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Abstract. We study from a formal perspective the consistency and
propagation of constraints involving multiset variables. That is, variables
whose values are multisets. These help us model problems more natu-
rally and can, for example, prevent introducing unnecessary symmetry
into a model. We identify a number of different representations for mul-
tiset variables and compare them. We then propose a definition of local
consistency for constraints involving multiset, set and integer variables.
This definition is a generalization of the notion of bounds consistency for
integer variables. We show how this local consistency property can be
enforced by means of some simple inference rules which tighten bounds
on the variables. We also study a number of global constraints on set
and multiset variables. Surprisingly, unlike finite domain variables, the
decomposition of global constraints over set or multiset variables often
does not hinder constraint propagation.

1 Introduction

Set variables have been incorporated into most of the major constraint solvers
(see, for example, [1,2]). It is therefore surprising that few constraint solvers
permit multiset variables. The one exception is ILOG’s Configurator. However,
little is known from a theoretical perspective about such variables. The aim of
this paper is to correct this imbalance, to study formal notions of consistency and
propagation for multiset variables, and to discuss how they can be implemented.
Many problems naturally involve multisets. Consider the template design prob-
lem [3] (prob002 in CSPLib) in which we assign designs to printing templates. As
there are a fixed number of slots on each template, we can model this problem
with a variable for each slot, whose value is the design in this slot. However,
slots on a template are indistinguishable. This model therefore introduces an
unnecessary symmetry, namely the permutations of the slots. A “better” model
would remove this symmetry by having a variable for each template, whose value
is the multiset of designs assigned to that template. It is a multiset, not a set,
as the designs on a template can be repeated.

The paper is structured as follows. We start with the formal background (Sec-
tion 2). We then compare different ways to represent multiset variables (Section
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3) and define a notion of local consistency for multiset variables (Section 4). We
identify a number of primitive multiset constraints (Section 5) and show how
to enforce this local consistency property on such constraints (Section 6). We
also study a number of global multiset constraints (Section 7). We then give
some experimental results comparing different representations of multiset vari-
ables (Section 8). Finally we describe related work (Section 9) and end with
conclusions (Section 10).

2 Formal background

A constraint satisfaction problem consists of a set of variables, each with some
domain of values, and a set of constraints specifying allowed values for subsets
of variables. A solution is an assignment of values to the variables satisfying the
constraints. To find such solutions, we can explore partial assignments enforcing
a local consistency like generalized arc-consistency (GAC). A constraint is GAC
iff, when a variable in the constraint is assigned a value, compatible values exist
for all the other variables in the constraint. GAC reduces to arc-consistency (AC)
for binary constraints. A constraint is bounds consistent iff, when a variable in
the constraint is assigned its maximum or minimum value, there exist compatible
values for all the other variables in the constraint.

We will also need vectors, sets and multisets. A vector is an ordered list of

elements, written (mg,...,m,). A set is an unordered list of elements without
repetition, written {mg,...,m,}. A multiset is an unordered list of elements
in which repetition is allowed, written {my,...,m,}. We assume that the el-

ements of vectors, sets and multisets are integers drawn from a finite domain.
Basic operations on sets generalize to similar operations on multisets. We let
occ(m, X) be the number of occurrences of m in the multiset X . Multiset union,
addition, intersection, difference, equality and inclusion are defined by the fol-
low identities: occ(m, X UY) = maz(occ(m,X),occ(m,Y)), occ(m, X WY) =
oce(m, X) +oce(m,Y), oce(m, X NY) = min(oce(m, X), occ(m,Y)), occ(m, X —
Y) = maz(0, occ(m, X) — oce(m,Y)), X =Y iff occ(m, X) = oce(m,Y) for all
m, and X CY iff occ(m, X) < oce(m,Y) for all m. Finally, we write | X| for the
cardinality of the set or multiset X.

3 Representing multisets

A naive method to represent a multiset variable is a finite domain variable whose
values are all the possible multisets. However, this will be computationally in-
tractable as the number of possible multisets is exponential.

