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Scheduling


Given a set of resources with fixed capacities, a set of activities
with given durations and resource requirements, a set of temporal
constraints between activities, and a cost function, a “pure”
scheduling problem consists of deciding when to execute each
activity to minimize the overall cost, under both temporal and
resource constraints.
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Scheduling Situations


I In disjunctive scheduling, each resource (= machine) can
execute one activity at a time.


I In cumulative scheduling, a resource can run several
activities in parallel.


I In non-preemptive scheduling, activities cannot be
interrupted.


I In preemptive scheduling, activities can be interrupted.


I On an elastic schedule the amount of resource assigned to
Ai can, at any time t, pick any value between 0 and CR


resource capacity, provided that the sum the assigned capacity
equals a given energy.
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Objective Functions


I In decision problems, one has to determine if there is a
schedule that meets all constraints.


I In optimization problems, an objective function has to be
minimized (minimization of the makespan, i.e., the finishing
time of the schedule, the number of activities performed with
given delays, the peak resource utilization, the sum of setup
times or costs).
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Objective Functions


Scheduling criteria F are either formulated as a sum or as a
maximum. A weight per job wi may be used to give more
importance to some jobs. Ci denotes the completion time of Ai .


I Makespan: F = Cmax = maxi Ci


I Maximum Tardiness: F = Tmax = maxi Ti


I Total weighted flow time: F =
∑


wiCi


I Total weighted number of late jobs: F =
∑


wiUi


I Total weighted tardiness: F = wiTi
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Objective Functions
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A Constraint Based Scheduling Model


I Activities


I Resources


I Temporal Relations


I Resource Constraints
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Activities (non-preemptive case)


I Two variables, start(Ai ) and end(Ai ), are associated with Ai .


I We use [ri , di ] to denote the time window in which Ai has to
execute.


I ri is the smallest value in start(Ai ) and di is the largest value
in end(Ai ) (also called release date and the deadline)


I The processing time of the activity is an additional variable
proc(Ai ) with proc(Ai ) = end(Ai )− start(Ai ). We note
pi = lb(proc(Ai )).


Philippe Baptiste: Constraint Based Scheduling, 9/ 125 CNRS LIX, École Polytechnique







A CP Model Disjunctive Scheduling Cumulative Scheduling Complex Objective Function ATC


Activities (Non-Preemptive Case)
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Most often : Domains = Intervals
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Temporal Relations


I Temporal relations between activities can be expressed by
linear constraints between the start and end variables of
activities.


I Ai → Aj is modeled by the linear ct end(Ai ) ≤ start(Aj).


I Such constraints can be easily propagated using a standard
arc-B-consistency algorithm.
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Temporal Relations


I If we only have precedence constraints


I and if the resulting CSP is Arc-B-Consistant


I then there is a solution to the CSP (i.e., there is a feasible
schedule)


I Moreover, for each activity Ai and each starting time
t ∈ start(Ai ), there is a feasible schedule where Ai starts at t.


The resulting algorithm is strongly related to Ford & Belllman’s
algorithm.
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Resource Constraints


Given Ai and a resource R whose capacity is cap(R), let
cap(Ai ,R) be the amount of R required by Ai .
Generally speaking, the resource constraint is


∀t
∑


start(Ai )≤t<end(Ai )


cap(Ai ,R) ≤ cap(R) (1)


In the following, we note ci ,R the minimal amount of the capacity
(resp. of the energy) of the resource R required by the activity Ai .
Finally we note CR the maximum value in the domain of the
resource capacity.


Philippe Baptiste: Constraint Based Scheduling, 13/ 125 CNRS LIX, École Polytechnique
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Objective Functions


A variable criterion represents the value of the objective function.
We have


criterion = F (end(A1), · · · , end(An))


F is often a simple arithmetic expression (⇒ arc-B-consistency).
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Objective Functions : Min sum vs. Min Max


I Considering the objective constraint and the resource
constraints independantly is ok when F is a “maximum”
(Cmax or Tmax).


I Indeed, the upper-bound on criterion is directly propagated on
the completion time of each activity. In the search for a
solution to the decision problem, the objective function can be
forgotten.


I The situation is much more complex for sum functions such as∑
wiCi ,


∑
wiTi or


∑
wiUi .


Efficient constraint propagation techniques must handle resource
cts and objective constraint simultaneously.
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Computing an Optimal Solution


Once all constraints of the problem are posted, solve successive
decision variants to get the optimum, e.g., a dichotomizing
algorithm can be used:


1. Compute an ub and a lb for criterion.


2. Set D = (lb + ub)/2


3. Constrain criterion ≤ D. Solve the resulting CSP (branching
procedure with constraint propagation). If a solution is found,
set ub the solution value; otherwise, set lb to D + 1.


4. Iterate steps 2 and 3 until ub = lb.
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Refinements of the Model


I Alternative Resources


I Transition Time


I Transition Cost
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Constraint Propagation


Propagation of the One Machine Constraint


How to propagate that a set of n activities {A1, · · · ,An} require
the same resource of capacity 1 ?
Several techniques:


I Time-Table Constraint


I Disjunctive Constraint


I Edge-Finding
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Constraint Propagation


Time-Tables


Time-Tables use an explicit data structure called “timetable” to
maintain information about resource utilization and resource
availability over time.
We define a 0-1 variable X (Ai , t) for each activity Ai and time t.
The propagation mainly consists of maintaining arc-B-consistency
on the formula:


∀t,
∑


start(Ai )≤t<end(Ai )


X (Ai , t) ≤ 1 (2)
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Constraint Propagation


Time-Tables


The previous mechanism leads in turn to some adjustments of
ri , eeti , lsti and di :


start ≤ min{t : X (Ai , t) = 1}
start > max{t : ∀u < t,X (Ai , u) = 0}


end > max{t : X (Ai , t) = 1}
end ≤ min{t : ∀u ≥ t,X (Ai , u) = 0}
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Constraint Propagation


Time-Tables


Before Propagation UL� GL� SL� � � 0  1   2   3  4  5  
$1 0 3 2               
$2� 0 4 2               


Propagation 1 UL� GL� SL� � � � � � � � � � � � � � �
$1 0 3 2               
$2� 2 4 2               


Propagation 2 UL� GL� SL� � � � � � � � � � � � � � �
$1 0 2 2               
$2� 2 4 2               
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Constraint Propagation


Disjunctive Constraint Propagation


In non-preemptive scheduling, two activities Ai and Aj requiring
the same machine cannot overlap in time.


I either Ai precedes Aj or Aj precedes Ai .


