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Abstract

We review constraint-based approaches to handle prefer-
ences. We start by defining the main notions of constraint
programming, then give various concepts of soft constraints
and show how they can be used to model quantitative prefer-
ences. We then consider how soft constraints can be adapted
to handle other forms of preferences, such as bipolar, qualita-
tive, and temporal preferences. Finally, we describe how AI
techniques such as abstraction, explanation generation, ma-
chine learning, and preference elicitation, can be useful in
modelling and solving soft constraints.

Introduction
Preferences and constraints occur in real-life problems in
many forms. Intuitively, constraints are restrictions on the
possible scenarios. For a scenario to be feasible, all its con-
straints must be satisfied. For example, if we want to buy
a PC, we may pose a lower limit on the size of its screen.
Only PCs that respect this limit will be considered. Con-
straint programming (Rossi, Van Beek, & Walsh 2006) is an
area of AI which provides the formalisms and solving tech-
niques to model and solve problems with constraints.

Preferences, on the other hand, express desires, satisfac-
tion levels, rejection degrees, or costs. For example, we may
prefer a tablet PC to a regular laptop, we may desire having
a webcam, and we may want to spend as little as possible.
In this case, all PCs will be considered, but some will be
more preferred than others. Such concepts can be expressed
in either a qualitative or a quantitative way.

Preferences and constraints are closely related notions,
since preferences can be seen as a form of ”tolerant” con-
straints. For this reason, there are several constraint-based
frameworks to model preferences. One of the most general
framework, based on soft constraints (Meseguer, Rossi, &
Schiex 2006), extends the classical constraint formalism to
model preferences in a quantitative way, by expressing sev-
eral degrees of satisfaction that can be either totally or par-
tially ordered. When there are both levels of satisfaction and
levels of rejection, preferences are bipolar, and can be mod-
elled by extending the soft constraint formalism (Bistarelli
et al. 2006).
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Preferences can also be modelled in a qualitative way
(also called ordinal), that is, by pairwise comparisons. In
this case, soft constraints (or their extensions) are not suit-
able. However, other AI preference formalisms are able to
express preferences qualitatively, such as CP-nets (Boutilier
et al. 2004). CP-nets and soft constraints can be combined,
providing a single environment where both qualitative and
quantitative preferences can be modelled and handled.

Specific types of preferences come with their own reason-
ing methods. For example, temporal preferences are quanti-
tative preferences that pertain to distances and durations of
events in time. Soft constraints can be embedded naturally
in a temporal constraint framework to handle this kind of
preferences (Khatib et al. 2001; Peintner & Pollack 2004).

While soft constraints generalize the classical constraint
formalism providing a way to model several kinds of pref-
erences, this added expressive power comes at a cost, both
in the modelling task as well as in the solving process. To
mitigate these drawbacks, various AI techniques have been
adopted. For example, abstraction theory (Cousot & Cousot
1977) has been exploited to simplify the process of find-
ing a most preferred solution of a soft constraint problem
(Bistarelli, Codognet, & Rossi 2002). Also, explanations
have been considered to ease the understanding of the result
of the solving process (Freuder et al. 2003).

On the modelling side, it may be tedious or too de-
manding of a user to specify all the soft constraints. Ma-
chine learning techniques have therefore been used to learn
the missing preferences (Rossi & Sperduti 1998; Vu &
O’Sullivan 2007). Alternatively, preference elicitation tech-
niques (Chen & Pu 2004), interleaved with search and prop-
agation, have been exploited to minimize the user’s effort in
specifying the problem while still being able to find a most
preferred solution (Gelain et al. 2007).

Constraints
Constraint programming (Rossi, Van Beek, & Walsh 2006;
Dechter 2003) is a powerful paradigm for solving com-
binatorial search problems that draws on a wide range
of techniques from artificial intelligence, computer sci-
ence, databases, programming languages, and operations re-
search. Constraint programming is currently applied with
success to many domains, such as scheduling, planning, ve-
hicle routing, configuration, networks, and bioinformatics.



The basic idea in constraint programming is that the user
states the constraints and a general purpose constraint solver
is used to solve them.

Constraints are just relations, and a constraint satisfaction
problem (CSP) states which relations should hold among the
given decision variables. For example, in scheduling activi-
ties in a company, the decision variables might be the start-
ing times and the durations of the activities and the resources
needed to perform them, and the constraints might be on
the availability of the resources and on their use by a lim-
ited number of activities at a time. Another example is con-
figuration, where constraints are used to model compatibil-
ity requirements among components or user’s requirements.
For example, if we were to configure a laptop, some video
boards may be incompatible with certain monitors. Also, the
user may pose constraints on the weight and/or the screen
size.