3.1 Bounds representation

A better representation for multiset variables is a generalization of the upper
and lower bounds used for set variables in [1,4]. For each multiset variable, we



maintain two multisets: a least upper and a greatest lower bound. The least
upper bound is the smallest multiset containing all those values that can be in
the multiset, whilst the greatest lower bound is the largest multiset containing
all those values that must be in the multiset. We write lub(X) and glb(X) for
the least upper and greatest lower bound respectively. This representation is
compact but is unable to represent all forms of disjunction. Consider, for exam-
ple, a multiset variable X with two possible multiset values: {0} or {1}. To
represent this, we would need lub(X) = {0,1} and glb(X) = {}. However, this
representation also permits X to take the multiset values {J} and {0,1}.

3.2 Occurrence representation

Set variables can be represented by their characteristic function (a vector of
Boolean variables, each of which indicates whether a particular value is in the
set or not). A straightforward generalization to multisets is the occurrence vec-
tor. Each multiset variable X can be represented by a vector (Xo,...,X,) of
integer variables with X; = occ(i, X). This representation is also compact but
again cannot represent all forms of disjunction. Consider again the example of a
multiset variable X with two possible multiset values: {0} or {1}. To represent
this, we would need an occurrence vector with X = {0,1} (that is, the value 0
can occur zero times or once) and X; = {0,1} (that is, the value 1 can occur
zero times or once). Like the bounds representation, this also permits X to take
the multiset values {}} and {0,1}.

3.3 Fixed cardinality

Set or multiset variables of a fixed cardinality are common in a number of prob-
lems. For example, the template design problem can be modelled as finding a
multiset of designs of fixed cardinality for each template. In such situations, we
can represent each of the members of the set or multiset with a variable whose
values are the possible set or multiset elements. This may appear to introduce
symmetry into the problem (via permutations of these variables). This is not the
case as we will post constraints on these variables which ignore their permutation.
This representation is again compact but again carries the penalty of not being
able to represent all forms of disjunction. Consider, for example, a multiset vari-
able X of cardinality 3 with two possible multiset values: {0,0,0} or {1,1,1}.
To represent this, we would need three variables: X; = {0,1}, X, = {0,1} and
X3 = {0,1}. Each finite domain variable represents one of the possible elements
of the multiset. However, this representation also permits X to take the multiset
values: {0,0,1}, and {0,1,1}. If the set or multiset variables are not of a fixed
cardinality but there are upper bounds on their maximum cardinality, we can
use a similar representation but introduce an additional value which represents
no value being assigned to a particular variable.



3.4 Nested sets and multisets

We may want to find a set of sets or multisets, or a multiset of sets or multisets.
For example, in the template design problem we actually want to find a set of
templates, each of which is a multiset of designs. To model such problems, we
can introduce set or multiset variables, whose elements themselves are sets or
multisets. How do our different representations cope with such variables? The
bounds representation handles such cases easily. The least upper and greatest
lower bounds are now (multi)sets of (multi)sets. The occurrence representation
is more problematic as we have to index over a potential exponential number of
sets or multisets. This will require exponential space in general. By comparison,
the fixed cardinality representation handles such cases easily. We introduce a
variable for each element of the set or multiset, and each of these variables is
itself a set or multiset variable.

3.5 Expressivity

We can compare the expressivity of these different representations. We say that
one representation is as expressive as another if it can represent the same
multiset values, more expressive if it is as expressive and there are multiset
values that it can represent that the other cannot, and incomparable if neither
representation is as expressive as the other.

Theorem 1 The occurrence representation is more erpressive than the bounds
representation. The fixed cardinality representation is incomparable to both the
bounds and the occurrence representation.

Proof: Clearly the occurrence representation is as expressive as the bounds.
Consider a multiset variable X with two values: {} or {0,0}. This can be
represented exactly with the occurrence variable X = {0,2}. By comparison, a
bounds representation would need lub(X) = {0,0} and ¢lb(X) = {}, and this
permits the additional value {0}.

