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Abstract

We study in detail the interface between P and NP by means
of five new problem classes. Like the well known 2+� -SAT
problem, these new problems smoothly interpolate between P
and NP by mixing together a polynomial and a NP-complete
problem. In many cases, the polynomial subproblem can
dominate the problem’s satisfiability and the search complex-
ity. However, this is not always the case, and understanding
why remains a very interesting open question. We identify
phase transition behavior in each of these problem classes.
Surprisingly we observe transitions with both smooth and
sharp regions. Finally we show how these problem classes
can help to understand algorithm behavior by considering
search trajectories through the phase space.

Introduction
Where makes NP-complete problems hard to solve? Re-
search into phase transition behavior has given much insight
into this question. See, for example, (Cheeseman, Kanef-
sky, & Taylor 1991; Mitchell, Selman, & Levesque 1992;
Gomes & Selman 1997; Walsh 1999). Propositional satisfi-
ability (SAT) is the canonical NP-complete problem and one
in which we have perhaps the most insight into phase transi-
tion behavior and problem hardness. For random SAT prob-
lems with few clauses, problems are almost surely satisfiable
and it is easy to guess one of the many satisfying assign-
ments. For random SAT problems with many clauses, prob-
lems are almost surely unsatisfiable and it is easy to prove
that there can be no satisfying assignments. The hardest ran-
dom SAT problems tend to be inbetween, when problems
are neither obviously satisfiable or unsatisfiable. If we look
more closely, especially within a search algorithm like the
Davis Logemann Loveland (DLL) procedure, we see both
polynomial subproblems (for example, clauses of length 2)
and subproblems which are NP-complete (clauses of length
3 or more). As we explain in the next section, there may
be interesting and unexpected interactions between them.
To study this in more detail, Monasson et al. introduced
the 2+� -SAT problem class (Monasson et al. 1999) which
mixes together polynomial and NP-complete SAT problems
and lets us explore in detail the interface between P and NP.
We continue this research programme by introducing five
new problems at the interface between P and NP.
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2+� -SAT
A random � -SAT problem in � variables has � clauses of
length � drawn uniformly at random. A sharp transition in
satisfiability has been proved for random 2-SAT at �	�
����

(Chvatal & Reed 1992; Goerdt 1992), and conjectured for
random 3-SAT at ���
������� � (Mitchell, Selman, & Levesque
1992). Associated with this transition is a rapid increase in
problem difficulty. The random 2-SAT transition is contin-
uous as the backbone (the fraction of variables taking fixed
values) increases smoothly. On the other hand, the random
3-SAT transition is discontinuous as the backbone jumps in
size at the phase boundary (Monasson et al. 1998).

To study this in more detail, Monasson et al. introduced
the 2+� -SAT problem class (Monasson et al. 1999). This
interpolates smoothly from the polynomial 2-SAT problem
to the NP-complete 3-SAT problem. A random 2+� -SAT
problem in � variables has � clauses, a fraction ��
������ of
which are 2-SAT clauses, and a fraction � of which are 3-
SAT clauses. This gives pure 2-SAT problems for ����� , and
pure 3-SAT problems for � �!
 . For any fixed �#"�� , the
2+� -SAT problem class is NP-complete since the embedded
3-SAT subproblem can be made sufficiently large to encode
other NP-complete problems within it.

By considering the satisfiability of the embedded 2-SAT
subproblem and by assuming that the random 3-SAT transi-
tion is at ���$�%�&�'� � , we can bound the location the random
2+� -SAT transition to:
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Surprisingly, the upper bound is tight for �5(#64�87 (Achliop-
tas et al. 2001b). That is, the 2-SAT subproblem alone
determines satisfiability up to �9�:64�;7 . Asymptotically,
the 3-SAT clauses do not determine if problems are satisfi-
able, even though they determine the worst-case complexity.
Several other phenomena occur at �<�=64�;7 reflecting this
change from a 2-SAT like transition to a 3-SAT like tran-
sition. For example, the transition shifts from continuous
to discontinuous as the backbone jumps in size (Monasson
et al. 1998). In addition, the average cost to solve prob-
lems appears to increase from polynomial to exponential
both for complete and local search algorithms (Monasson
et al. 1998; Singer, Gent, & Smaill 2000). Random 2+� -
SAT problem thus look like polynomial 2-SAT problems up
to ���>64�87 and NP-complete 3-SAT problems for �5"?6@�87 .