Constraint solvers take a real-world problem like this, rep-
resented in terms of decision variables and constraints, and
find an assignment to all the variables that satisfies the con-
straints. Constraint solvers search the solution space either
systematically, as with backtracking or branch and bound
algorithms, or use forms of local search which may be in-
complete. Systematic methods often interleave search and
inference, where inference consists of propagating the infor-
mation contained in one constraint to the neighboring con-
straints. Such inference (usually called constraint propaga-
tion) is useful since it may reduce the parts of the search
space that need to be visited.

Rather than trying to satisfy a set of constraints, we may
want to optimize them. This means that there is an objec-
tive function that measures the quality of each solution, and
the aim is to find a solution with optimal quality, where the
quality of a solution can be expressed in terms of prefer-
ences. For such problems, techniques such as branch and
bound are usually used to find an optimal solution.

Modelling quantitative preference via soft
constraints

While constraints have been successfully applied to many
real-life combinatorial problems, in some cases the classical
constraint framework is not expressive enough. For exam-
ple, it is possible that after having listed the desired con-
straints among the decision variables, there is no way to sat-
isfy them all. In this case, the problem is said to be over-
constrained, and the model may be refined manually to ig-
nore certain constraints. This process, when it is feasible, is
rarely formalized and normally difficult and time consum-
ing. Even when all the constraints can be satisfied, we may
want to discriminate between the (equally good) solutions.
These scenarios often occur when constraints are used to for-
malize desired properties rather than requirements that can-
not be violated. Such desired properties are not faithfully
represented by constraints, but should rather be considered
as preferences whose violation should be avoided as far as
possible.

As an example, consider a typical timetabling problem
which aims at assigning courses and teachers to classrooms

and time slots in a university. There are usually many con-
straints, such as the size of the classrooms, the opening hours
of the building, or the fact that the same teacher cannot teach
two different classes at the same time. However, there are
usually also many preferences, which state for example the
desires of the teachers (like that he prefers not to teach on
Fridays), or also university policies (like that it is preferable
to use smaller classrooms if possible). If all these prefer-
ences are modelled by constraints, it is easy to find scenarios
where there is no way to satisfy all of them. However, there
could be ways to satisfy all hard requirements while violat-
ing the desires as little as possible, which is what we are
looking for in the real situation. Moreover, modelling pref-
erences in a faithful way allows us to discriminate among
all the solutions which satisfy the hard constraints. In fact,
there could be two timetables which both satisfy the hard
requirements, but where one of them satisfies better the de-
sires, and this should be the chosen one. Similar scenarios
can be found in most of the typical application fields for con-
straints, such as scheduling, resource allocation, rostering,
vehicle routing, etc.

In general, preferences can be quantitative or qualitative
(e.g. “I like this at level 10” versus “I like this more than
that”). Preferences can also be conditional (e.g., “If the main
dish is fish, I prefer white wine to red wine”). Preferences
and constraints may also co-exist. For example, in a product
configuration problem, there may be production constraints
(for example, a limited number of convertible cars can be
built each month), marketing preferences (for example, that
it would be better to sell the standard paint types), whilst the
user may have preferences of various kind (for example, that
if it is sports car, she prefers red).

To cope with some of these scenarios, classical constraints
have been generalized in various ways in the past decades.
The underlying observation of all such generalizations is that
classical constraints are relations, and thus they can either be
satisfied or violated. Preferences need instead a notion that
has several levels of satisfiability. In the early ’90s, several
attempts have been made to generalize the notion of con-
straint to an object with more than just two levels of satisfi-
ability, also called a soft constraint.

For example, fuzzy constraints (Dubois, Fargier, & Prade
1993; Ruttkay 1994) allow for (discretized) preferences be-
tween 0 and 1. Then, the quality of a solution is the mini-
mum preference associated to constraints for that solution.
The aim is then to find a solution whose quality is high-
est. Since only the minimum preference is considered in a
scenario, fuzzy constraints employ a pessimistic approach,
that can be useful or even necessary in critical applications
such as medical or aerospace ones. However, this so-called
”drowning effect” (where the worst level of satisfiability
”drowns” all the others) is too pessimistic in some cases.
For this reason, lexicographic constraints were introduced
(Fargier, Lang, & Schiex 1993), to obtain a more discrimi-
nating ordering of the solutions: to order two solutions, we
compare lexicographically the ordered sequence of all the
preferences given by the constraints to those two solutions.
In this way, solutions with different minimum preferences
are ordered as in the fuzzy constraint setting, but also so-



lutions with the same minimum preference (that would be
equally preferred in fuzzy constraints) can be discriminated.