Consider a multiset variable X of cardinality 2 with six values: {0, 1}, {0, 2},
0,38, 1,1}, 41,2}, or {{1,3}}. The fixed cardinality representation can repre-
sent this exactly with two finite domain variables X7 = {0,1} and X, = {1,2,3}.
Both the bounds and the occurrence representations of this would also permit
the additional value {2,3}. On the other hand, consider a multiset variable X of
cardinality 2 with three values: {0,1}, {0,2}, or {1,2}. In the bounds repre-
sentation, we need lub(X) = {0,1,2} and glb(X) = {}}. The only two element
multisets between these bounds are exactly {0,1}, {0,2}, or {1,2} as required.
Similarly with an occurrence representation, we need Xo = X; = X» = {0,1}.
The only two element multisets between these bounds are again the required
ones. A fixed cardinality representation cannot, on the other hand, represent
this exactly. We would need two finite domain variables with, say, X; = {0,1}
and X = {1,2}. These would permit X to take the additional value {1,1}. &

Note that if we restrict the occurrence representation to maintain just bounds
on the number of occurrences of a value in the multiset then we obtain a repre-
sentation that is as expressive as the original multiset bounds representation.



4 Local consistency

We now propose a new definition of local consistency that works with con-
straints involving multiset, set and/or integer variables. We want a definition of
local consistency over multiset, set and integer variables since constraints often
have a mixture of such variables. For example, channelling between the bounds
and occurrence representation of multiset variables uses constraints of the form
Xm = oce(m, X), where X,,, is an integer variable representing the number of
occurrences of the value m, and X is a multiset variable. Cardinality and mem-
bership constraints can also involve both multiset, set and integer variables.

Given a constraint C over the variables X7, ..., X,,, we write sol(X;) for the
values for X; which can be extended to the other variables. That is,

sol(X;) = {d; | C(dy,-..,d,) A Vi .int(X;) = glb(X;) < d; < lub(X;) A
Vj . (mset(X;) V set(X;)) = glb(X;) Cd; Club(X;)}

Where mset(X), set(X) and int(X) test for multiset, set or integer variables,
and glb(X;) and lub(X;) are the bounds on X; (defined below).

We say that a constraint C'(X,...,X,) is BC iff:

For each multiset or set variable, X; in the constraint, sol(X;) # {} and:

wh(X;)= |J m and gb(X;)= () m

mesol(X;) méesol(X;)
And for each integer variable, X; in the constraint, sol(X;) # {} and:

lub(X;) = maz({d € sol(X;)}) and  glb(X;) = min({d € sol(X;)})

This definition of local consistency might look rather expensive, being de-
fined over the set of all solutions. However, this set merely identifies support for
particular values in the set or multiset. When using BC to filter, we will identify
values which occur in no solutions and so can be pruned. Thus, we will not be
finding all solutions but merely identifying those values that occur in no solu-
tions (i.e. lack support). The following theorem justifies why BC can be called
“bounds consistency”.

Theorem 2 BC is equivalent to bounds consistency applied to the occurrence
representation.

Proof: Suppose that a constraint is BC. Consider any integer variable X in
this constraint. Then, the value lub(X) for X can be extended to some solution.
That is, it has support. Similarly the value glb(X) for X can be extended to some
other solution. That is, it also has support. Hence X is bounds consistent. On the
other hand, consider any multiset variable X in the constraint. We can construct
an equivalent occurrence representation. Suppose mmax = occ(m,lub(X)) and
Mmin = occ(m, glb(X)). Then we let the variable X, in the occurrence vector



have a domain [Mpin, Mmax]- Consider X, = Mmax. Then, from the definition
of BC and the generalized multiset union operator, there must be a satisfying
solution to the constraint in which occ(m,X) = mmax- If there are several,
we choose one non-deterministically. This solution is support for the bounds
consistency of this integer variable in the occurrence representation. A similar
argument holds for X,;, = mpui,, and for any set variable. Hence, BC implies
bounds consistency of the occurrence representation. The proof reverses directly.
&

This theorem might appear to offer an easy and effective route to prune val-
ues from multiset variables: encode the problem into constraints on occurrence
variables and use “off the shelf” bounds consistency algorithms. However, the
occurrence representation greatly increases the number of variables in the prob-
lem. For example, suppose we have a constraint like X # Y where X and Y are
multiset variables. This maps into a large disjunctive constraint in the occur-
rence representation over 2d integer variables where d is the maximum possible
cardinality of the two multisets. It is therefore worth developing specialized prop-
agation algorithms that exploit the semantics of set or multiset constraints. Such
algorithms can work on either a bounds or an occurrence representation. In the
next two sections, we show how to define such algorithms by means of some
simple inference rules. Note that a degenerate version of this last theorem is
that BC on a constraint containing just integer variables is equivalent to bounds
consistency on these variables. Some other properties also follow immediately
from this result.

