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1 Introduction

State of the art SAT solvers typically solve SAT theories encoded into CNF using DPLL
based algorithms [1]. Most problems, however, are not originally expressed in CNF but
contain arbitrary propositional formulae. The original problem must therefore be con-
verted into CNF. Converting to a simple and uniform structure like CNF provides con-
ceptual and implementational simplicity. Indeed, a number of key techniques that im-
prove the effectiveness and efficiency of DPLL solvers exploit the simple clause struc-
ture. However, converting to CNF loses a considerable amount of information about
the problem’s structure. This is information that could be used to improve the search
efficiency.

In this paper, we demonstrate that conversion to CNF is unnecessary. The techniques
that are effective for reasoning with CNF theories can easily be adapted to work on un-
converted Boolean circuits. We have implemented NOCLAUSE, a non-CNF DPLL like
solver with similar raw efficiency to highly optimized clausal DPLL solvers. Further-
more, this solver can use the extra structural information still present in the unconverted
circuit to improve its solving power. We present some simple techniques for taking ad-
vantage of this additional structural information, and show how a clausal solver without
access to this structure can easily be mislead to perform expensive and unnecessary
computation.

2 SAT solving using CNF

Many problems like hardware verification are naturally described using Boolean cir-
cuits. A Boolean circuit represents a propositional formula as a directed acyclic graph
(DAG). Each node is either a Boolean operator, whose children are its operands, or a
propositional symbol with no children. The DAG representation allow Boolean circuits
to contain only one instance of each subformula. For example

�	��
�������������

�������

would be represented by a DAG with only one instance of the subformula
�������
. Boolean circuits are typically converted into CNF using linear Tseitin-sytle
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encodings [2]. A new propositional variable is introduced for each internal node in the
DAG, and clauses added to equate the truth value of the variable and the subformula un-
der the node. For example, in the above formula, we introduce the varible

� ��� ��� � .
Converting to clauses gives


�� � ��� � � , 
�� � ��� ��� , and

�� � � � � � � � � . Then the vari-

ables
� � � � � � � and

�	� � � � � � , which yield the clauses

�� � �
� � � � � � � ,
 � � � � � , 
�� � ��� � � � , 
�� �	� � � � � � � � , 
� � ��� � , and


�� � ��� �	� � . Finally, the variable�� � � � ���	� is added with clauses

�� ��� � � ��� ��� � , 
�� � �
� ��� � , and


�� �	� � ��� � .3
Such an encoding is linear in the size of the original circuit. Nevertheless, such

encoding has significant disadvantages. In particular, the encoding hides the structural
information. The clauses no longer directly reflect the structure of the original circuit.
For example, it is not immediately obvious that the

���
variables represent derived sig-

nals rather than input signals, that
�	�

is upstream of
� � in the original circuit, or that��

encodes an or gate while
� � encodes an and gate. Of course in this simple example,

much of that information can be gleaned from the clausal encoding. In general, whilst
some of this information can easily be computed from the clausal encoding, some of
it is not so easy. For example, it is intractable to determine which variables represent
derived signals and which represent inputs to the circuit [4].

Another problem is that the CNF theory has more variables. The space of truth
assignments from which a solution must be found has been enlarged by an exponential
sized factor. This does not necessarily mean that the search for a solution is any harder
in practice. It is the size of the explored search space that matters. Nevertheless, we
shall demonstrate that the difficulty of searching this larger space is exacerbated by the
lack of structural information.

Structural Information. A number of works show that structural information can help
modern SAT solvers. For example, the Eqsat solver [5] offers significant gains by rep-
resenting and exploiting biconditionals. Until very recently, it was the only solver able
to complete the par32 family of problems which contain many biconditionals. More
recently, the Lsat solver [6] has shown that using more extensive structural information
can allow some problems, that are very hard for clausal solvers, to be solved quite easily.
Theoretical results also show that structure can be used to derive branching decisions
which provide exponential reductions in the size of the search space [7].

Branching on the Added Variables. Do we branch on the added variables or not? Some
authors have suggested we should not, to ensure the search space does not increase [8,
9, 6]. However, there is complelling empirical and theoretical evidence to suggest that
this is not desirable on all problems. The most robust SAT solvers do not limit their
branching to the input variables. It is not difficult to show that restricting the solver
to branching only on the input variables entails a reduction in the power of the proof
system it implements. A number of results of this form have been given in [10]. These
results show that there exist families of Boolean circuits on which a DPLL solver that
branches only on the input variables (in the clausal encoding) will always explore an
exponentially sized search tree (irrespective of how it chooses which variables it wants

3 It is possible to build a more optimal encoding that only imposes the condition ������� ��� ���
rather than equivalence as long as a node is not the descendant of an equivalence operator [3].
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to branch on), while a DPLL solver that is allowed to branch on the derived variables
can construct a constant sized refutation tree.