The 2+� -SAT problem class helps us understand the per-
formance of the DLL algorithm for solving 3-SAT (Cocco &
Monasson 2001). At each branch point in its backtracking
search tree, the DLL algorithm has a mixture of 2-SAT and
3-SAT clauses. We can thus view each branch as a trajec-
tory in the 2+� -SAT phase space. For satisfiable problems
solved without backtracking (i.e. ���$����� ), trajectories stay
within the satisfiable part of the phase space. For satisfiable
problems that require backtracking (i.e. ���?�	�
���?��� � ), tra-
jectories cross the phase boundary separating the satisfiable
from the unsatisfiable phase. The length of the trajectory in
the unsatisfiable phase gives a good estimate of the amount
of backtracking needed to solve the problem. Finally, for
unsatisfiable problems, trajectories stay within the unsatis-
fiable part of the phase space. The length of the trajectory
again gives a good estimate of the amount of backtracking
needed to solve the problem.

2+� -COL
Given the insight that 2+� -SAT has provided into computa-
tional complexity and algorithm performance, we decided
to look more deeply into the interface between P and NP by
means of some new problem classes. The first problem is
2+� -COL, a mix of 2-coloring and 3-coloring. A random
� -COL problem consists of � vertices, each with � possible
colors, and � edges drawn uniformly and at random. Like
� -SAT, � -COL is NP-complete for ���=� but polynomial
for � � 6 . To interpolate smoothly from P to NP, a random
2+� -COL problem has a fraction ��
1� ��� of its vertices with
2 colors, and a fraction � with 3 colors. Note that the ver-
tices with 2 colors are fixed at the start and cannot be chosen
freely. We obtained similar results if the 2-colorable vertices
have 2 colors chosen at random from the 3 possible or (as
here) the same 2 fixed colors. Like 2+� -SAT, the 2+� -COL
problem class is NP-complete for any fixed �5" � .

2+� -COL has one major difference to 2+� -SAT. Whilst 2-
SAT, 3-SAT and 3-COL all have sharp transitions, 2-COL has
a smooth transition (Achlioptas 1999). The probability that a
random graph is 2-colorable is bounded away from 1 as soon
as the average degree is bounded away from 0, and drops
gradually as the average degree is increased, only hitting
0 with the emergence of the giant component (and an odd
length cycle). Hence 2-colorability does not drop sharply
around a particular average degree (as in 3-colorability) but
over an interval that is approximately �����8�
��� 

�;6 .

In Figure 1, we see how the random 2+� -COL transition
varies as we increase � and � . At �<� ��� 	 , the 2+� -COL
transition appears to sharpen significantly. In Figure 2, we
look more closely at � � ��� 	 . For ��� � � 	 , there is a re-
gion up to around �8�
� � 
;� 	 in which the transition appears
smooth and like that of 2-COL. The nature of the transition
then appears to change to a sharp 3-COL like transition, with
the probability of colorability dropping rapidly from around
90% to 0%. We thus appear to have both smooth and sharp
regions.

We define 
���
�� as the largest ratio �8�
� at which 100% of
problems are colorable:


���
�� ��������� ��
��� , *����! ��"$#&% � 2+� -colorable � � 
('
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Figure 1: Probability that 2+� -COL problem is colorable (y-
axis) against �8�
� (x-axis). Plots are for � =0 (leftmost), 0.2,
0.4, 0.6, 0.8 and 1.0 (rightmost) for 100, 200 and 300 vertex
graphs (increasing sharpness).
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Figure 2: Probability that 2+� -COL problem is colorable (y-
axis) against �8�$� (x-axis) for �+� ��� 	 . Plots are for � =50,
100, 150, 200 and 250 vertex graphs.



From (Achlioptas 1999), 
�� � � and 
;� �468� � 
�� � 6 � 7;6;6 .
For any fixed � �9
 , a random 2+� -COL problem contains
a 2-COL subproblem that grows in size with � and has av-
erage degree bounded away from 0. This subproblem has a
probability of being 2-colorable that asymptotically is less
than 1. Hence, the random 2+� -COL problem has a proba-
bility of being 2+� -colorable that asymptotically is also less
than 1, and 
 ��
�� �#� for all � �>
 .