Theorem 3 If a set of constraints are satisfiable, there are unique least upper
and greatest lower bounds for each variable that makes the constraints BC.

Proof: Immediate from the last result, and the fact that bounds consistency
on integer variables returns an unique answer. &

5 Multiset constraints

What sort of constraints can be posted on multiset variables? We assume con-
straints on multisets and set variables are defined as follows. A constraint is
oftheform X CY, X CY, X =Y, X ££Y, |[X| =N, oce(N,X) = m or
occ(m,X) = N where X and Y are set or multiset expressions, N is an integer
variable, and m is an integer. A set of multiset expression is, in turn, either a
ground set or multiset, a set or multiset variable, or an expression of the form
XUY, XWY, XNY,or X —Y where X and Y are again set or multiset expres-
sions. To make constraint propagation easier, we decompose constraints into a
flattened normal form in which constraints are at most ternary and only of the
form: X CY, X=YUZ, X=YWZ, X=YNZ, X=Y-Z, X#£Y,|X|=N,
oce(N, X) = m or oce(m,X) = N where X and Y are either set or multiset vari-
ables or ground sets or multisets, N is an integer variable, and m is an integer.
This decomposition takes any nested set or multiset expression and replaces it
by a new equality constraint. For example, (X UY) C Z is normalized to give



XY = XUY and XY C Z where XY is a new multiset variable. A similar
decomposition of set constraints was used in [4]. In general, such decomposition
hinders constraint propagation.

Theorem 4 BC on a set of constraints is strictly stronger than BC on the
equivalent set of constraints decomposed into normal form.

Proof: Clearly it is as strong. For strictness, we consider each type of multiset or
set constraint in turn. For a set not-equals constraint, consider XU(YNZ) # (XU
YYN(XUZ)with X =Y = Z ={} :: {0}. BC determines that this constraint
has no solution. But in the decomposition, with YZ =Y NZ, XYZ=XUYZ,
XY =XUY, XZ=XUZ XYXZ=XYNXZand XYZ # XYXZ, the
domains X =Y =Z=YZ=XYZ=XY =XZ=XYXZ={}: {0} make
the dec omposed constraints BC. Similar arguments hold for the other types of
constraints. e

Under the simple restriction that there are no repeated occurrences of vari-
ables, decomposition does not hinder constraint propagation.

Theorem 5 BC on a set of constraints, none of which contains a repeated oc-
currence of variables, is equivalent to BC on the equivalent set of constraints
decomposed into a normal form.

Proof: The proof uses induction on the number of auxiliary variables introduced
and the structure of the multiset expressions which they replace, followed by
extensive case analysis. Consider, for example, the multiset constraint X—Y C Z
and the decomposition: XY = X -Y, XY C Z. Suppose each of the decomposed
constraints is BC but the original undecomposed constraint is not BC. There
are six possible cases. In the first, glb(X) is too small and we can add at least
one value m to it. This is only possible if m is a member of glb(Y") or of glb(Z).
In either case, the original pair of decomposed constraints could not be BC. The
other five cases are similar. &

6 Enforcing local consistency

We now give some simple constraint propagation rules that enforce BC on multi-
set constraints in normal form. The equivalent inference rules for set constraints
can be obtained by treating the operators in the rules as set and not multi-
set operations. Similarly, for mixed constraints involving both set and multiset
variables, we need merely treat operators as appropriate set or multiset opera-
tions. Each rule tightens an upper and/or lower bound on a variable. The rules
therefore terminate either with domains at a fixed point or by flagging failure.
The rules can be applied in any order, though some orders may be quicker than
others (especially when the constraints cannot be made BC). Similar rules for
set variables are given in [4].