{12 am, 1 pm} {2 pm, 3 pm}

Lunch Swim

(12 am, 3 pm)  1

(12 am, 2 pm)  1

(1 pm, 2 pm)  0

(1 pm , 3 pm)  1

{fish, meat} {white, red}

Main

Course
Wine

(fish, red)  0.8

(fish, white)  1

(meat, white)  0.3

(meat, red)  0.7

(fish,1pm)  0.8

(fish, 12am)  1

(meat, 12am)  0.8

(meat, 1pm)  1

(a)

Main

Course
Swim

Wine

Lunch 

fish > meat 3pm > 2pm

fish: white > red

meat: red > white

fish: 12am > 1pm
meat: 1pm > 12am

(b)

Figure 1: A fuzzy constraint problem (a) and a CP-net (b).

An example of a fuzzy constraint problem can be seen in
Figure 1 (a). We are deciding on what to have for lunch and
when to go swimming. The fuzzy CSP has four variables
(represented by the circles), each with two values. For ex-
ample, wine can be either red or white. There are three con-
straints, represented by solid arrows, and giving a preference
value between 0 and 1 to each assignment of the variables of
the constraint. An optimal solution of this fuzzy CSP is hav-
ing fish with white wine at 12am and going for a swim at
3pm.

Another extension to classical constraints are the so-
called probabilistic constraints (Fargier & Lang 1993),
where, in the context of an uncertain model of the real
world, each constraint is associated to the probability of be-
ing present in the real problem. Solutions are then associated
to their conjoint probability (assuming independence of the
constraints), and the aim is to find a solution with the highest
probability.

In weighted constraints, instead, each constraint is associ-
ated a weight, and the aim is to find a solution for which the
sum of the weights of the satisfied constraints is maximal. A
very useful instance of weighted constraints are MaxCSPs,
where weights are just 0 or 1 (0 if the constraint is violated
and 1 if it is satisfied). In this case, we want to satisfy as
many constraints as possible.

While fuzzy, lexicographic, and probabilistic constraints
were defined to model real-life situations that could not be
faithfully modelled via classical constraints, weighted con-
straints and MaxCSPs have mainly been defined to address
over-constrained problems, where there are so many con-
straints that the problem has no solution. In this case, the
attempt was to satisfy as many constraints as possible, pos-
sibly giving them some importance levels.

This second line of reasoning lead also to the definition of
the first general framework to extend classical constraints,
called partial constraint satisfaction (Freuder & Wallace
1992). In partial CSPs, over-constrained problems are ad-
dressed by defining a metric over constraint problems, and

by trying to find a solution of a problem which is as close
as possible to the given one according to the chosen metric.
MaxCSPs are then just an instance of partial CSPs where the
metric is based on the number of satisfied constraints.

Another general constraint-based formalism to model
preferences is the semiring-based formalism (Bistarelli,
Montanari, & Rossi 1997; Meseguer, Rossi, & Schiex 2006),
that encompasses most of the previous extensions with the
aim of providing a single environment where properties can
be proven once and for all, and then inherited by all the
instances. At the technical level, this is done by introduc-
ing a structure representing the levels of satisfiability of the
constraints. Such a structure is just a set with two opera-
tions: one (written +) is used to generate an ordering over
the levels, while the other one (×) is used to define how
two levels can be combined and which level is the result of
such combination. Because of the properties required on
such operations, this structure is usually a type of semir-
ing. This gives semiring-based soft constraint problems
(SCSPs), where constraints have several levels of satisfi-
ability, that are (totally or partially) ordered according to
the semiring structure. Fuzzy, lexicographic, probabilistic,
weighted, and MaxCSPs are all instances of the semiring-
based framework.

In the same year in which semiring-based soft constraints
were introduced (1995), valued constraints were introduced
as an alternative general formalism to model constraints with
several levels of satisfiability (Schiex, Fargier, & Verfaillie
1995). Valued constraints are very similar to semiring-based
soft constraints, except that their levels of satisfiability can-
not be partially ordered (Bistarelli et al. 1999), and thus they
can model only cardinal preferences.