I n(n − 1)/2 (explicit or implicit) disjunctive constraints


[end(Ai ) ≤ start(Aj)] ∨ [end(Aj) ≤ start(Ai )] (3)
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Constraint Propagation


Disjunctive Constraint Propagation


Enforcing arc-B-Consistency on
[end(Ai ) ≤ start(Aj)] ∨ [end(Aj) ≤ start(Ai )] done as follows:


I Whenever the smallest possible value of end(Ai ) (earliest end
time of Ai ) exceeds the greatest possible value of start(Aj)
(latest start time of Aj), Ai cannot precede Aj ;


I hence Aj must precede Ai ; the time-bounds of Ai and Aj are
consequently updated


I When neither of the two activities can precede the other, a
contradiction is detected.
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Constraint Propagation


Disjunctive Constraint


Before Propagation UL� GL� SL� � � 0  1   2   3  4  5  6 
$1 0 4 2               
$2� 1 5 2               


Propagation UL� GL� SL� � � � � � � � � � � � � � �
$1 0 3 2               
$2� 2 5 2               
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Constraint Propagation


Disjunctive Constraint vs. time-tables


I Disjunctive constraints provide more precise time bounds than
timetables. Indeed, if Aj is known to execute at some time t
between ri and eeti of Ai , then the first disjunct of
[end(Ai ) ≤ start(Aj)] ∨ [end(Aj) ≤ start(Ai )] is false and thus,
Aj must precede Ai and the propagation of the disjunctive
constraint implies start(Ai ) ≥ rj + pj > t.


I disjunctive constraints may propagate more than time-table
constraints (see prev. ex)
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Constraint Propagation


Necessary Conditions of Existence


I The global constraint is feasible iff there is a feasible schedule
(NP-Hard in the strong sense)


I Relax non-preemption constraint. Polynomially solvable
I Flow
I Duality (Max Flow Min Cut)  Check over intervals
I Jacskon rule (EDD order)
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Constraint Propagation


Necessary Conditions of Existence (Flow)


Have a look to the white board
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Constraint Propagation


Necessary Conditions of Existence (Dual)


There is a feasible preemptive schedule if and only if over any time
interval [t1, t2], the sum of the processing times of the jobs i such
that t1 ≤ ri and di ≤ t2 is not greater that t2 − t1.
 simple algorithms
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Constraint Propagation


Necessary Conditions of Existence (Jackson)


I based on EDD dispatching rule


I Build the schedule from left to right


I At any time point t schedule the available piece of job with
minimal deadline


I Where available at t means with release date greater than t
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Constraint Propagation


Necessary Conditions of Existence (Jackson)


i 1 2 3 4 5 6 7


ri 0 9 13 11 20 30 30
pi 6 7 6 7 4 3 5
di 31 41 22 24 27 40 48


7


0 9 11 13 19 24 28 30 33 36 416


1 2 4 3 4 5 2 6 2
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Constraint Propagation


Edge-Finding


I It consists of deducing that some activities from a given set Ω
must, can, or cannot, execute first (or last) in Ω.


I Such deductions lead to new time-bounds.


In the following,


rΩ = min
Ai∈Ω


ri , dΩ = max
Ai∈Ω


di , pΩ =
∑
Ai∈Ω


pi


Let Ai � Aj (Ai � Aj) mean that Ai executes before (after) Aj


and Ai � Ω (Ai � Ω) mean that Ai executes before (after) all the
activities in Ω.
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Constraint Propagation


Edge-Finding Rules


∀Ω,∀Ai /∈ Ω, [dΩ∪{Ai} − rΩ < pΩ + pi ] ⇒ Ai � Ω


∀Ω,∀Ai /∈ Ω, [dΩ − rΩ∪{Ai} < pΩ + pi ] ⇒ Ai � Ω


∀Ω,∀Ai /∈ Ω, [Ai � Ω] ⇒ [end(Ai ) ≤ min
Ω′⊆Ω


(dΩ′ − pΩ′)]


∀Ω,∀Ai /∈ Ω, [Ai � Ω] ⇒ [start(Ai ) ≥ max
Ω′⊆Ω


(rΩ′ + pΩ′)]
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Constraint Propagation


Edge-Finding Example


 UL� GL� SL� � 0 2 4 6 8 10 12 14 16 
$1 0 17 6                    
$2 1 11 4                    
$3� 1 11 3                    


                      Schedule  $1� $2 $2 $2 $2 $3 $3 $3 $1 $1 $1 $1 $1      
 


On this example, the edge-finding propagation algorithm deduces
start(A1) ≥ 8 (A1 must execute after {A2,A3}), when the
timetable and the disjunctive constraint propagation algorithms
deduce nothing.
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Constraint Propagation


Edge-Finding: Algorithmitic Aspect


I If n activities require the resource, there are a priori O(n ∗ 2n)
pairs (Ai ,Ω) to consider!


I Note that one can only consider the sets Ω = Ωu,v


Ωu,v = {Ji : ru ≤ ri ∧ di ≤ dv}


I So one can easiely build a polynomial algorithm: there are at
most O(n3) pairs (Ai ,Ωu,v ) to consider and each time the
rules run in linear time so we have an O(n4) algorithm.


I The best algorithm runs in O(n log n)!
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Constraint Propagation


Not-First Not-Last


I The algorithms presented mostly focus on determining if Ai


must execute before (or after) Ω.


I A natural complement consists of determining whether Ai can
execute before (or after) Ω.


I In the non-preemptive case, this leads to the rules


∀Ω,∀Ai /∈ Ω, [dΩ − ri < pΩ + pi ] ⇒ ¬(Ai � Ω)


∀Ω,∀Ai /∈ Ω, [di − rΩ < pΩ + pi ] ⇒ ¬(Ai � Ω)


∀Ω,∀Ai /∈ Ω,¬(Ai � Ω) ⇒ start(Ai ) ≥ min
Aj∈Ω


(rj + pj)


∀Ω,∀Ai /∈ Ω,¬(Ai � Ω) ⇒ end(Ai ) ≤ max
Aj∈Ω


(dj − pj)
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A CP Model Disjunctive Scheduling Cumulative Scheduling Complex Objective Function ATC


Constraint Propagation


Not-First Not-Last


Before Prop. r i  di pi      0    1     2     3    4    5    6    7    8    9  10 
A1 1 10 2                       
A2 0 5 2                       
A3 2 5 1                       


After Prop. r i  di pi                        
A1 2 10 2                       
A2 0 5 2                       
A3 2 5 1                       


 


Not-First Not-Last deduces that Ai cannot start before 2 while the
other deductive rules seen up to now deduce nothing.
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Constraint Propagation


Not-First Not-Last


I The “not-first” and “not-last” rules subsume the disjunctive
constraint propagation.


I Hence, no disjunctive constraint propagation algorithm is
needed when the “not-first” rule and its dual “not-last” are
applied.
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Job-Shop


Job-Shop Scheduling (JSSP)


I n jobs to be performed using m machines.


I Each job consists of m activities (of given processing times) to
be executed in a specified order.