Multiset inclusion rules:
XCY
glb(X)Uglh(Y) CY
XCY
X Club(X)Niub(Y)

Multiset equality rules:

X=YuZz
glb(X) U (glb(Y') U glb(Z)) C X C lub(X) N (lub(Y) Ulub(Z))
X=YuZz
Y Club(Y) Nlub(X)
X=YuZz
Z Club(Z) Nlub(X)
X=YwZ
glb(X) U (glb(Y) W glb(Z)) C X C lub(X) N (ub(Y) W lub(Z))
X=YwZ
glb(Y) U (glb(X) — lub(Z)) CY Club(Y) N (lub(X) — glb(Z)
X=YuwZ
9lb(Z) U (glb(X) — lub(Y)) C Z Club(Z) N (lub(X) — glb(Y)
X=YnZ
glb(X) U (glb(Y) N glb(Z)) C X C lub(X) N (ub(Y) Niub(Z))
X=YnZ
glb(Y)Uglb(X)CY
X=YnZ
glb(Z)YUu glb(X) C Z
X=Y-2Z7
glb(X) U (gIb(Y) — lub(Z))

C lub(Y) N (lub(X) W lub(Z))
Iy
C lub(Z) N (lub(Y) — glb(X))

Cc
J0(7) U (GI6C%) & gI6(Z)) ©
C

glb(Z) U (glb(Y) — lub(X))

Multiset inequality rules:

X £Y,gb(Y) = lub(Y) = glb(X), |lub(X)| = |glb(X)| + 1
X = lub(X)

X #Y,glb(Y) = lub(Y) = lub(X), |lub(X)| = |glb(X)| + 1
X = glb(X)

X #£Y,glb(X) = lub(X) = glb(Y), |lub(Y)| = |glb(Y)| + 1
Y =1lub(Y)

X £, glb(X) = lub(X) = lub(Y), |lub(Y)| = |glb(Y)| + 1
Y = glb(Y)




Multiset cardinality rules:

mazGrin(W), (X)) < N
| X| = N,min(N) = maz(N) = |glb(X)|

bt
Il
g

=

Multiset membership rules:

oce(N, X) = m,occ(min(N), glb(X)) > m

N > min(N)
occ(N, X) = m, occ(min(N),lub(X)) < m
N > min(N)
occ(N, X) = m, occ(mazx(N), glb(X)) > m
N < maz(N)
occ(N, X) = m,occ(max(N),lub(X)) <m
N < maz(N)
occ(N,X) = m,maz(N) = min(N)
gIb(X)U{N,...,NJC X Club(X)—  {N,...... N}
—— —_——

m times maz (0, occ(N,lub(X)) — m)
occ(m,X)=N
maz(min(N), occ(m, glb(X))) < N < min(maz(N), occ(m,lub(X)))
occ(m,X) =N

glb(X)U{m,...... ,m} CX Club(X)— {m,...... ,m}
—_—— S —
min(N) times maz(0, oce(m, lub(X)) — maz(N))

Failure rules: Each of the inference rules given so far tightens the bounds for
a variable. We fail whenever this rules out all possible values for the variable.
The following additional inference rules also lead to failure:

X CY,glb(X) Z lub(Y)

Fail
X=YUZglb(X) € lub(Y) Ulub(Z)
Fail
X=YUZglb(Y)Uglb(Z) Z lub(X)
Fail
X =Y WZglb(X) € lub(Y) ¥lub(Z)
Fail
X=YWZglb(Y)yglb(Z)  lub(X)
Fail




X=YNZglb(X)  lub(Y) Nlub(Z)

Fail
X=YNZglb(Y)Nglb(Z) € lub(X)
Fail
X=Y—Z,glb(X) Z lub(Y) — glb(Z)
Fail
X=Y-2,glb(Y) —lub(Z) € lub(X)
Fail
X #£Y,9lb(X) = lub(X) = glb(Y) = lub(Y)
Fail
1X| = N,maa(N) < |glb(X)))

Fail
|X| = N, |lub(X)| < min(N)

Fail
occ(N, X) =m,Vy . occ(y, lub(X)) <m V m < occ(y, glb(X))
Fail
oce(m, X) = N,maz(N) < occ(m, glb(X))
Fail
oce(m, X) = N, oce(m,lub(X)) < min(N)
Fail

Properties It is easy to see that the application of these rules terminates
either with domains that are at a fixed point or with failure. Indeed, these rules
terminate either with the unique BC domains or, if the problem cannot be made
BC, fail, in both cases independent of the order of application of the rules.

Theorem 6 If a set of constraints in normal form can be made BC, these infer-
ence rules reach an unique fixed point in which domains are BC. If the constraints
cannot be made BC, the inference rules terminate with failure. Both take at most
O(enm?) time where e is the number of constraints, n is the number of variables
and m is the maximum cardinality of the multiset variables.