The possibility of partially ordered sets of levels of sat-
isfiability can be useful is several scenarios. When the lev-
els are the result of the combination of several optimization
criteria, it is natural to have a Pareto-like approach in com-
bining such criteria, and this leads to a partial order. Also,
even if we have just one optimization criterion, we may want
to insist on declaring some levels as incomparable, because
of what they model. In fact, the elements of the semiring
structure do not need to be numbers, but can be any object
that we want to associate to a way of giving values to the
variables of a constraint. If, for example, the objects are all
the subsets of a certain set, then we can have a partial order
under subset inclusion.

Given two solutions of a soft constraint problem, check-
ing whether one is preferable to the other one is easy: we
compute the desirability values of the two solutions and
compare them in the preference order. However, finding an
optimal solution for a soft constraint problem is a combi-
natorially difficult problem. Many search techniques have
been developed to solve specific classes of soft constraints,
like fuzzy or weighted. However, all have an exponential
worst case complexity. Systematic approaches like back-
tracking search and constraint propagation can be adapted
to soft constraints. For example, backtracking search gives
branch and bound where the bounds are given by the prefer-
ence levels in the constraints. Constraint propagation, which
is very successful in pruning parts of the search tree in con-



straint solving, can also be generalized to certain classes of
soft constraints.

By the way soft constraints are defined, they are able to
model quantitative preferences. They cannot model directly
conditional and/or qualitative preferences.

Other kinds of preferences
Bipolar preferences
Bipolarity is an important topic in several fields, such as psy-
chology and multi-criteria decision making, and it has re-
cently attracted interest in the AI community, especially in
argumentation (Amgoud, Bonnefon, & Prade 2005), qualita-
tive reasoning (Dubois & Fargier 2005; 2006), and decision
theory (Labreuche & Grabisch 2006). Bipolarity in prefer-
ence reasoning can be seen as the possibility to stating both
degrees of satisfaction (that is, positive preferences) and de-
grees of rejection (that is, negative preferences).

Positive and negative preferences can be thought as two
symmetric concepts, and thus one might try to deal with
them via the same operators. However, this may not model
what one usually expects in real scenarios. For example,
if we have a dinner menu with fish and white wine, and
we like them both, then having both should be more pre-
ferred than having just one of them. On the other hand, if
we don’t like any of them, then the preference of the having
them both should be smaller than the preferences of each of
them alone. In fact, the combination of positive preferences
should usually produce a higher (positive) preference, while
the combination of negative preferences should usually give
us a lower (negative) preference.

When dealing with both kinds of preferences, it is natural
to express also indifference, which means that we express
neither a positive nor a negative preference over an object.
Moreover, we also want to be able to combine positive with
negative preferences. The most natural and intuitive way
to do so is to allow for compensation. Comparing positive
against negative aspects and compensating them w.r.t. their
strength is one of the core features of decision-making pro-
cesses, and it is, undoubtedly, a tactic universally applied to
solve many real life problems.

Positive and negative preferences might seem as just
two different criteria to reason with, and thus techniques
such as those usually adopted by multi-criteria optimiza-
tion (Ehrgott & Gandibleux 2002), such as Pareto-like ap-
proaches, could appear suitable for dealing with them. How-
ever, this interpretation would hide the fundamental nature
of bipolar preferences, that is, positive preferences are natu-
rally the opposite of negative preferences.

Soft constraints can only model negative preferences,
since in this framework preference combination returns
lower preferences. However, soft constraints can be gen-
eralized to model both positive and negative preferences
(Bistarelli et al. 2006), and preference compensation is al-
lowed.

Bipolarity has been considered also in qualitative prefer-
ence reasoning (Benferhat et al. 2002; 2006), where fuzzy
preferences model the positive knowledge and negative pref-
erences are interpreted as violations of constraints. Prece-

dence is given to negative preference optimization, and pos-
itive preferences are used to distinguish among the optimals
found in the first phase, thus not allowing for compensation.
Another approach (Grabisch, de Baets, & Fodor 2003) con-
siders totally ordered unipolar and bipolar preference scales
and defines an operator, the uninorm, which can be seen as
a restricted form of compensation.

Qualitative preferences
CP-nets (Boutilier et al. 2004) (Conditional Preference net-
works) are a graphical model for compactly representing
conditional and qualitative preference relations. Qualitative
preferences are also called ordinal preferences, since they
are modelled via an ordering over a set of alternatives.