I Each activity requires a specified machine and each machine is
required by a unique activity of each job.


The goal is to determine a solution with minimal makespan and
prove the optimality of the solution. Job-shop scheduling is an
NP-complete problem, known to be among the worst in this class.
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Job-Shop


Branching Scheme for JSSP


We build a B&B with constraint propagation (disjunctive +
edge-finding). It is used to determine whether the problem with
makespan at most D.


1. Select a resource among those required by unordered
activities.


2. Select the activity to execute first among unordered ones
(keep others as alternatives upon backtrack).


3. Iterate step 2 until all the activities on the resource are
ordered.


4. Iterate steps 1 to 3 until all the activities that require a
common resource are ordered.
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Job-Shop


Heuristics for JSSP: Resource Selection


I Some “critical” resources are, over some periods of time,
more relied upon than others.


I It is, in general, very important to schedule critical resources
first


I the “criticality” of a resource over [t1, t2] is the “demand”
(sum of the durations of activities) minus the “supply”
(t2 − t1).


I When all activities of the critical reosurce are ordered, there is
very little work left to do!
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Job-Shop


Heuristics for JSSP: Activity Selection


We choose the activity


I with the soonest earliest start time;


I in addition, the activity with the soonest latest start time is
chosen when two or several activities share the same earliest
start time.
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Job-Shop


Computational Results


On a VERY old Pentium 90...


PROB ALGO BT CPU BT-PR CPU-PR
BDG ARC 176 .3 149 .1


EF 14 .5 12 .1
MT10 EF 51980 2194 8137 355
ABZ5 EF 45187 1369 19574 590
ABZ6 EF 1068 52 302 14


The best techniques available so far allow to solve 10*10 instances
in a few seconds.
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Job-Shop


Open-Shop Scheduling (OSSP)


I n jobs {J1, . . . , Jn} that have to be scheduled on m parallel
identical machines {M1, . . . ,Mm}.


I Each job Ji consists of m operations {Oi1, . . . ,Oim}, each of
which being described by its processing time pij .


I Operations of the same job cannot overlap in time and are
assigned to a machine µij


I The goal is to find a schedule with minimal makespan.


OSSP is NP-Hard and within its class it has been shown to be
extremly hard to solve in practice.
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Job-Shop


Dominance property for OSSP


I The symetric counterpart of any solution of the OSSP is also
a solution of the OSSP


I So we can arbitrary pick any operation Oij and impose, a
priori, that it starts in the right part of the schedule:


start(Oij) ≤
⌈


makespan− pij


2


⌉
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Job-Shop


Dominance property for OSSP


I How to determine the operation on which this domain
reduction is to be achieved ?


I To estimate the impact of this dominance property, it is
“tried” on each operation and each time, the sum of the
domain size of each variables of the problem is computed


I The operation that minimizes this sum is picked.
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Job-Shop


Shaving


Shaving is a powerful propagation method it relies on other
propagation mechanism:


I for all job, try to set start(Ji ) to ri and propagate constraints.


I If a contradiction occurs, set ri := ri + 1.


I otherwise fail.


It may prove to be extremly costly but sometimes very efficient!
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Job-Shop


Solving the OSSP


To evaluate the efficiency of these propagation techniques, four
variants of the algorithm have been tested:


I STD. No additional propagation is performed.


I SH. Shaving is performed.


I NFNL. Not-First Not-Last propagation is used.


I SH+NFNL. Both Shaving and Not-First Not-Last
propagation are used.
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Job-Shop


Solving the OSSP
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Cumulative Scheduling


Given Ai and a resource R whose capacity is C , let ci be the
amount of R required by Ai .


∀t
∑


start(Ai )≤t<end(Ai )


ci ≤ C
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Constraint Propagation


Non-Preemptive Problems


I Time-Table Constraint and disjunctive constraints are easiely
adapted.


I Edge-Finding Not-First Not-Last deductions rules and
energetic reasoning can also be adapted.
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Constraint Propagation


Edge Finding Example


 0 1 2  3 4 5  6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
A1                           


                           


A2                           
                           


A3                           
                           


A4                           
 


Four activities on the same resource with capacity 2
The sum of the energy of the activities is 22, whereas the available
energy between times 0 and 10 is 20. This implies that A1 cannot
be started at time 0, 1, 2, 3.
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Constraint Propagation


Edge Finding


Proposition


Let Ω be a subset of jobs and let Ai 6∈ Ω. Then, (i) if


pΩ∪{Ai} > (dΩ − rΩ∪{Ai})C , (4)


then all activities in Ω end before the end of Ai , and (ii) if


pΩ∪{Ai} > (dΩ∪{Ai} − rΩ)C ,


then all activities in Ω start after the start of Ai .


Philippe Baptiste: Constraint Based Scheduling, 54/ 125 CNRS LIX, École Polytechnique
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Constraint Propagation


Edge Finding: Adjustment


Let Ω be a set of activities that end before the end of Ai /∈ Ω.
With rest(Ω, ci ) = pΩ − (dΩ − rΩ)(C − ci ), it is derived that if
rest(Ω, ci ) > 0, a lower bound on the earliest end time of all
activities in Ω, and thus a lower bound on ri , equals
rΩ + drest(Ω, ci )/cie.
This lower bound has to be computed for all subsets Ω′ of Ω. All
this can be done in O(n2).
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Constraint Propagation


Energetic Reasoning


Given Ai and [t1, t2], let WSh(Ai , t1, t2), be the “left-shift /
right-shift” required energy consumption of Ai over [t1, t2]. It is ci


times the minimum of


I t2 − t1, the length of the interval;


I p+
i (t1) = max(0, pi −max(0, t1 − ri )), the number of time


units during which Ai executes after time t1 if Ai is left-shifted


I p−i (t2) = max(0, pi −max(0, di − t2)), the number of time
units during which Ai executes before time t2 if Ai is
right-shifted
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Constraint Propagation


Energetic Reasoning: Example


The required energy consumption of A1 over [2, 7] is 8. Indeed, at
least 4 time units of A1 have to be executed in [2, 7]; i.e.,
WSh(A, 2, 7) = 2 min(5, 5, 4) = 8.


 UL� GL� SL� FL� �0  1   2   3  4  5  6  7  8  9  10 
$1 0 10 7 2                       


                       


Left Shift                       
                       


Right Shift                       
                       


:6K($1, 2, 7)                       
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Constraint Propagation


Energetic Reasoning: Necessary Condition


The left-shift / right-shift overall required energy consumption
WSh(t1, t2) over [t1, t2] is the sum over all activities Ai of
WSh(Ai , t1, t2).