We can define a dual parameter ���$
 � , which is the small-
est ratio �8�$� at which 0% of problems are colorable:

� ��
�� � ,/.���� ��
��� ,/*�&��! ��"$#&% � 2+� -colorable � ��� '

Since colorability is a monotonic property (adding edges can
only ever turn a colorable graph into an uncolorable graph),
� ��
 � � 
 �$
 � . Note that 
 ��
 � marks the start of the phase
transition whilst � �$
 � marks its end. The start stays fixed at

 �$
 ��� � for all � ��
 and jumps discontinuously to ��� at
���&
 . The end appears to behave more smoothly, increasing
smoothly as we increase � . From (Achlioptas 1999), � � ��
� , and 
4� �@68� ��� � � 6 � 746;6 . For a sharp transition like
3-coloring, �	�3� 

� . As with 2+� -SAT:

� �)(�� �$
 � (?*-, .0����� 2
� �

1��� �

In Figure 3, we have estimated experimentally the loca-
tion of � ��
�� by analysing data for graphs with up to 300
vertices and compared the observed location of the (end of
the) phase transition with the upper and lower bounds. As
with 2+� -SAT, the upper bound (which looks just at the 2-
COL subproblem) appears to be tight for � � ��� 	 .
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Figure 3: The location of the end of the 2+� -COL phase
transition, � �$
 � (y-axis) against � (x-axis) for �5� � to 1 in
steps of 1/10.

The cost of 2+� -coloring also increases around ����� � 	 .
To solve 2+� -COL problems, we encode them into SAT and
use zchaff, which is currently the fastest DLL procedure.
Our results are thus algorithm dependent and should be re-
peated with other solvers. Note that the encodings of 2+� -
COL problems into SAT give 2+� -SAT problems (but does
not sample uniformly). In Figure 4, we see that there is a

change in the search cost around ��� ��� 	 where we appear
to move from polynomial to exponential search cost. This is
despite 2+� -COL being NP-complete for all fixed and non-
zero � . However, this is perhaps not so surprisng as up to
���9� � 	 , the polynomial 2-COL subproblem alone appears
to determine asymptotically if the problem is colorable. Be-
yond this point, the NP-complete 3-COL subproblem con-
tributes to whether the problem is colorable or not.
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Figure 4: 95% percentile in the search cost to solve 2+� -
COL problems at the phase boundary (y-axis logscale)
against number of vertices (x-axis). Plots are for � =0 to 1
in steps of 1/10 (increasing hardness)

2+� -COL can be used in a similar way to 2+� -SAT to
study 3-coloring algorithms. At each branching decision in
a coloring algorithm, some vertices have three colors avail-
able, whilst others only have two. If any vertex has only
a single color available, we are not at a branching point
as we can commit to this color and simplify the problem.
The algorithm thus has a sequence of 2+� -COL problems
to solve, and we can view each branch in the algorithm’s
search tree as a trajectory in the 2+� -COL phase space. In
Figure 5, we plot a number of trajectories for 3-coloring
graphs with Brelaz’s algorithm (Brelaz 1979). The trajec-
tories are qualitatively very similar to those of the DLL al-
gorithm in the 2+� -SAT phase space (Cocco & Monasson
2001). For �8�$�<( 
;� 7 , problems are solved without back-
tracking. Trajectories trace an arc that stays within the ‘col-
orable’ part of the phase space. On the other hand, the al-
gorithm backtracks for problems with �8�$� �<6 . For graphs
with �8�
�%� 6 , the trajectory starts in the ‘colorable’ part of
the phase space and crosses over into the ‘uncolorable’ part
of the phase space. The algorithm then backtracks till we
return to the ‘colorable’ part of the phase space. This sort of
knowledge might be used both to model algorithms and to
improve them. For example, we could develop a randomiza-
tion and restart strategy which restarts when we estimate to
have branched into an insoluble part of the phase space.