CP-nets exploit conditional preferential independence
among the features of a problem by structuring a user’s pos-
sibly complex preference ordering via a set of preference
statements (called cp-statements), interpreted under the ce-
teris paribus assumption. For instance, the statement ”I pre-
fer red wine to white wine if meat is served” asserts that,
given two meals that differ only in the kind of wine served
and both containing meat, the meal with a red wine is prefer-
able to the meal with a white wine.

Figure 1 (b) shows a CP-net with the following cp-
statements: fish is better than meat; swimming later is pre-
ferred; white wine is preferred to red wine if fish is served,
otherwise red wine is better; an earlier lunch is preferred to
a late one if there is fish, otherwise later is better.

CP-nets bear some similarity to Bayesian networks, as
both utilize directed acyclic graphs where each node stands
for a domain variable, and assume a set of features with fi-
nite, discrete domains (these play the same role as variables
in soft constraints). Given a CP-net, an ordering is induced
over the set of assignments of its features. This ordering is,
in the most general case, a preorder (that is, reflexive and
transitive). However, this preorder is not general, since two
assignments that differ for the value of one variable are al-
ways ordered in a CP-net (that is, they are never incompara-
ble).

Given an acyclic CP-net, finding an optimal assignment
to its features can be done in linear time. However, for
cyclic CP-nets, it becomes NP-hard. Moreover, comparing
two outcomes is PSPACE-complete in general, and remains
NP-hard even when the CP-net is acyclic.

Quantitative and qualitative preferences
It would be nice to have a single formalism for representing
preferences of several kinds. To achieve this goal, we start
by comparing the expressive power of soft constraints and
CP-nets.

We could say that a formalism B is at least as expressive
as a formalism A if and only if from a problem expressed
using A it is possible to build in polynomial time a prob-
lem expressed using B such that the optimal solutions are
the same. If we apply this definition to soft constraints, we
see, for example, that fuzzy CSPs and weighted CSPs are
at least as expressive as classical constraints. If instead we
use it to compare CP-nets and soft constraints, we see that
classical constraints are at least as expressive as CP-nets. In



fact, it is possible to show that, given any CP-net, we can ob-
tain in polynomial time a set of classical constraints whose
solutions are the optimal outcomes of the CP-net (Brafman
& Dimopoulos 2004). On the contrary, there are some clas-
sical constraint problems for which it is not possible to build
in polynomial time a CP-net with the same set of optimals.

However, we could be more fine-grained in the compari-
son, and say that a formalism B is at least as expressive as
a formalism A if and only if from a problem expressed us-
ing A it is possible to build in polynomial time a problem
expressed using B such that the orderings over solutions are
the same. Here not only we must maintain the set of opti-
mals, but also the rest of the ordering over the solutions. In
this case, CP-nets and soft constraints are incomparable.

However, it is possible to approximate a CP-net ordering
via soft constraints, achieving tractability while sacrificing
precision to some degree. Different approximations can be
characterized by how much of the original ordering they pre-
serve, the time complexity of generating the approximation,
and the time complexity of comparing outcomes in the ap-
proximation. It is vital that such approximations are infor-
mation preserving; that is, what is ordered in the given or-
dering is also ordered in the same way in the approximation.
Another desirable property of approximations is that they
preserve the ceteris paribus property. CP-nets can be approx-
imated by soft constraints where the optimization criterion is
the minimization of the sum of the preferences, and also by
soft constraints where a fuzzy-based ordering is adopted. In
both cases, the approximation is information preserving and
satisfies the ceteris paribus property (Domshlak et al. 2003).
For example, the CP-net in Figure 1 (b) is approximated by
the fuzzy CSP in Figure 1 (a).

Summarizing, CP-nets and soft constraints have comple-
mentary advantages and drawbacks. CP-nets allow one to
represent conditional and qualitative preferences, but dom-
inance testing is expensive. On the other hand, soft con-
straints allow to represent both hard constraints and quanti-
tative preferences, and have a cheap dominance testing.

Many problems have both constraints and preferences.
Unfortunately, reasoning with them both is difficult as of-
ten the most preferred outcome is not feasible, and not all
feasible outcomes are equally preferred. If we put together
a CP-net and a set of constraints, it is possible to obtain all
the optimal outcomes by solving a set of hard ”optimality
constraints” (Prestwich et al. 2005). In well defined cases,
this avoids expensive dominance testing.

Temporal preferences
Soft constraints have been used also to model preferences in
the context of temporal reasoning. Reasoning about time is a
core issue in many real life problems, such as planning and
scheduling for production plants, transportation, and space
missions. Several approaches have been proposed to rea-
son about temporal information. Temporal constraints have
been among the most successful in practice.