Theorem 1. [10] There exists families of Boolean circuits such that a short resolution
proof of unsatisfiablity exists if and only if branching on derived variables is allowed.

Unfortunately, despite yielding exponential speedups on some problems, branching
on derived variables can also give exponential slowdowns. Consider a formula of the
form ������� � 
�� ��� � , where ������� is an unsatisfiable formula requiring an expo-
nentially sized resolution refutation (e.g., the pigeon hole problem with 	 pigeons), and�

and
�

are propositional variables. The clausal encoding of this formula contains the
added variables

� � � ������� ,
� � � 

� ��� � , � � � 
 � � ��� � � , and other variables

added by the clausal encoding of ������� . If the solver first assigns
� ��

TRUE, then� �  TRUE both
�

and
�

will be unit propagated to TRUE. This set of assignments
satisfies the formula. However, the clausal theory will still contain the clauses encod-
ing the subformula

� � � ������� so the solver’s job will not yet be completed. If the
solver was then to set the input variables of ������� , any such setting would force a
compatiable setting of

� � and the solver would be finished. Similarly, if the solver was
to set

� �  FALSE then it could find a setting of the variables in ������� that falsifies
������� and again it would be finished. However, if it made the wrong decision of first
setting

� �  TRUE, then it would be faced with having to produce an exponentially
size refuation of ������� in order to backtrack to reset

� �  FALSE. All of this work
is unnecessary, but in the clausal encoding it is difficult to detect that the work is not
needed.

How often such situations occur, and how much search is wasted by clausal solvers
is an empirical question. Restarts would probably allow the solver to avoid spending
exponential time on any single unnecessary refutation. Nevertheless, over the course of
a large search a considerable amount of time might be expended in this kind of wasted
effort. Our empirical evidence indicates that this can in fact be the case.

3 DPLL without conversions

Our technique for performing DPLL search without conversion to clausal form is quite
simple. First we compress the DAG represenation of the circuit to ensure that it contains
no duplicate sub-formulas. For example, we will have only one node in the circuit repre-
senting each propositional variable and that node will act as input to all of the gates the
variable appears in (incluing not gates). Then we add a truth value field to each node. A
satisfying assignment (solution) for a circuit is an assignment of truth values to all the
nodes that labels the root TRUE and satisfies all of the gates, e.g., an and gate node must
be labeled FALSE if any of its children is labeled FALSE, a not gate node must be labeled
TRUE if its child is labeled FALSE, etc. To find a satisfying assignment, we assign the
root node of the circuit to TRUE and propagate. We then perform a standard DPLL-like
backtracking procedure. At every branch, we pick an unassigned node in the circuit,
assign that node a truth value and recurse. If we fail to find a satisfying assignment, we
assign the node the opposite truth value and try again. We ensure that the current partial
labeling is always consistent with the gates by propagating truth values up and down
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the DAG. A contradiction is detected, and the search can backtrack, whenever a node
has both of the labels TRUE and FALSE propagated to it. The same procedure can also
test validity. If there is no an assignment of truth values to the nodes that labels the root
FALSE and satisfies all of the gates then the circuit is valid, i.e. true in all assignments.

The propagation rules are fairly obvious and are based on the semantics of the gates.
The same propagation rules are used in the Tableau based SAT solver BCSat [11]. For
example, when a node is labeled FALSE, we propagate a FALSE label to all its parent
that are and gates, and a TRUE label to all its parent that are not gates. Similarly, if we
label an or node with FALSE, then we propagate a FALSE label to all of its children. One
propagation rule that is not as obvious is when all but one of the children of an or node
are labeled FALSE. In this case the label of the or node is equivalent to the label of the
sole remaining unlabeled child. Hence, either propagate its label directly to the other. It
is also possible to define propagation rules for more complex gates, like even and odd
parity (the gate is true if its inputs have even/odd parity), exclusive or, equivalence, or
even counting gates that require a particular number of their inputs to be true.

The nodes in the DAG are in one-to-one correspondance with the variables in the
CNF encoding. The internal nodes correspond to the introduced variables, and the input
nodes correspond to the original propositional variables in the circuit. Branching on
the truth value of nodes is entirely analogous to branching on variables in the CNF
encoding. The analogy with standard clausal DPLL goes even further.

Theorem 2. If assigning a variable � the truth value � in the Tseitin CNF encoding
of a circuit causes another variable �

�
to be assigned the truth value � by unit prop-

agation, then assigning the node corresponding to � the value � will cause the node
corresponding to �

�
to be assigned the value � by applying our propagation rules.

Thus search on the circuit can duplicate the DPLL search on the clausal encoding.
Reasoning with a circuit can, however, offer a number of advantages. First, we still
have the structure of the problem explicit. Second, we can support much more complex
inference like formula rewriting and propagation rules for more complex gates like
counting gates. Third, we can propagate “don’t care” truth values.