XOR SAT
We now turn to some other tractable satisfiability prob-
lems. Schaeffer’s famous dichotomy result (Schaeffer 1978)
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Figure 5: Trajectories in the 2+� -COL phase space for Bre-
laz’s graph coloring algorithm on 3-COL problems with
�<� �4�;� and �$�$� from 1 to 4. The crossed line gives the
experimental observed values of � ��
�� . The region marked
‘uncolorable’ is where graphs are asymptotically not 2+� -
colorable, whilst the region marked ‘colorable’ is where
graphs are asymptotically sometimes 2+� -colorable.

identifies the four non-trivial tractable and maximal restric-
tions of propositional satisfiability: 2-SAT, HORN SAT, dual
HORN SAT, and XOR SAT. The later class is where clauses
have the usual “or” replaced with an “exclusive or” (or its
negation). This reduces the complexity from NP to P.

In a XOR � -SAT problem, we have � clauses defined over
� variables, and each clause is an “exclusive or” of � literals
(which ensures that an odd number of the literals are true) or
its negation. Random XOR 3-SAT has a sharp threshold in
the interval ��� 	�	 �;�5( ���
� ( ��� �@6 � 	 (Creognou, Daude, &
Dubois 2001). Experiments put the transition at ���
�5�#��� �@6 ,
whilst statistical mechanical calculations place it at ���$�<�
� � � 
�	 (Franz et al. 2001). To interpolate smoothly from P
to NP, we introduce the random XOR2SAT problem, with a
fraction ��
)� � � of XOR 3-SAT clauses and a fraction � of
3-SAT clauses. Like 2+� -SAT, XOR2SAT is NP-complete
for any fixed ��"?� . Like 2+� -SAT but unlike 2+� -COL, the
XOR2SAT threshold is always sharp.

In Figure 6, we have estimated experimentally the loca-
tion of the phase boundary and compared it with the bounds:

� � �46 ( �� (?* ,/. �
��� �@6

1��� 2 ��� �4�

The upper bound (which looks just at the polynomial XOR 3-
SAT subproblem) appears to be loose for all �5" � . The NP-
complete 3-SAT subproblem thus contributes to satisfiabil-
ity for all �5" � . This contrasts with 2+� -SAT and 2+� -COL
where the polynomial subproblem alone determines satisfi-
ability for � � �#(<��� . It remains a very interesting open
question why XOR2SAT is so different to 2+� -SAT in this re-
spect. We expected the polynomial XOR 3-SAT subproblem
in XOR2SAT to be even more dominate than the polynomial
2-SAT subproblem in 2+� -SAT. Each XOR 3-SAT clause
rules out twice as many assignments as a 2-SAT clause, and

the XOR 3-SAT phase transition occurs at a smaller clause to
variable ratio than the 2-SAT transition. It is therefore very
surprising that the XOR 3-SAT subproblem does not domi-
nate the XOR2SAT phase transition like the 2-SAT subprob-
lem dominates the 2+� -SAT phase transition.
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Figure 6: The location of the phase boundary for random
XOR2SAT problems (y-axis) against � (x-axis) for �5� � to
1 in steps of 1/10.

We encoded XOR2SAT problems into 3-SAT and solved
them with zchaff. The search cost at the phase boundary
appears to grow exponentially with � for all � . Given that the
NP-complete 3-SAT subproblem contributes to satisfiability
for all � " � , it should perhaps not be surprising that we
observe exponential growth in search cost for all �5"?� .

Horn SAT
To complete the coverage of Schaeffer’s dichotomy result,
we turn to HORN SAT. Horn clauses of a fixed size � " 

are trivially always satisfiable; every clause contains at least
one negative literal and is satisfied by assigning all variables
to false. We therefore consider a less trivial problem class
in which we sample Horn clauses uniformly up to some
fixed size. Such problems can contain (positive) unit clauses
and so are not always satisfiable. In a � -HORN SAT prob-
lem, each clause is up to length � and Horn (i.e. contains
at most one positive literal). Random � -HORN SAT has
a smooth threshold whose shape is known analytically for
��� 6 (Istrate 2000). Unlike 2-COL (whose smooth thresh-
old starts at �8�$� " � ), the 2-HORN SAT threshold only starts
at ���
�5��� �86 .