In temporal constraint problems, variables either repre-
sent instantaneous events, such has “when a plane takes off”,
or temporal intervals, such as “the duration of the flight”.
Temporal constraints allow one to put temporal restrictions

either on when a given event should occur, e.g. “the plane
must take off before 10am”, or on how long a given activity
should last, e.g. “the flight should not last more than two
hours”.

Several quantitative and qualitative constraint-based tem-
poral formalisms have been proposed, stemming from pio-
neering works by Allen (Allen 1983) and by Dechter, Meiri,
and Pearl (Dechter, Meiri, & Pearl 1991).

In general, solving temporal constraint problems is dif-
ficult. However, there are tractable classes, such as quan-
titative temporal constraint problems where there is only
one temporal interval for each constraint (Dechter, Meiri,
& Pearl 1991).

The expressive power of classical temporal constraints
may be insufficient to model faithfully all the aspects of the
problem. For example, one may want to say that “the earlier
the plane takes off, the better”. Both qualitative and quan-
titative temporal reasoning formalisms have been extended
with quantitative preferences to allow for the specification
of such a kind of statements.

More precisely, Allen’s approach has been augmented
with fuzzy preferences (Badaloni, Falda, & Giacomin 2004),
that are associated with the relations among temporal inter-
vals allowed by the constraints. Such problems are solved
by exploiting some properties of fuzzy preferences, in order
to decompose the optimization problem into solving a set of
classical constraint problems.

Fuzzy preferences have been combined also with non-
disjunctive and disjunctive quantitative temporal constraints
(Khatib et al. 2007; Peintner & Pollack 2004). The result are
soft temporal constraints where each allowed duration or oc-
currence time for a temporal event is associated to a fuzzy
preference representing the desirability of that specific time.
The decomposition approach is the most efficient solving
technique also in the quantitative setting (Khatib et al. 2001;
2007; Peintner & Pollack 2004).

Quantitative temporal constraints have also been extended
with utilitarian preferences: preferences take values in the
set of positive reals and the goal it to maximize their sum.
Such problems have been solved using adapted branch and
bound techniques as well as SAT and weighted constraint
satisfaction approaches (Moffitt & Pollack 2006; Peintner &
Pollack 2005).

Mastering the complexity of soft constraints
In constraint satisfaction problems we look for a solution,
while in soft constraint problems we look for an optimal so-
lution. Thus, soft constraint problems are more difficult to
handle by a solver. To ease this difficulty, several AI tech-
niques have been used. Here we cite just two of them: ab-
straction and explanation generation. Abstraction works on
a simplified version of the given problem, thus hoping to
have a significantly smaller search space, while explanation
generation helps understand the result of the solver. It is not
always easy for a user to understand why no better solution
is returned.

An added difficulty in dealing with soft constraints comes
also in the modelling phase, where a user has to understand
how to model faithfully his real-life problem via soft con-



straints. In many cases, we may end up with a soft constraint
problem where some preferences are missing. To reason in
this scenario, we may use techniques like machine learning
and preference elicitation to solve the problem.

Abstraction
Soft constraints are much more expressive than classical
CSPs, but they are also more difficult to process and to solve.
Therefore, sometimes it may be too costly to find all, or
even only one, optimal solution. Also, although classical
propagation techniques like arc-consistency can be extended
to soft constraints (Meseguer, Rossi, & Schiex 2006), such
techniques can be too costly to be used, depending on the
size and structure of the partial order associated to the prob-
lem. Finally, sometimes we may not have a solver for the
class of soft constraints we need to solve, while we may have
a solver for another ”simpler” class of soft constraints.

For these reasons, it may be reasonable to work on a sim-
plified version of the given soft constraint problem, trying
not to lose too much information. Such a simplified ver-
sion can be defined by means of the notion of abstraction,
which takes an SCSP and returns a new one which is sim-
pler to solve. Here, as in many other works on abstraction,
“simpler” may mean many things, like the fact that a certain
solution algorithm finds a solution, or an optimal solution, in
a fewer number of steps, or also that the abstracted problem
can be processed by a machinery which is not available in
the concrete context.

To define an abstraction, we may use for example the
theory of Galois insertions (Cousot & Cousot 1977), that
provides a formal approach to model the simplification of
a mathematical structure with its operators. Given an SCSP
(the concrete one), we may get an abstract SCSP by just sim-
plifying the associated semiring, and relating the two struc-
tures (the concrete and the abstract one) via a Galois inser-
tion. Note that this way of abstracting constraint problems
does not change the structure of the problem (the set of vari-
ables remains the same, as well as the set of constraints), but
just the semiring values to be associated to the tuples of val-
ues for the variables in each constraint (Bistarelli, Codognet,
& Rossi 2002).