Proposition


If there is a feasible schedule then


∀t1,∀t2WSh(t1, t2) ≤ C (t2 − t1)
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A CP Model Disjunctive Scheduling Cumulative Scheduling Complex Objective Function ATC


Constraint Propagation


Energetic Reasoning: Necessary Condition


On what intervals do we have to compute WSh(t1, t2) ? O(n2)
only but they have a very complex structure.
In practice we limit ourselves to t1 ∈ O1 and t2 ∈ O2 with


O1 = {ri , 1 ≤ i ≤ n} ∪ {di − pi , 1 ≤ i ≤ n} ∪
{ri + pi , 1 ≤ i ≤ n}


O2 = {di , 1 ≤ i ≤ n} ∪ {ri + pi , 1 ≤ i ≤ n} ∪
{di − pi , 1 ≤ i ≤ n}
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Constraint Propagation


Energetic Reasoning: Adjustments


Proposition


If


WSh(t1, t2)−WSh(Ai , t1, t2) + ci min(t2 − t1, p
+
i (t1)) > C (t2 − t1)


then a valid lower bound of the start time of Ai is


t2 −
1


ci
(C (t2 − t1)−WSh(t1, t2) + WSh(Ai , t1, t2)) (5)
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Constraint Propagation


Energetic Reasoning: Adjustments


1: for All relevant time-intervals [t1, t2] do
2: W := 0
3: for i ∈ {1, · · · , n} do
4: W := W + ci min(t2 − t1, p


+
i (t1), p


−
i (t2))


5: if W > C (t2 − t1) then
6: Contradiction detected, backtrack
7: else
8: for i ∈ {1, · · · , n} do
9: SL := C (t2 − t1)−W + ci min(t2 − t1, p


+
i (t1), p


−
i (t2))


10: if SL < ci min(t2 − t1, p
+
i (t1)) then


11: Adjust the earliest start time ri := max(ri , t2 − dSL/cie)
12: if SL < ci min(t2 − t1, p


−
i (t2)) then


13: Adjust the latest end time di := min(di , t1 + dSL/cie)
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RCPSP


Resource-Constrained Project Scheduling


Given


I A set of resources of given capacities,


I a set of non-interruptible activities of given processing times


I for each activity and each resource the amount of the resource
required by the activity over its execution,


the goal of the RCPSP is to find a schedule meeting all the
constraints whose makespan is minimal. The RCPSP is NP-hard in
the strong sense.
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RCPSP


Branching scheme for the RCPSP


1. Initialize the set of selectable acts to the complete set.


2. If all acts have fixed start times, a solution is found, exit.
Otherwise, remove from the set of selectable acts those with
fixed start times.


3. If the set of selectable acts is not empty, select an activity
from the set, create a choice point and schedule the selected
activity from its earliest start time to its earliest end time.
Then goto step 2.


4. If the set of selectable acts is empty, backtrack.


5. Upon backtracking, mark the activity as not selectable as long
as its earliest start has not changed. Then goto step 2.
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RCPSP


Branching scheme for the RCPSP


Rationale: The activity Ai chosen at step 3 must either start at
its earliest start time or must be postponed to start later. But
starting Ai later makes sense only if other activities prevent Ai


from starting at its earliest start time, in which case the scheduling
of these other activities must eventually result (thanks to
constraint propagation!) in the update of the earliest start and end
times of Ai .
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RCPSP


Experimental Results


The three versions of the algorithm were tested on two sets of
data.


I The “KSD” set, known to contain highly disjunctive instances
(few activities can execute in parallel)


I The “BL” set where many activities can execute in parallel.
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RCPSP


Experimental Results on the KSD set
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RCPSP


Experimental Results on the BL set
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Aujourd’hui
A CP Model


Disjunctive Scheduling
Constraint Propagation
Job-Shop


Cumulative Scheduling
Constraint Propagation
RCPSP


Complex Objective Function
Constraint Propagation
Number of Late Jobs


ATC
Problem Definition
Branch & Cut
Constraint Programing
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Constraint Propagation


On the Propagation of a Min Sum Objective Functions


A variable criterion represents the value of the objective function.
We have


criterion = F (end(A1), · · · , end(An)) =
n∑
1


Fi (end(Ai ))


To be efficient constraint propagation has to consider resource
constraints and obective function at the same time.
Here, F =


∑n
1 wiUi with Ui = 1 if and only if end(Ai ) > δi .


Philippe Baptiste: Constraint Based Scheduling, 69/ 125 CNRS LIX, École Polytechnique







A CP Model Disjunctive Scheduling Cumulative Scheduling Complex Objective Function ATC


Constraint Propagation


Goal


I Compute good lower-bounds of the number of late jobs


I Given an ub on the number of late jobs, prove that some jobs
are late or on-time and adjust time windows


I Look for dominance properties


First of all, we have to theoretically study the problem.
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Constraint Propagation


Unit or Equal Processing Times


When processing times are unitary, the problem is polynomial.


I There is a polynomial number of relevant time points on
left-shifted schedules.


I The cost of scheduling a job Ji at a time point t (ri ≤ t) is
either 0 (if t < δi ) or wi otherwise.


I At each time point ti , less than m jobs can execute.
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Constraint Propagation


Unit or Equal Processing Times


J2


J1


.
Jn


t2


t3


.
tn


t1


jobs time


Cost of scheduling J1 at tim t1, r1 ≤ t1


flo  ≤ m
(less than m jobs)


flo  ≤ 1
(one job)
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Constraint Propagation


Unweighted Case wi = 1


I NP-hard in the strong sense


I But, when there is no release dates, polynomially solvable!


I When release and due dates of jobs are ordered similarly
(ri < rj ⇒ δi ≤ δj), the problem is solvable in O(n2)


Philippe Baptiste: Constraint Based Scheduling, 73/ 125 CNRS LIX, École Polytechnique







A CP Model Disjunctive Scheduling Cumulative Scheduling Complex Objective Function ATC


Constraint Propagation


1 machine vs. m machines


I Recall that the fully elastic relaxation transforms a cumulative
resource constraint into a preemptive one machine one


I If the earliest start time of the activity Ai is adjusted to x on
the preemptive problem, the corresponding adjustment will be
d x


C e.
I Lower bounds can be obtained by relaxing data to reach a


polynomial case.
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Constraint Propagation


Lower Bounds for the 1 machine case


Proposition


There is a feasible preemptive schedule iff over any interval [t1, t2],
the sum of the processing times of {Ai : [t1 ≤ ri ] ∧ [di ≤ t2]} is
lower than or equal to t2 − t1.


It is well known that relevant values for t1 and t2 are respectively
the release dates and the deadlines.


Philippe Baptiste: Constraint Based Scheduling, 75/ 125 CNRS LIX, École Polytechnique
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Constraint Propagation


Lower Bounds for the 1 machine case


We introduce a binary decision variable xi per activity (on-time
vs. late) and let us define a MIP


S(t1, t2) = {Ai : ri ≥ t1 ∧ di ≤ t2}
P(t1, t2) = {Ai : ri ≥ t1 ∧ di > t2 ∧ δi ≤ t2}


min
n∑
1


wi (1− xi )


u.c.