To interpolate smoothly from P to NP, we introduce the
HORN2SAT problem, which has a fraction � 
 �+� � of 2-
HORN SAT clauses and a fraction � of 3-SAT clauses. Like
2+� -SAT, HORN2SAT is NP-complete for any fixed ��" � .
Although the HORN2SAT transition appears to sharpen im-
mediately � "#� , there again appears to be a change around
� � � � � . The location of the transition starts to increase
rapidly for � " � � � . At the same time, search cost (espe-
cially in the higher percentiles) appears to go from polyno-
mial to exponential



1-in- � -SAT

To finish our study of the interface between P and NP, we
look at two more satisfiability problems in which phase tran-
sition behavior has been observed: 1-in- � -SAT and NAE
SAT. In a 1-in- � -SAT problem, each clause specifies that
exactly one out of � literals is true. For � �9� , the phase
transition is sharp, occurs at ���
� � 64�8� � �-�#

� and is con-
tinuous (Achlioptas et al. 2001a). Like � -SAT, 1-in- � -SAT
is NP-complete for � � � and polynomial for ����6 . A 1-
in-2-SAT problem can be readily mapped into a 2-COL prob-
lem and vice versa. Each 1-in- 6 -SAT clause fixes two vari-
ables either to opposite truth values (which is equivalent to
an edge fixing two vertices to different colors) or to the same
truth value (which is equivalent to merging two vertices so
that they have the same color). We therefore expect the 1-
in-2-SAT phase boundary to be smooth like that for 2-COL.
To interpolate smoothly from P to NP, we introduce the 1-
in-2+� -SAT problem, with a fraction � 
 �5��� of 1-in-2-SAT
clauses and a fraction � of 1-in-3-SAT clauses. Like 2+� -
SAT, this problem class is NP-complete for all fixed �5" � .

Although 1-in-3-SAT is NP-complete, random 1-in-3-SAT
problems are much easier to solve than random 3-SAT prob-
lems of a similar size. This may be related to the fact that we
can prove the exact location of the 1-in- � -SAT phase tran-
sition. The proof bounds the location of the phase transi-
tion from the satisfiable side by showing that a simple unit
clause heuristic will almost surely decide all satisfiable prob-
lems. On the unsatisfiable side, the proof uses the fact that
the backbone is of size �-� � � to show that adding a single
clause is likely to cause unsatisfiability with constant prob-
ability. As satisfying assignments are easy to guess and
proofs of unsatisfiability are likely to be short, random 1-
in- � -SAT problems are unlikely to be hard to solve. Since
there is no rapid jump in problem hardness, it is hard to be
sure where the 1-in-2+� -SAT transition shifts from a smooth
1-in-2-SAT like transition to a sharp 1-in-3-SAT like tran-
sition. Our results suggest that this occurs in the interval
� � � � � �>� � � . As with 2+� -COL, the transition appears to
have both smooth and sharp regions when � is small.

NAE SAT

Our final problem class is NAE SAT. In a NAE � -SAT prob-
lem, each clause specifies that � literals cannot all take the
same truth value (i.e. they are Not All Equal). Like � -SAT,
this problem class is NP-complete for ���&� but is polyno-
mial for k=2. Random NAE 3-SAT has a sharp threshold in
the interval 
;� 7 
 � ( ���$� (#6 � 6 
 7 (Achlioptas et al. 2001a).
Experimental results put the transition at ���$� �>6 �/
 .

To interpolate smoothly from P to NP, we introduce the
random NAE 2+� -SAT problem, with a fraction � 
 � ��� of
NAE 2-SAT clauses and a fraction � of NAE 3-SAT clauses.
For any fixed �5"?� , NAE 2+� -SAT is NP-complete. As with
2+� -COL, the transition appears to go from smooth (at � �
� ) to sharp (at � � 
 ) and has both smooth and sharp regions
for intermediate values of � . We again define a parameter
� ��
 � identifying the end of the phase transition; this is the
smallest clause to variable ratio at which 0% of problems are

satisfiable. Like 2+� -COL,

� � ( � ��
�� (+*-,/.0� � � 2
� �

1� � �

In Figure 7, we have estimated experimentally the loca-
tion of � ��
�� . The upper bound (which looks just at the NAE
2-SAT subproblem) appears to be tight for a large range of
� . The polynomial NAE 2-SAT subproblem appears to deter-
mine satisfiability for � up to around 0.8. Not surprisingly,
the search cost only appears to go from polynomial to expo-
nential for � � ��� 	 .
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Figure 7: The location of the end of the NAE 2+� -SAT phase
transition, � ��
 � (y-axis) against � (x-axis) for ���&� to 1 in
steps of 1/10.