Proof: (Outline) Each inference rule tightens the upper and lower bounds of a
variable or flags failure. The rules must therefore reach a fixed point or fail.
Suppose that we reach some fixed point applying these rules to a set of
constraints in normal form. The proof uses case analysis on the type of constraint.
Consider, for example, a constraint of the form X =Y U Z. We consider each
of the multiset variables in turn and show that their domains are BC. For the
variable X, as the inference rule tightening X’s upper and lower bound is at a
fixed point, it must be the case that glb(Y)Uglb(Z) C glb(X), lub(X) C lub(Y)U
lub(Z) and glb(X) C lub(X). The assignment X = glb(X),Y = lub(Y) Nglb(X)
and Z = lub(Z)Nglb(X) will satisfy the constraint X = Y UZ and the conditions
that glb(Y) CY Club(Y) and glb(Z) C Z C lub(Z). Similarly, the assignment
X = Wwbh(X),Y = lwY)nilub(X) and Z = lub(Z) N lub(X) will satisfy the



constraint X = Y U Z and the conditions that ¢glb(Y) C Y C lub(Y) and
glb(Z) C Z C lub(Z). Hence X’s domain is BC. Similar arguments hold for the
domains of Y and Z, as well as for the other types of constraints. Hence, if the
rules terminate at a fixed point, the resulting domains are BC.

We now prove that, if the domains in the problem can be made BC, the
rules terminate at this fixed point. Consider a problem that can be made BC,
and its unique BC domains. The proof again uses extensive case analysis on the
type of constraint. Consider, for instance, the constraint X =Y U Z and the BC
domains for X, Y and Z. To prove that the rules terminate at this fixed point, we
assume that an inference rule can still narrow a domain or flag failure. There are
five cases corresponding to the five different inference rules associated with this
constraint. In the first, the inference rule narrows the least upper bound of Y by
removing one or more values. Suppose one of these removed values is m. Let X,,,
Y, and Z,, be the number of occurrences of m in X, Y and Z respectively. As
m is pruned by this inference rule, maz(Yy,) > maxz(X,,). The original multiset
variables are not therefore BC (which is a contradiction). Hence, there can be
no value m removed and this inference rule is at a fixed point if the domains are
BC. Similar arguments hold for the other 4 inference rules

These rules therefore terminate at a fixed point iff the resulting domains are
BC. As the rules must terminate either at a fixed point or by flagging failure, it
follows that the rules flag failure iff the problem cannot be made BC. As each rule
tightens the bounds on a multiset, set or finite domain occurrence variable, the
worst case is when the rules tighten each bound by just one element at a time.
We may therefore have to apply O(nm) rules. To find which rule applies, we
may have to go through each of the e constraints in turn. Associated with each
type of constraint, a fixed number of rules can be tried. The cost of applying the
inference rules is thus at most O(enm) multiplied by the cost of applying a single
inference rule. This last cost is dominated by the O(m) cost to test (dis)equality
or inclusion, and the O(m) cost to perform one of the basic operations like union
or difference. Hence, the total cost is O(enm?) in the worst case. &

7 Global constraints

An important aspect of constraint programming is global (or non-binary) con-
straints [5,6]. Such constraints capture common patterns and often come with
efficient and effective propagation algorithms. An important question about such
constraints is whether decomposition hurts. Consider a global constraint on finite
domain variables like the all-different constraint [5]. This can be decomposed into
binary not-equals constraints, but this decomposition hinders constraint propa-
gation. For instance, GAC on an all-different constraint is strictly stronger than
arc-consistency (AC) on the decomposed binary not-equals constraints [7]. We
therefore have to develop a specialized propagation algorithm to achieve GAC on
an all-different constraint. Surprisingly, the decomposition of global constraints
involving set or multiset variableos often does not hinder constraint propaga-
tion. This is good news. We can provide global constraints on set and multiset



variables to help users compactly specify models. However, we do not need to
develop complex algorithms for reasoning about them as is the case with finite
domain variables. We can simply decompose such global constraints into primi-
tive constraints and use the inference rules given in the last section. In the rest of
this section, we give results to show that decomposition on the occurrence repre-
sentation often does not hinder GAC, and that decomposition on the occurrence
or bounds representation does not hinder BC.