 ∀t1,∀t2 > t1,
∑


S(t1,t2)


pi +
∑


P(t1,t2)


pixi ≤ t2 − t1


∀i ∈ {1, · · · , n}, xi ∈ {0, 1}
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Constraint Propagation


Lower Bounds for the 1 machine case


The optimum of the MIP is the preemptive optimum of the
problem and it is easy to see that the relevant values of t1 and t2
are the release dates, the due dates and the deadlines. Now focus
on the continuous relaxation


min
n∑
1


wi (1− xi )


u.c.



∀t1 ∈ {ri},∀t2 ∈ {di} ∪ {δi} (t2 > t1),∑


S(t1,t2)


pi +
∑


P(t1,t2)


pixi ≤ t2 − t1


∀i , ri + pi > δi ⇒ xi = 0
∀i ∈ {1, · · · , n}, xi ∈ [0, 1]


(6)
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A CP Model Disjunctive Scheduling Cumulative Scheduling Complex Objective Function ATC


Constraint Propagation


Lower Bounds for the 1 machine case


The LP can be solved by a linear package but it can also be solved
in O(n2 log n) by a greedy algorithm.
Sort activities in non-increasing order of wi/pi (cost per unit).


Proposition


The largest vector (according to the lexicographical order)
satisfying all the constraints of 6 realizes the optimum of 6.
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Constraint Propagation


Lower Bounds for the 1 machine case
An O(n4) algorithm to comute the violations


1: for i := 1 to n do
2: Xi := 0.0
3: for i := 1 to n do
4: if ri + pi ≤ δi (otherwise Ai is late, i.e., Xi := 0) then
5: Xi := 1.0,Violation := 0
6: for all constraint (t1, t2) s.t. t1 ∈ {rx}, t2 ∈ {dx} ∪ {δx} do
7: total := 0.0
8: for u := 1 to n do
9: if t1 ≤ ru and du ≤ t2 (i.e., Ai ∈ S(t1, t2)) then


10: total := total + pu


11: if t1 ≤ ru and δu ≤ t2 < du (i.e., Ai ∈ P(t1, t2)) then
12: total := total + pu ∗ Xu


13: Violation := max(Violation, total− (t2 − t1))
14: Xi := (pi − Violation)/pi
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Constraint Propagation


Lower Bounds for the 1 machine case


I Each time, we compute the maximum resource constraint
violation if the activity is fully on-time (lines 6–18).


I Given this violation, the maximum value Xi that the variable
xi can take is computed.


I This algorithm runs in O(n4) since there are n activities Ai


and since for each of them O(n2) violations are computed,
each of them in linear time.
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Constraint Propagation


Lower Bounds for the 1 machine case


Act est p let d w w/p
A1 7 2 12 10 10 5,0
A2 3 7 12 10 30 4,3
A3 0 5 14 6 20 4,0
A4 4 3 18 9 5 1,7


Act est p let 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17


A'1 7 0 10 X1 0,0 A'7 A'7 A'7 A'6 A'6 A'6 A'6 A'6 A'6 A'6 A'5 A'5 A'7 A'7 A'8 A'8 A'8
A'2 3 0 10 X2 0,0
A'3 0 0 6 X3 0,0 0
A'4 4 0 9 X4 0,0
A'5 7 2 12
A'6 3 7 12
A'7 0 5 14
A'8 4 3 18


Act est p let 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17


A'1 7 2 10 X1 1,0 A'7 A'7 A'7 A'6 A'6 A'6 A'6 A'1 A'1 A'6 A'6 A'6 A'7 A'7 A'8 A'8 A'8
A'2 3 0 10 X2 0,0
A'3 0 0 6 X3 0,0 0
A'4 4 0 9 X4 0,0
A'5 7 0 12
A'6 3 7 12
A'7 0 5 14
A'8 4 3 18


Act est p let 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17


A'1 7 2 10 X1 1,0 A'7 A'7 A'7 A'2 A'2 A'2 A'2 A'2 A'2 A'2 A'1 A'1 A'7 A'7 A'8 A'8 A'8
A'2 3 7 10 X2 0,7
A'3 0 0 6 X3 0,0 2
A'4 4 0 9 X4 0,0
A'5 7 0 12
A'6 3 0 12
A'7 0 5 14
A'8 4 3 18


Act est p let 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17


A'1 7 2 10 X1 1,0 A'3 A'3 A'3 A'3 A'3 A'2 A'2 A'2 A'2 A'2 A'1 A'1 A'6 A'6 A'8 A'8 A'8
A'2 3 5 10 X2 0,7
A'3 0 5 6 X3 0,6 2
A'4 4 0 9 X4 0,0
A'5 7 0 12
A'6 3 2 12
A'7 0 0 14
A'8 4 3 18


Act est p let 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17


A'1 7 2 10 X1 1,0 A'3 A'3 A'3 A'2 A'4 A'4 A'4 A'2 A'2 A'2 A'2 A'1 A'1 A'6 A'6 A'7 A'7
A'2 3 5 10 X2 0,7
A'3 0 3 6 X3 0,6 3
A'4 4 3 9 X4 0,0
A'5 7 0 12
A'6 3 2 12
A'7 0 2 14
A'8 4 0 18


Initial instance. In the following, we focus on the fictive activities.


Step 3: Try to put A2 on time (i.e., the processing time of the fictive activities 
A'2 and A'6 are set to 7 and 0) and compute JPS. The maximal violation is 2 
hence, at most 5 units of A2 can be on time, i.e., X2 = 5/7. 


Step 4: Try to put A3 on time (i.e., the processing time of the fictive activities 
A'3 and A'7 are set to 5 and 0) and compute JPS. The maximal violation is 2 
hence, at most 3 units of A3 can be on time, i.e., X3 = 3/5. 


violation


Step 1: Is there a schedule where A1, A, A3, A4 end before their latest end 
time ? Yes.


Step 2: Try to put A1 on time (i.e., the processing time of the fictive activities 
A'1 and A'5 are set to 2 and 0) and compute JPS. The maximal violation is 0 
hence, X1 = 1.0. 


violation


violation


violation


violation


Step 5: Try to put A4 on time (i.e., the processing time of the fictive activities 
A'4 and A'8 are set to 3 and 0) and compute JPS. The maximal violation is 3 
hence, A4 is late, i.e., X4 = 0.
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Constraint Propagation


Constraint Propagation for
∑


wiUi


I Let Au denote an activity that can be either late or on-time (
eetu ≤ δu < du)


I Our objective is to compute efficiently a lower bound of the
weighted number of late activities if Au is on-time (conversely
if Au is late).