A NAE 3-SAT clause on the literals � , � and � can be rep-
resented by the 3-SAT clauses �������	� and 
����

�����
�� . We
can therefore encode a NAE 3-SAT problem into 3-SAT by
doubling the number of clauses (but keeping the number of
variables constant). Achlioptas et al. observe that it would
be “truly remarkable” if the random NAE 3-SAT phase tran-
sition occured at a clause to variable ratio half that of random
3-SAT since this encoding introduces significant correlations
between the clauses (Achlioptas et al. 2001a). However,
their experimental results put the random NAE 3-SAT phase
transition at ���$�?� 6 � 
 , which is tantalisingly close to half
the 4.3 value believed to hold for random 3-SAT. To look at
this issue in more detail, we introduce the NAE2SAT prob-
lem, with a fraction ��
 �%��� of NAE 3-SAT clauses and a
fraction � of 3-SAT clauses.

If we ignore correlations between clauses, each NAE 3-
SAT clause is twice as constraining as a 3-SAT clause. Hence
��
 �%��� � NAE 3-SAT clauses and ��� 3-SAT clauses should
behave like 6 ��
 � ��� ��� �'� 3-SAT clauses. That is, ��6 �
����� 3-SAT clauses. The “effective” clause to variable ratio
(in terms of 3-SAT clauses) is thus � 6 ��� �����$� . To test this
idea, Figure 8 plots the probability of satisfiability against
� 6-�%��� ���$� . Very surprisingly, the phase transition occurs
around an “effective” 3-SAT clause to variable ratio of 4.3.
It appears that correlations between the NAE 3-SAT clauses
can be almost completely ignored. To steal Achlioptas et
al.’s words, this is “truly remarkable”. NAE 3-SAT behaves
like 3-SAT at twice the clause to variable ratio.
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Figure 8: Probability that a NAE2SAT problem is satisfi-
able (left graph y-axis) and median search cost to solve a
NAE2SAT problem (right graph, y-axis) against � 6 �5�����	�
�
(x-axes) for ���>6;�;� and � ��� , 0.2, 0.4, 0.6, 0.8 and 1.

Conclusions

We have studied in detail the interface between P and NP by
means of five new problem classes: 2+� -COL, XOR2SAT,
HORN2SAT, NAE 2+� -SAT and 1-in-2+� -SAT. These prob-
lems smoothly interpolate between P and NP. In many cases,
the polynomial subproblem dominates the problem’s satisfi-
ability and the search complexity up to some � � "9� . For
example, 2+� -COL behaves like the embedded polynomial
2-COL subproblem up to � �<��� 	 . Similarly, NAE 2+� -SAT
behaves like the embedded polynomial NAE 2-SAT subprob-
lem also up to � � ��� 	 . However, this is not always the
case. In particular, in the XOR2SAT problem, both the 3-
SAT clauses and the polynomial XOR 3-SAT clauses appear
to contribute to the problem’s satisfiability for all � " � .

What important lessons can be learnt from this study?
First, we can have transitions with both smooth and sharp
regions. Problems like 2+� -COL and NAE 2+� -SAT let us
study in detail how transitions sharpen and the large impact
this has on search cost. Second, whilst the polynomial 2-
SAT subproblem dominates 2+� -SAT up to � � 64�87 , there
are problems like XOR2SAT in which the polynomial sub-
problem does not dominate even though it is more tightly
constraining than 2-SAT. Understanding this phenomenon
is likely to bring fresh insight into problem hardness. Third,
problem classes like these can help us understand algorithm
behavior. For instance, we can view Brelaz’s 3-coloring
algorithm as searching trajectories in the 2+� -COL phase
space. And finally, given the insights gained from studying
the interface between P and NP, it is may be worth looking at
the interface between other complexities classes. For exam-
ple, we might study the interface between NP and PSpace.
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