Abstraction has been used also to simplify the solution
process of hard constraint problems (Lecoutre et al. 2000).
Also, the notion of value interchangeability has been ex-
ploited to support abstraction and reformulation of hard con-
straint problems (Freuder & Sabin 1997). However, in the
case of hard constraints, abstracting a constraint problem
means dealing with fewer variables and smaller domains.

Once we reason on the abstracted version of a problem,
we can bring back to the original problem some (or possibly
all) of the information derived in the abstract context, and
then continue the solution process on the transformed prob-
lem, which is a concrete problem equivalent to the given one.
The hope is that, by following this route, we get to the final
goal faster than just solving the original problem.

It is also possible to define iterative hybrid algorithms
which can approximate an optimal solution of a soft con-
straint problem by solving a series of problems which ab-
stract, in different ways, the original problem. These are

anytime algorithms since they can be stopped at any phase,
giving better and better approximations of an optimal solu-
tion.

Explanation generation
One of the most important features of problem solving in an
interactive setting is the capacity of the system to provide
the user with justifications, or explanations, for its opera-
tions. Such justifications are especially useful when the user
is interested in what happens at any time during search, be-
cause he/she can alter features of the problem to facilitate
the problem solving process.

Basically, the aim of an explanation is to show clearly why
a system acted in a certain way after certain events. Explana-
tions have been used for hard constraint problems, especially
in the context of over-constrained problems (Junker 2004;
Jussien & Barichard 2000; Amilhastre, Fargier, & Marquis
2002), to understand why the problem does not have a so-
lution and what can be modified in order to get one. In soft
constraint problems, explanations should also take prefer-
ences into account, and provide a way to understand, for
example, why there is no way to get a better solution.

In addition to providing explanations, interactive systems
should be able to show the consequences, or implications, of
an action to the user, which may be useful in deciding which
choice to make next. In this way, they can provide a sort of
“what-if” kind of reasoning, which guides the user towards
good future choices. Fortunately, in soft constraint problems
this capacity can be implemented with the same machinery
that is used to give explanations.

A typical example of an interactive system where con-
straints and preferences may be used, and where explana-
tions can be very useful, are configurators. A configurator
is a system which interacts with a user to help him/her to
configure a product. A product can be seen as a set of com-
ponent types, where each type corresponds to a certain finite
number of concrete components, and a set of compatibility
constraints among subsets of the component types. A user
configures a product by choosing a concrete component for
each component type, such that all the compatibility con-
straints as well as personal preferences are satisfied. For
example, in a car configuration problem, a user may prefer
red cars, but may also not want to completely rule out other
colors.

Constraint-based technology is currently used in many
configurators to both model and solve configuration prob-
lems: component types are represented by variables, hav-
ing as many values as the concrete components, and both
compatibility and personal constraints are represented as
constraints (or soft constraints) over subsets of such vari-
ables. At present, user choices during the interaction with
the configurator are usually restricted to specifying unary
constraints, in which a certain value is selected for a vari-
able.

Whenever a choice is made, the corresponding (unary)
constraint is added to existing compatibility and personal
constraints, and some constraint propagation notion is en-
forced, for example arc-consistency (AC) (Rossi, Van Beek,
& Walsh 2006), to rule out (some of the) future choices that



are not compatible with the current choice. While providing
justifications based on search is difficult, arc-consistency en-
forcing has been used as a source of guidance for justifica-
tions, and it has been exploited to help the users in some of
the scenarios mentioned above. For example, it has been
shown that AC enforcement can be used to provide both
justifications for choice elimination, and also guidance for
conflict resolution (Freuder, Likitvivatanavong, & Wallace
2001).

The same approach can be used also for configura-
tors with preferences, using a generalized version of arc-
consistency, whose application may decrease the prefer-
ences in some constraints. Explanations can then describe
why the preferences for some values decrease, and suggest
at the same time which assignment has to be retracted, in
order to maximize the evaluation of a solution.

Configurators with soft constraints should help users not
only to avoid conflicts or to make the next choice so that a
smaller number of later choices are eliminated, but also to
get to an optimal (or good enough) solution. More precisely,
when the user is about to make a new choice for a compo-
nent type, the configurator should show the consequences
of such a choice in terms of conflicts generated, elimination
of subsequent choices, and also quality of the solutions. In
this way, the user can make a choice which leads to no con-
flict, and which presents a good compromise between choice
elimination and solution quality.