I If this lower bound is greater than criterion then, Au must be
late (conversely on-time).


I Straightforward but expensive agorithm
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Constraint Propagation


Constraint Propagation for
∑


wiUi


First we relax deadlines to a large value and we compute the
optimum X of the new LP.


min
n∑
1


wi (1− xi )


u.c.



∀rj ,∀δk > rj ,


∑
P(rj ,δk )


pixi ≤ δk − rj


∀i , ri + pi > δi ⇒ xi = 0
∀i , di ≤ δi ⇒ xi = 1
∀i ∈ {1, · · · , n}, xi ∈ [0, 1]


(7)
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Constraint Propagation


Constraint Propagation for
∑


wiUi


Let (8) be the linear program (7) to which the constraint xu = 1
has been added and let Xo be the optimal vector of (8).


min
n∑
1


wi (1− xi )


u.c.





∀rj ,∀δk > rj ,
∑


P(rj ,δk )


pixi ≤ δk − rj


∀i , ri + pi > δi ⇒ xi = 0
∀i , di ≤ δi ⇒ xi = 1
∀i ∈ {1, · · · , n}, xi ∈ [0, 1]
xu = 1


(8)
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Constraint Propagation


Constraint Propagation for
∑


wiUi


Propositions 6 and 7 exhibit two relations that X and Xo satisfy.


Proposition∑
piXoi ≤


∑
piXi


Proposition


∀i 6= u,Xoi ≤ Xi
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Constraint Propagation


Constraint Propagation for
∑


wiUi


Thanks to Propositions 6 and 7, we can add the constraints∑
piXoi ≤


∑
piXi and ∀i 6= u, xi ≤ Xi to the LP (8). We can also


relax the resource constraints.


min
n∑
1


wi (1− xi )


u.c.





∀rj ,∀δk > rj ,
∑


P(rj ,δk )


pixi ≤ δk − rj∑
pixi ≤


∑
piXi


∀i 6= u, xi ≤ Xi


xu = 1
∀i ∈ {1, · · · , n}, xi ∈ [0, 1]


(9)
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Constraint Propagation


Constraint Propagation for
∑


wiUi


A linear time greedy algorithm for late job detection


1: for i := 1 to n do
2: Xoi := 0.0
3: Xou := 1
4: MaxVal :=


∑
piXi − pu


5: for i := 1 to n and i 6= u do
6: Xoi := min(Xi ,MaxVal/pi )
7: MaxVal = MaxVal − pi ∗ Xoi
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Constraint Propagation


Constraint Propagation for
∑


wiUi


ri di δi pi wi wi /pi
A1 7 12 10 2 10 5.0
A2 3 12 10 7 30 4.3
A3 0 14 6 5 20 4.0
A4 4 18 9 3 5 1.7


Deadlines are relaxed. The opt vector is X1 = 1, X2 = 5/7, X3 = 3/5,


X4 = 0. The lb is then


(0 ∗ 10)/2 + (2 ∗ 30)/7 + (2 ∗ 20)/5 + (3 ∗ 5)/3 = 21.57.


Assume that criterion is [22, 26] and put A4 on-time. The relaxed opt is


Xo1 = 1, Xo2 = 5/7, Xo3 = 0, Xo4 = 1 and


lb = (0 ∗ 10)/2 + (2 ∗ 30)/7 + (5 ∗ 20)/5 + (0 ∗ 5)/3 = 28.57
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Number of Late Jobs


Minimizing the number of late jobs


An instance of the decision-variant of this problem consists of
{J1, ..., Jn}, a set of m identical parallel machines , and an integer
W . Each of the jobs Ji is described by a release date ri , a due-date
δi , a processing time pi , and a weight wi .
The problem is to find an assignment of start times such that


I less than m jobs are scheduled at each time point,


I each job starts after its release date,


I the weighted number of jobs that end after their due date is
lower than or equal to W .
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Number of Late Jobs


Dominance Properties


We rely on the observation that on any solution, if a large job Jj is
on-time and is scheduled inside the time window [ri , δi ] of a smaller
job Ji that is late and if Ji is heavier than Jj , the jobs Ji and Jj


can be “exchanged”, i.e., Ji becomes on-time and Jj becomes late.
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Number of Late Jobs


Dominance Properties


Definition: For any pair of jobs Ji , Jj , Ji ≺ Jj if and only if
(pi < pj) ∨ (pi = pj ∧ i < j)
wi ≥ wj


ri + pi ≤ rj + pj


δj − pj ≤ δi − pi


(10)
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Number of Late Jobs


Dominance Properties


Proposition


There is an optimal schedule such that for any pair of jobs Ji ≺ Jj ,
if Jj is on-time then Ji is also on-time, i.e.,


∀Ji ,∀Jj ,¬[(Ji ≺ Jj) ∧ (end(Jj) ≤ δj) ∧ (end(Ji ) > δi )] (11)
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Number of Late Jobs


Branching Scheme


While there are some jobs that can be late or on-time (i.e.,
eeti ≤ δi < di ),


1. select a job Ji such that eeti ≤ δi < di


2. make Ji on-time, i.e., end(Ai ) ≤ δi (if a backtrack occurs, Ji


is late),


3. apply dominance properties and propagate constraints


4. check that there exists a feasible schedule of the jobs, i.e., a
schedule where all jobs are scheduled in their time-window, (if
not, the problem is inconsistent and a backtrack occurs).
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Number of Late Jobs


Job Selection Heuristic


I Let U be the set of jobs that can be late or on-time.


I Let max(wi/pi ) be the maximum value of wi/pi among
activities in U and finally, let S be the subset of the jobs Jj in
U such that wj/pj > 0.9 ∗max(wi/pi ).


I Among jobs in S , we select a job whose time window, if it
becomes on-time,i.e., [ri , δi ], is the largest.


This heuristic “bets” that it is better to schedule small jobs with
large time windows rather than large jobs with tight time windows.
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Number of Late Jobs


Feasibility Check


Even on a single machine, this Feasibility Check is NP-hard in the
strong sense! But it’s easy to solve in practice.
We use a B&B similar to the one described for the RCPSP. The
Left-Shift Right-Shift propagation technique is used at this point.
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Number of Late Jobs


Experimental Results


n % solved Avg. CPU Max CPU Avg. BCK


10 100.0 0.2 0.7 2.8
20 100.0 5.3 35.2 17.7
30 99.6 84.4 567.0 48.4
40 94.8 217.6 589.9 73.4
50 80.0 419.9 585.2 39.5


Table: Experimental results for m = 1
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Number of Late Jobs


Experimental Results


n % solved Avg. CPU Max CPU Avg. BCK


10 100.0 0.2 0.7 4.9
20 100.0 6.8 44.8 60.4
30 96.7 94.9 554.5 601.7
40 87.0 203.0 570.8 3252.5
50 74.4 475.8 597.0 947.0


Table: Experimental results for m = 3
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Number of Late Jobs


Experimental Results


n % solved Avg. CPU Max CPU Avg. BCK


10 100.0 0.1 0.2 0.2
20 100.0 9.9 67.0 238.3
30 98.2 70.5 551.6 1361.6
40 91.1 128.6 530.5 6676.6
50 84.8 336.4 539.4 6937.7


Table: Experimental results for m = 6
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Problem Definition


Airport arrival and departure management


“Time slot Allocation” Problem


I Both the number of runways and the number of air traffic
controllers are limited


I Traffic has to be carefully planned to limit peaks of activity


I while matching as much as possible airlines landing times
requirements.