Disjoint constraint The constraint disjoint([Xy,...,X,]) ensures that the
multiset variables are pairwise disjoint. This global constraint can be decomposed
into the binary constraints: X; N X; = {}} for all ¢ # j. Such decomposition does
not hinder constraint propagation.

Theorem 7 GAC (resp. BC) on a disjoint constraint is equivalent to AC (resp.
BC) on the binary decomposition.

Proof: Clearly GAC (resp. BC) on a disjoint constraint is as strong as AC
(resp. BC) on the decomposition. To show the reverse, suppose that the binary
decomposition is AC (resp. BC). If the disjoint constraint is not GAC or BC
then there must be at least two multiset variables, X; and X; with a value m
in common. That is, X;;,, > 1 and Xj,,, > 1. However, in such a situation, the
decomposed constraint min(X,,, X;,,) = 0 would neither be AC nor BC. &

Partition constraint The constraint partition([X,...,X,], X) ensures that
the multiset variables, X; are pairwise disjoint and union together to give X. By
introducing new auxiliary variables, it can be decomposed into binary and union
constraints of the form: X; N X; = {{} for all ¢ # j, and X; U... U X, = X.
Decomposition again causes no loss in pruning.

Theorem 8 GAC (resp. BC) on a partition constraint is equivalent to GAC
(resp. BC) on the decomposition.

Proof: Clearly GAC (resp. BC) on a partition constraint is as strong as GAC
(resp. BC) on the decomposition. To show the reverse, by Theorem 7, we need
focus just on the union constraints. Suppose that the decomposition is GAC
(resp. BC). If the partition constraint is not GAC or BC then there must be
one value m that does not occur frequently enough in the upper bounds of
the multiset variables. But, in this case, the decomposed constraint (which is
equivalent to Y"1 | X = X,,,) would neither be GAC nor BC. &

This result continues to hold even if the union constraint is decomposed
into the set of ternary union constraints by introducing new auxiliary variables:
X1UXy = X9, X120U X3 = Xi3,...,X1,-1 UX, = X. We can also consider the
non-empty partition constraint which also ensures that each multiset variable is
not empty. Decomposition now hinders constraint propagation.

Theorem 9 GAC (resp. BC) on a non-empty partition constraint is strictly
stronger than GAC (resp. BC) on the decomposition.



Proof. Clearly it is as strong. For strictness, consider 3 multiset variables with
gIb(Xy) = gIb(Xz) = glb(Xs) = {}, lub(Xy) = lub(X5) = {1, 2} and lub(Xs) =
{1,2,3}. The decomposition is both GAC and BC. However, enforcing GAC or
BC on the non-empty partition constraint gives glb(X3) = lub(X3) = {3}. &

Distinct constraint Consider the constraint distinct([X1,..., X,]) which en-
sures that all the multisets are distinct from each other. This decomposes into
pairwise not equals constraints: X; # X; for all ¢ # j. Decomposition in this
case hinders constraint propagation.

Theorem 10 GAC (resp. BC) on a distinct constraint is strictly stronger than
AC (resp. BC) on the decomposition.

Proof: Clearly it is as strong. For strictness, consider a distinct constraint on
3 multiset variables with glb(X;) = glb(X3) = {}, lub(X1) = lub(Xs) = {0},
glb(X3) = {0}, and lub(X3) = {0,0}. The decomposition is both AC and BC.
But enforcing GAC or BC on the distinct constraint gives glb(X3) = lub(X3) =
{0,0%. &

8 Experimental results

Our preliminary experiments show that the choice of representation for multiset
variabls can make a large difference even on relatively easy problems. Table 1
shows results for the template design problem (prob002 in CSPLib). The model

Problem|Number of|Objective|Goal Occurrence rep Fixed card rep
templates value fails|runtime /sec fails|runtime/ sec
cat food 1 550|find 8 0.00 371 0.03
prove 0 0.00 389 0.03
2 418|find 1173 0.12||3397750 502.40
prove 5708 0.43 * *
3 409|find 48721 5.63 * *
prove * * * *
herbs 1 115/find 142 0.01 * *
prove 31 0.00 * *
2 96|find 54 0.01 * *
prove||132788714  10386.20 * *