Learning
In a soft constraint problem, sometimes one may know
his/her preferences over some of the solutions, but have no
idea on how to code this knowledge into the constraints of
the problem. Such a scenario has been theoretically ad-
dressed (Rossi & Sperduti 1998) by using machine learning
techniques based on gradient descent. Soft constraint learn-
ing has also been embedded in a general interactive con-
straint framework, where users can state both usual prefer-
ences over constraints and also preferences over solutions
proposed by the system (Rossi & Sperduti 2004). Other ap-
proaches to learning soft constraints that provide a unify-
ing framework for soft CSP learning have recently been de-
veloped (Vu & O’Sullivan 2007). Moreover, soft constraint
learning has been exploited in the application domain of pro-
cessing and interpreting satellite images (Michalowski et al.
2007).

Machine learning techniques have also been used to learn
hard constraints (that is, to learn allowed and forbidden vari-
able instantiations). For example, an interactive technique
based on a hypothesis space containing the possible con-
straints to learn has been used to help the user formulate
his constraints (O’Connell, O’Sullivan, & Freuder 2002).

Elicitation
Preference elicitation is a well-studied discipline in AI and
other fields (Chen & Pu 2004). Preference elicitation may be
costly. For example, asked preferences may need some work
to be computed, or users may be reluctant to provide some of
their preferences for privacy concerns. Therefore the usual
aim is to minimize the amount of preference elicited.

With soft constraints, the task is to find an optimal solu-
tion. When some preferences are missing, we can consider
two notions of optimal solutions: possibly optimal solutions
are assignments to all the variables that are optimal in at least
one way currently unspecified preferences can be revealed,
while necessarily optimal solutions are assignments to all
the variables that are optimal in all ways in which currently
unspecified preferences can be revealed.

Given an incomplete soft CSP, its set of possibly optimal
solutions is never empty, while the set of necessarily opti-
mal solutions can be empty. Of course what we would like
to find is a necessarily optimal solution: such solutions are
optimal regardless of how the missing preferences would be
specified. However, if this set is empty, we can interleave
search and preference elicitation. More precisely, we can
ask the user to provide some of the missing preferences and
try to find, if any, a necessarily optimal solution of the new
incomplete soft CSP. Then we can repeat the process un-
til the current problem has at least one necessarily optimal
solution. Experimental results show that this process ends
after eliciting a very small percentage (as low as 10%) of the
missing preferences (Gelain et al. 2007).

Other approaches elicit not just preferences but also val-
ues in the variable domains (Faltings & Macho-Gonzalez
2005), and consider either fuzzy or weighted constraints.
Moreover, preference elicitation can also be used to elicit
hard constraints (that is, to know if some partial assignments
are allowed or not). In this context, the approach in (Wilson,
Grimes, & Freuder 2007) associates a cost to each missing
item, as well as a probability of being allowed. Then, while
still interleaving search and elicitation, search is guided by
such costs and probabilities, with the aim of minimizing the
elicitation effort.

Future Perspectives
There are many directions for future work, both from a rep-
resentational and a reasoning perspective. For instance, a
very active area of research currently is reasoning about in-
completely specified preferences. This line of research in-
volves also issues related to preference elicitation, sensitiv-
ity analysis, uncertainty, and robustness. Another active line
of research is in developing soft global constraints. Global
constraints are very useful in CSPs since they are equipped
with very efficient propagation algorithms. It would be very
useful to define similar global constraints also in the soft
constraint framework. It would also be interesting to study
quantified soft constraint problems, where preferences can
be associated to quantified statements.

The recently born area of computational social choice is
devoted to exploit computer science results in the field of
social choice, and addresses issues in topics like multi-agent
preference aggregation. Like other multi-disciplinary topics,
this area shows considerable promise. Some work in this
area has already lead to interesting results where complexity
has been used to mitigate some of the classical impossibility
results proven by social choice for aggregating multi-agent
preferences.

Many classical CSP applications, such as scheduling and
resource allocation, can benefit from the ability to handle



preferences. Moreover, newly emerging applications are
heavily based on a flexible, adaptive, and tolerant behavior,
that can be found only in preference-based approaches. For
example, as synthetic avatars interact more and more with
humans, it is crucial to equip them with the ability to ex-
tract, model, and handle humans’ preferences.
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