Unpredictable delays → hardly impossible to precisely
schedule aircraft in advance → initial planning has to be


refined on line in the tracon
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Problem Definition


Terminal Radar Approach CONontrol


I tracon controls aircraft approaching and departing between
5 and 50 miles of the airport.


I Air traffic controllers make some aircraft wait before landing
I speed can be slightly decreased to increase the arrival time


and/or the flight plan can be lengthened by a “Vector For
Spacing”


I “Holding Patterns” generate a constant prescribed delay for an
aircraft.  
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Problem Definition


Terminal Radar Approach CONontrol


a set of time windows in which the landing is possible can
be associated to each aircraft entering the tracon area


I Each time window = combination of holding patterns +
vectors for spacing
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Problem Definition


Wake Vortex


I At landing time, air-traffic controllers space aircraft to reduce
the WAKE VORTEX effects.


I wake turbulence is one of the most limiting factors for the
take-off and landing frequency in the airports.


I Wake vortex effects are proportional to aircraft weight
I the lighter the following aircraft, the more it suffers from wake


vortex effects, demanding greater separation from the leading
aircraft
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A CP Model Disjunctive Scheduling Cumulative Scheduling Complex Objective Function ATC


Problem Definition


Our problem


I A single runway + several aircraft with identical weight
waiting around


I Objective: assign landing times to aircraft (within their time
windows). Two objective functions are considered:


I Given a fixed minimum time p between any two consecutive
landings, minimize the maximal number of times a plane
enters a Holding Pattern.


I Maximize the minimum time elapsed between two consecutive
landings.
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Problem Definition


Problem definition
I n aircraft in the tracon
I A set of si time intervals is assigned to each aircraft i
I two objective functions are considered:


1. Given a maximal number of times a plane can enter a holding
pattern, maximize the minimum time elapsed between two
consecutive landings.


2. Given a minimum time which can elapse between two
consecutive landings, minimize the maximal number of times a
plane enters a holding pattern.


The decision variants of these two problems are identical :


Single machine scheduling problem in which n “landing”
jobs with identical processing time p have to be scheduled
within some time windows on a single “runway” machine
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Problem Definition


Problem definition


The Runway Scheduling Problem (decision variant)


input integers n, p, (s1, . . . , sn), (r1,1, d1,1, . . . , r1,s1 , d1,s1),
. . ., (rn,1, dn,1, . . . , rn,sn , dn,sn).


meaning each job i has processing time p and has to be fully
scheduled (i.e., started and completed) in one of the
intervals [riu, diu]. We wish to find a schedule such
that every job is scheduled non-preemptively, and no
two jobs overlap.


output a set of starting times S1, . . . ,Sn ∈ N such that
(1) ∀i ∈ {1, . . . n}, ∃j ∈ {1, . . . , si} such that
Si ∈ [rij , dij − p] and (2) ∀i , k ∈ {1, . . . n} with k 6= i ,
|Si − Sk | ≥ p.
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Problem Definition


Problem definition : the mono-pattern case


I Special case: single pattern for the time windows (same
number s of windows per aircraft, same window size l and
identical distances T between windows)


I All aircraft are identical and where a single holding pattern is
considered



∀i ≤ n, si = s
∀i ≤ n,∀j ≤ s, dij − rij = l
∀i ≤ n,∀j ≤ s, rij = ri + (j − 1)T


p
1


r1


r2


r3


r4


r5


r6


r8


r7


l


Τ


2 s=3
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Problem Definition


Complexity


I NP-Complete as soon as processing times are larger than 2
and when we have more than three time windows per aircraft.


I When p = 2, ∀i , si = 3 and ∀i ≤ n,∀j ≤ s, dij − rij = 2, this
problem is a direct generalization of the problem of scheduling
short tasks with few starting times [?].
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Problem Definition


Complexity (Unit processing times)


I When p = 1, the runway scheduling problem can be solved in
polynomial time.


I Flow problem in a bipartite graph G = (J ∪ T ,E )
I J is the set of job vertices 1, .., n
I T is the set of time points t corresponding to the beginning or


to the end of a time window of a job
I There is an edge between job i and t iff job i can start at t.
I A source vertex σ is connected to all jobs and time vertices are


connected to a sink ε.
I All capacities are 1 except on the edges connecting a time


vertex t to ε (capacity = distance between t and the next time
point in T )


I There is a feasible schedule iff there is a flow of capacity n.
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Problem Definition


Complexity (Single Time Window)


I Arbitrary p, but one window per job (no holding pattern)
I Single machine scheduling problem with time windows and


equal processing times
I Care! Equal processing times does not reduce to unit


processing times


I Garey, Johnson, Simons and Tarjan’s Algorithm based on
EDD


I EDD (Earliest DeaDline) builds a schedule chronologically:
Whenever the machine is idle, select among jobs that are
released before or at the current time point, the job with
minimal deadline . Schedule the job and iterate.


I When preemption is allowed, EDD rule computes a feasible
schedule iff one such exists


I but...
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Problem Definition


Complexity (Single Time Window)


EDD fails in the non preemptive case.


0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Problem Definition


Complexity (Single Time Window)


I Introduce of a set of forbidden regions F in which no job can
start on any feasible schedule.


I The modified EDD rule keeps the schedule idle when the
current time point t belongs to F


1: U := {1, ..., n}
2: t := mini∈U ri
3: while U 6= ∅ do
4: t := min(t,mini∈U ri )
5: if t ∈ F then
6: t := min{t ′ ≥ t : t ′ /∈ F}
7: Find k be the job with smallest deadline s.t. rk ≤ t
8: Start job k at time t, U := U − {k}, t := t + p
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Problem Definition


Complexity (Single Time Window)


I Crucial point: How to compute the set F of “forbidden
regions” ?


I F is built step by step, starting from F = ∅.
I Given a set of jobs X , compute an upper bound lst of the


largest time point such that there is a feasible schedule of the
jobs in X that is idle before lst and in which no job starts in F


I If lst is smaller than mini∈X ri then there is no feasible
schedule.