Table 1. Solutions to the template design problem modelled using multiset variables.
The objective is the production run length. Multiset variables are represented with
either the occurrence or fixed cardinality representations. The objective is the produc-
tion run length. All solutions are optimal for the given number of templates. Runtimes
are for OPL Studio 3.5.1 on a Pentium III 1.2 GHz with 512 MB of RAM running
Windows XP. Entries marked “*” are not solved within 3 hours.



is relatively easy to solve when the multiset variables are represented via the
occurrence representation. However, despite the fact that the multiset variables
in this problem represent the contents of each template and these are of fixed
size, the model is difficult to solve when the multiset variables are represented
via the fixed cardinality representation.

When constraint programming with multiset variables, a number of issues
arise which we are currently exploring. For example, which of the different rep-
resentations for multiset variables is best? Is it simply enough to find the rep-
resentation in which the constraints are “easy” to express? When do we go for
multiple representations with channelling between them? We also need to de-
velop new variable and value ordering heuristics for multiset variables. The fail
first principle for variable ordering translates into: branch on the multiset vari-
able X in which [lub(X) — glb(X)| is smallest. However, when we have both set,
multiset and integer variables, we need heuristics to choose between them. We
must also decide what sort of branching decision to make. For example, do we
branch on the number of occurrences or try to split the difference between lower
and upper bounds?

9 Related work

ILOG’s Configurator has an I1cBagPort variable to model the multiset of com-
ponents connected to a particular component. This uses an occurrence repre-
sentation for the multisets, as well as integer variables for the cardinality of the
multiset and for the number of values in the multiset. The only multiset con-
straints that appear to be supported are equality, inclusion and their negations.
The domain of a set or multiset variable can include the I1cWildCard value, rep-
resenting any possible extension of the set or multiset. It would be interesting
to study the theoretical properties of this extension.

Set variables have been integrated into the ECLIPSE constraint logic pro-
gramming language using a bounds representation [4]. Our definition of bounds
consistency generalizes the local consistency property given in [4] for set vari-
ables. For example, a subset constraint Sy C Ss is locally consistent iff glb(S1) C
9lb(S2) and lub(S1) C lub(S2), whilst a cardinality constraint [ < |S1| < w is
locally consistent iff | < |gIb(S1)| and |[lub(S)| < u. Another advantage of our
definition is that it works with any type of constraint, and is not restricted to
those types of constraint considered in [4].

Theorem 11 A subset constraint S; C Sy is locally consistent iff it is BC. A
cardinality constraint | < |S1| < u is locally consistent iff it is BC.

Proof: Suppose S; C Ss is BC and lub(S1) € lub(S2). Then there must be
a € lub(S1) with a & lub(S2). Hence there exists S € sol(S1) with a € S, but for
all S € sol(Ss) there is no a € S. The value S for S; cannot then have support
in the constraint Sy C Sa. Hence lub(S1) C lub(S2). By an analogous argument,
glb(S1) C glb(S2). The proof reverses easily.

Suppose | < |S1]| < wis BC. Then for S € sol(S1),! < |S|. Hence I < |glb(S)|.
By an analogous argument, |lub(S1)| < u. The proof reverses easily. &



The constraint logic programming language {Log} provides sets and multi-
sets as basic types [8]. Sets and multisets are axiomatically defined and solved
using a mixture of unification and rewriting. However, computational efficiency
is not a major goal as {Log} is more concerned with expressivity, e.g. being able
to represent and reason about partially specified and nested sets. Our goals,
however, are more computational. We wish to augment constraint solving with
efficient constraint propagation techniques for dealing with multiset variables.
Some other systems like CLPS [9] also build sets into their unification procedure
but are again more concerned with expressivity than efficiency.

10 Future work and conclusions

We have formally studied the role of multiset variables in constraint program-
ming. We identified a number of different representations for multiset variables
and compared them. We proposed a definition of local consistency for constraints
involving multiset, set or integer variables. This definition is a generalization of
the notion of bounds consistency for integer variables. We showed how this local
consistency property can be enforced by means of some simple inference rules
which tighten bounds on the variables. We also studied a number of global con-
straints on set and multiset variables. Surprisingly, unlike finite domain variables,
the decomposition of global constraints over set or multiset variables often does
not hinder constraint propagation.
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