozen previously open problems in
finite algebra. Finally, one can also take advantage of the high variance of combinatorial
search methods by combining several algorithms into a “portfolio,” and running them in
parallel or interleaving them on a single processor [50, 40, 42].

18.5 History

Research in this area can be traced back at least as far as Erdös and Rényi’s work on phase
transition behaviour in random graphs [10]. One of the first observations of a complexity
peak for constraint satisfaction problems was Gaschnig in his PhD thesis where he used
〈10, 10, 1, p2〉 model B problems (these resemble 10-queens problems) [26]. Fu and An-
derson connected phase transition behaviour with computational complexity [24], as did
Huberman and Hogg [49]. However, it was not till 1991, when Cheeseman, Kanefsky and
Taylor published an influential paper [12] that research in this area accelerated rapidly.
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Cheeseman et al. correlated complexity peaks for search algorithms with rapid transitions
in problem satisfiability. They conjectured that all NP-complete problems display such
phase transition behaviour and that this is correlated with the rapid change in solution prob-
ability. More recently, phase transition behaviour has been correlated with rapid changes in
the size of the backbone. However, problem classes have been identified like Hamiltonian
Cycle whose phase transition does not seem to throw up hard instances [83], as well as
NP-complete problem classes which do not have any backbone [9]. Cheeseman, Kanefsky
and Taylor also conjectured that polynomial problems do not have such phase transition
behaviour or if they do it occurs only for a bounded problem size (and hence bounded cost)
[12]. However, as we noted, even polynomial problems like establishing arc-consistency
display similar phase transition behaviour [29]. Another polynomial problem class which
displays phase transition behaviour is 2-SAT [38, 14].

18.6 Conclusions

As the many examples in this chapter have demonstrated, research into random problems
has played a significant role in our understanding of problem hardness, and in the de-
sign of efficient and effective algorithms to solve constraint satisfaction and optimization
problems. We need to take care when using random problems as there are a number of
pitfalls awaiting the unwary. For example, random problems may lack structures found in
real world problems. Research into areas like random quasigroup completion attempts to
address such issues directly. As a second example, random problems may be generated
with “flaws”. However, if care is taken, such flaws can easily be prevented. There are
many areas that look promising for future research. For example, we are only starting to
understand the connection (if any) between the backbone and backdoor [59]. As another
example, random problems capturing structural properties of real world problems [54] are
starting to provide insight into key issues like backdoors. As a final example, search meth-
ods inspired by insights from random problems like randomization and restarts offer a
promising new way to tackle hard computational problems. What is certain, however, is
that random problems will continue to be a useful tool in understanding (and thus tackling)
problem hardness.
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