I If lst − p < mini∈X ri then no job can start after lst − p and
before mini∈X ri


I The interval [lst − p + 1,mini∈X ri − 1] is added to the set of
forbidden regions F .
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A CP Model Disjunctive Scheduling Cumulative Scheduling Complex Objective Function ATC


Problem Definition


Forbidden regions


I EDD fails in this case because no task should start at 4 or 5


I A forbidden region [4, 5] is created


I EDD is modified in order to avoid forbidden regions
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Problem Definition


Forbidden regions


I EDD fails in this case because no task should start at 4 or 5
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I A forbidden region [4, 5] is created


I EDD is modified in order to avoid forbidden regions
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Problem Definition


Forbidden regions


I EDD fails in this case because no task should start at 4 or 5
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I A forbidden region [4, 5] is created


I EDD is modified in order to avoid forbidden regions
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Problem Definition


Forbidden regions


I EDD fails in this case because no task should start at 4 or 5
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I A forbidden region [4, 5] is created


I EDD is modified in order to avoid forbidden regions
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Problem Definition


Forbidden regions


I EDD fails in this case because no task should start at 4 or 5
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I A forbidden region [4, 5] is created


I EDD is modified in order to avoid forbidden regions
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Problem Definition


Complexity (tight windows)


I Special case: Time windows are ‘tight”, i.e., their size is
exactly p


I interval selection problem (extensively studied by Arkin,
Silverberg, Crama, Spieksma,Erlebach, Fischetti, Martello,
Toth, Kroon, Salomon, etc..)


I When there are two time windows per job and when they are
“tight” : 2-SAT.


I We basically have to decide which one to pick.
I To every job i associate a boolean variable xi which is true if i


is scheduled in its first time window and false if it is scheduled
in its second time window.


I For every pair of intersecting time windows with associated
literals a, b there will be a clause ā ∨ b̄
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Problem Definition


Complexity


I Several other polynomial case


I Open problem : 2 windows that are not tight


I Now, come back to the general problem
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Branch & Cut


MIP (Mixed Integer Programming)


I The general problem studied by Bayen, Tomlin, Ye and Zhang
I P. = elapsed time between consecutive landings
I Each job i is associated with a starting time variable ti .
I xiu variables are binary variables that indicate whether aircraft


i is schedule in one of its u-th first time windows or not.
I yij variables are binary sequencing variables that indicate


whether aircraft i precedes j or not.


min P


ti ≥ ri1 1 ≤ i ≤ n
ti ≤ disi 1 ≤ i ≤ n
ti ≥ riu −Mxi u−1 1 ≤ i ≤ n, 2 ≤ u ≤ si
ti ≤ diu + M(1− xi u) 1 ≤ i ≤ n, 1 ≤ u ≤ si − 1
ti − tj ≥ P −M ′yij 1 ≤ j < i ≤ n
ti − tj ≤ M ′(1− yij)− P 1 ≤ j < i ≤ n
xiu ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ u ≤ si − 1
yij ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ i ≤ n
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Branch & Cut


Small MIP for the mono pattern


I Special case: single pattern for the time windows (same
number s of windows per aircraft, same window size l and
identical distances T between windows)


I To every j-th time window of every job i we associate a binary
variable xij ∈ {0, 1}, ( job i is proc. in this window or not)


I In every interval [a, b] at most b(b − a)/pc jobs


si∑
u=1


xiu = 1 1 ≤ i ≤ n∑
[riu ,diu ]⊆[a,b]


xiu ≤ bb − a


p
c 1 ≤ i ≤ n, a ∈ {rjv}, b ∈ {djv}, a < b


xiu ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ u ≤ siu


There is a solution to this MIP if and only if there is a feasible
schedule
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Branch & Cut


Small MIP (general case)


There is a solution to the previous MIP if and only if there
is a feasible preemptive schedule.


What’s next ?
I If there is non-preemptive schedule then we have found a


solution to the runway problem.
I Otherwise, the assignment found by MIP does not lead to a


feasible non-preemptive schedule.
I Hence, we can add an iterative cut to the MIP stating that


the sum of the x variables that were equal to 1 in the previous
solution cannot be greater than n − 1.


I We then re-solve the new MIP and iterate the same process.


This is a “Branch and Cut” Algorithm
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Branch & Cut


Cuts to tighten the formulation


Objective : get rid of assignments that lead to preemptive
schedules only


Disjunctive Cuts
I These cuts “xiu + xjv ≤ 1” prevent the simultaneous


assignment of a pair of jobs i , j to some time windows
[riu, diu), [rjv , djv ) when this leads to an infeasible situation.


I Relax all time windows of jobs k /∈ {i , j} to one single time
window [rk1, dksk


) that contain all initial ones.
I Tighten the time windows of i , j to [riu, diu) and [rjv , djv )


respectively.
I feasibility test can be achieved thanks to Garey et al.


algorithm.


2 other cuts: Energy cuts + Small iterative cuts
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Branch & Cut


Two other cuts  


010203040
5060708090
100


0 20 40 60 80 100 120 140 160 180Nb instances Solved
CPU BayenNO-PP, BAS-CUTDISJ-PP, BAS-CUTENERGY-PP, BAS-CUTNO-PP, SMALL-CUTDISJ-PP, SMALL-CUTENERGY-PP, SMALL-CUT
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Constraint Programing


CP


I Solve the same problem in a CP framework
I Start time variables + disjunctive constraints


I Main contribution : A global inter-distance constraint.
I N finite domain variables {S1, ...,SN}
I Integer p
I Inter-distance constraints ∀i , j , |Si − Sj | ≥ p
I This constraint represents a generalization of All-Different


constraint
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Constraint Programing


CP


I The consistency of the constraint is easy to compute (Garey
et al)


I How to propagate the constraint ?
I Propagation = adjust time bounds of jobs to remove the


starting times that do not lead to non-preemptive schedules
I Arc-B-Consistency of the constraint = for each job i there is a


schedule in which it starts at the first (resp. last) point in its
window


I Why is it useful ? Reduce the search space
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Constraint Programing


Arc-B-Consistency


Simple algorithm


I Try all possible starting times of job i


I Apply the consistency check (and remove starting times that
make the constraint inconsistent)


I Pseudopolynomial complexity.
I Can be improved as there are few (polynomial number)


possible starting times


Another polynomial propagation scheme has been setup. Leads to
a 95% reduction of the search space.
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Constraint Programing


Interdistance Constraint for job-shop


I A set of jobs consisting of tasks to be executed on several
machines in given order


I Decision variant of this problem is considered
I All tasks on same machine have equal length in our instances


I More instances solved using our constraint than with any
other constreaint propagation scheme


I 40% gain in number of backtracks on the instances solved by
both variants


I No significative improvement in running time
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