Don’t care propagation The problem described earlier where a clausal solver might
perform unnecessary work, can easily be addressed by using the circuit’s structure. In
particular, in addition to propagating TRUE/FALSE truth values through the circuit we
can also propagate don’t cares. If a child of an and node is labeled FALSE, then the
and is FALSE and the values of all of the other children are irrelevant. Our procedure
therefore also has a set of rules for propagating don’t care values through the DAG. A
node is labeled don’t care when none of its parents depend on its value. Once a node is
labeled don’t care, we need not branch on it. We terminate search when all nodes have
been labeled TRUE, FALSE, or don’t care. In the previous example with ����� � � 
�� � � � ,
we immediately terminate once

�
and

�
are set to TRUE. All of the nodes in the ����� �

sub-circuit will become don’t cares.

3.1 Using clausal solver techniques

A number of techniques have been developed recently to improve clausal DPLL solvers.
One imporant technique is the use of watch literals to make unit propagation efficient.
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Watch literal techniques are also used in our non-clausal solver to make propagation
more efficient. A simple example is propagating TRUE to an and node. The and only
becomes TRUE when all of its children are labeled TRUE. Rather than check the and
node every time one of its children is newly labeled TRUE, we can designate one to be
a “true-watch” child. Only when that child is labeled TRUE do we check the and. If
the and has an unassigned or FALSE child, we move the watch to that child. Otherwise,
all of the other children must be TRUE and we can now propagate TRUE to the and.
A similar technique can be used to improve the efficiency of don’t care propagation,
single unassigned child propagation, etc.

Another important technique is clause learning, and using learned clauses to guide
branching choices. In our non-clausal solver, a contradiction is detected when both
TRUE and FALSE are propagated to the same node. We keep track of the propagation
rules that caused labellings and the node assignments that fired these rules. We then
backtrace to a set of node assignments whose conjunction entails the contradition. This
contradictory set of assignments is converted into a clause and that clause stored in a
clause database in exactly the same way as clausal DPLL solvers. We can even duplicate
the 1-UIP clause learning technique used in the Zchaff solver. This store of learned
clauses can then be used in the standard way. We can infer new assignments by unit
propagation on the learned clauses, and we can use the clauses to compute a VSIDS
branching heuristic.

We have implemented both of these techniques in our non-clausal solver, and report
on the results in the next section. We can, however, use the circuit structure to make
some improvements. In particular, we use the circuit structure to perform clause reduc-
tion on the shorter clauses. As in the Zchaff solver, we regard clauses of length with
length less than 100 as “permanent” clauses. Longer clauses will be removed from the
database whenever we reclaim space. With permanent clauses, we use the circuit struc-
ture to remove locally redundant literals. For example, suppose that 	 � is an and node
and 	 � is one of its children, then we can remove 	 � from any clause containing 	 �
without loosing any information. This corresponds to a neighbourhood resolution step:
we implicitly have the clause


�� 	 � � 	 � � so from the clause

�� ����� 	 ��� 	 ��� �

�
we can gen-

erate the subsuming clause

�� ����� 	 ��� �

�
. It is simple to identify the relations between

nodes that are close together in the circuit. We can restrict our search for reductions
by looking only for all parents and children that are implied by 	 . If one of those im-
plied nodes is also in the clause we can remove 	 . We have found that such reductions
provide a useful improvement in runtimes.

4 Empirical Results

We have implemented a non-clausal DPLL solver, NOCLAUSE using the ideas de-
scribed above. We represent the input as a Boolean circuit, perform 1-UIP clause learn-
ing at failures, use Zchaff’s VSIDS heuristic to guide branching, perform don’t care
propagation, and reduce on all learned clauses of size of ����� or less. We compared our
results with the Zchaff solver. Zchaff is no longer the fastest SAT solver, but its source
code is available. Hence, we were able to have better control over the differences be-
tween our solver and Zchaff. In particular, we duplicated as much as possible Zchaff’s
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Zchaff NOCLAUSE

Problem time Dec./Sec. Cls. Size time Dec./Sec. Cls. Size
2pipe 0.13 48,938 35 0.28 17,429 20

2pipe 1 0.17 30,906 32 0.13 25,562 14
2pipe 2 0.24 27,767 38 0.30 18,990 20

3pipe 2.75 14,219 88 1.39 10,718 28
3pipe 1 2.42 10,719 87 7.60 5,245 53
3pipe 2 3.69 9,493 93 5.83 5,424 40
3pipe 3 6.79 7,924 105 6.81 5,471 57

4pipe 179.88 3,009 253 9.38 4,439 44
4pipe 1 25.63 5,120 158 34.18 3,350 82
4pipe 2 47.34 4,440 186 34.37 3,280 89
4pipe 3 139.29 2,818 254 58.85 2,874 112
4pipe 4 90.33 3,275 228 40.68 3,011 115

5pipe 51.92 6,448 258 31.81 3,209 96
5pipe 1 120.95 3,158 273 111.28 2,300 143
5pipe 2 132.48 3,001 276 169.01 2,147 168
5pipe 3 132.03 2,918 271 127.72 2,293 167
5pipe 4 833.67 1,672 406 270.03 1,863 210
5pipe 5 236.49 2,446 324 129.75 2,185 173

6pipe 4,550.92 1,150 619 282.26 1,544 235
6pipe 6 1,353.82 1,591 469 994.83 1,333 309

7pipe 12,717.00 978 900 1606.20 795 339
7pipe bug 121.12 8,883 393 0.27 1,781 10

Table 1. Comparision of Zchaff and our NOCLAUSE solver on the fvp-unsat.2.0 test set. time:
CPU sec. dec./sec: solver’s raw speed in number of decisions made per seconds. Cls. Size: Aver-
age size of learned clauses.

branching heuristic and clause learning techniques so as to make the differences mainly
dependent on our solver’s use of the circuit structure. Although all of the techniques
used in the most recent solvers are not fully known, we understand that they differ from
Zchaff mainly in these two areas. If this is the case then those improved techniques for
clause learning and branching could be imported into our solver, and we would expect a
similar improvement in performance. Another factor in our experiments is that very few
non-clausal test problems are available. Those that are have already suffered some loss
of structural information by been encoded into ISCAS format which contains only and,
or, and not gates. We expect to see even better performance on problems which have
not been so transformed. All experiments were run on a 2.4GHz Pentium IV machine
with 3GB of RAM.

Table 4 shows the runtimes of Zchaff and our solver NOCLAUSE on the fvp-unsat.2.0
test set (due to M. Velev). Zchaff took a total of 20,749 sec. to complete this test set
where as NOCLAUSE required only 3923 sec. We also see that, although NOCLAUSE

does not have quite the efficiency (measured in number of decisions the solver could
make per second) as Zchaff, it is fairly close despite not using a more complex non-
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causal representation. Furthermore, as NOCLAUSE has not been extensively tuned,
there does not seem to be any intrinsic reason why the DAG representation cannot be
as fast as a clausal representation. Finally we see that generally speaking NOCLAUSE

learns shorter clauses. We saw similar results on the other two test suites that we were
able to obtain in both clausal and non-clausal form: fvp-unsat.1.0 and vliw-sat-1.1. On
fvp-unsat.1.0 NOCLAUSE required 171.6 sec. to solve all 4 problems while Zchaff re-
quired 245 sec. On vliw-sat-1.1 NOCLAUSE required 983 sec. to solve all 100 problems,
while Zchaff required 3472 sec.

We also tested the effectiveness of the two structure based techniques: don’t care
propagation and learned clause reduction. When we turned off don’t care propagation,
the runtime of NOCLAUSE on the fvp-unsat.2.0 test set jumped from 3923 seconds to
29,077 seconds—somewhat worse than Zchaff. With no learned clause reductions, the
runtime of NOCLAUSE increased to 5470 sec. Thus it appears that don’t care propa-
gation is critical to performance, while clause reduction helps but is not as significant.
These results were consistent with our experience on other problems not reported here.

[A bit more data on reductions]

5 Conclusion

Our results demonstrate that conversion to CNF is unnecessary. A DPLL like solver
can reason with Boolean circuits just as easily as with a clausal theory. We have imple-
mented NOCLAUSE, a non-CNF DPLL like solver with similar raw efficiency to highly
optimized clausal DPLL solvers. Reasoning with Boolean circuits offers a number of
advantages. For example, we can support much more complex inference like formula
rewriting, as well as propagation rules for complex gates like counting gates. We can
also use the circuit structure to simplify learned clauses, and to inform branching heuris-
tics. NOCLAUSE is related to the tableau based non-CNF SAT solver BCSat [11] and
the matrix based non-CNF SAT solver [12]. Indeed, it shares many of the same propa-
gation rules with BCSat. A major difference with both these other non-CNF solvers is
that NOCLAUSE also propagates “don’t care” truth values. Such propagation appears to
have a very significant impact on performance.

Our experimental results are very promising. We are often about to outperform a
highly optimized solver like Zchaff. We expect that the results would be even more
favourable if the benchmarks available to us had not already lost some of their structure.
As we explained before, the ISCAS format only contains and, or, and not gates. There
are many other ways in which we expect performance could be further improved. For
example, more complex preprocessing of the input circuit, as in BCSat, is likely to offer
major efficiency gains. More sophisticated structure based learning, branching, and non-
chronological backtracking schemes are also likely to give significant improvements to
performance.
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