
An Empirical Study of the Manipulability of
Single Transferable Voting

Toby Walsh1

Abstract. Voting is a simple mechanism to combine to-
gether the preferences of multiple agents. Agents may try to
manipulate the result of voting by mis-reporting their pref-
erences. One barrier that might exist to such manipulation
is computational complexity. In particular, it has been shown
that it is NP-hard to compute how to manipulate a number of
different voting rules. However, NP-hardness only bounds the
worst-case complexity. Recent theoretical results suggest that
manipulation may often be easy in practice. In this paper,
we study empirically the manipulability of single transferable
voting (STV) to determine if computational complexity is re-
ally a barrier to manipulation. STV was one of the first voting
rules shown to be NP-hard. It also appears one of the harder
voting rules to manipulate. We sample a number of distribu-
tions of votes including uniform and real world elections. In
almost every election in our experiments, it was easy to com-
pute how a single agent could manipulate the election or to
prove that manipulation by a single agent was impossible.

1 INTRODUCTION

Agents may try to manipulate an election by mis-reporting
their preferences in order to get a better result for themselves.
The Gibbard Satterthwaite theorem proves that, under some
simple assumptions, there will always exist situations where
such manipulation is possible [21, 25]. In an influential paper
[3], Bartholdi, Tovey and Trick proposed an appealing escape:
perhaps it is computationally so difficult to find a successful
manipulation that agents have little option but to report their
true preferences? To illustrate this idea, they demonstrated
that the second order Copeland rule is NP-hard to manipu-
late. Shortly after, Bartholdi and Orlin proved that the more
well known Single Transferable Voting (STV) rule is NP-hard
to manipulate [2]. A whole subfield of social choice has since
grown from this proposal, proving that various voting rules
are NP-hard to manipulate under different assumptions.

Our focus here is on the manipulability of the STV rule.
Bartholdi and Orlin argued that STV is one of the most
promising voting rules to consider in this respect:

“STV is apparently unique among voting schemes in ac-
tual use today in that it is computationally resistant to
manipulation.” (page 341 of [2]).

Whilst there exist other voting rules which are NP-hard to
manipulate, computational complexity is either restricted to

1 NICTA and UNSW, Sydney, Australia, email:
toby.walsh@nicta.com.au

somewhat obscure voting rules like second order Copeland or
to more well known voting rules but with the rather artificial
restriction that there are large weights on the votes. STV is
the only commonly used voting rule that is NP-hard to ma-
nipulate without weights. STV also appears more difficult to
manipulate than many other rules. For example, Chamberlain
studied [5] four different measures of the manipulability of a
voting rule: the probability that manipulation is possible, the
number of candidates who can be made to win, the coali-
tion size necessary to manipulate, and the margin-of-error
which still results in a successful manipulation. Compared to
other commonly used rules like plurality and Borda, his re-
sults showed that STV was the most difficult to manipulate
by a substantial margin. He concluded that:

“[this] superior performance . . . combined with the rather
complex and implausible nature of the strategies to ma-
nipulate it, suggest that it [the STV rule] may be quite
resitant to manipulation” (page 203 of [5]).

Unfortunately, the NP-hardness of manipulating STV is
only a worst-case result and may not reflect the difficulty of
manipulation in practice. Indeed, a number of recent theoret-
ical results suggest that manipulation can often be computa-
tionally easy on average [8, 24, 31, 12, 32]. Such theoretical
results typically provide approximation methods so do not say
what happens with the complete methods studied here (where
worst case behaviour is exponential). Most recently, Walsh
has suggested that empirical studies might provide insights
into the computational complexity of manipulation that can
complement such theoretical results [30]. However, Walsh’s
empirical study was limited to the simple veto rule, weighted
votes and elections with only three candidates. In this paper,
we relax these assumptions and consider the more complex
multi-round STV rule, unweighted votes, and large numbers
of candidates.

2 MANIPULATING STV

Single Transferable Voting (STV) proceeds in a number of
rounds. We consider the case of electing a single winner. Each
agent totally ranks the candidates. Unless one candidate has a
majority of first place votes, we eliminate the candidate with
the least number of first place votes. Any ballots placing the
eliminated candidate in first place are re-assigned to the sec-
ond place candidate. We then repeat until one candidate has a
majority. STV is used in a wide variety of elections including

for the Irish presidency, the Australian House of Representa-
tives, the Academy awards, and many organizations including
the American Political Science Association, the International
Olympic Committee, and the British Labour Party.

STV is NP-hard to manipulate by a single agent if the num-
ber of candidates is unbounded and votes are unweighted [2],
or by a coalition of agents if there are 3 or more candidates and
votes are weighted [9]. Coleman and Teague give an enumera-
tive method for a coalition of k unweighted agents to compute
a manipulation of the STV rule which runs in O(m!(n+mk))
time where n is the number of agents voting and m is the
number of candidates [7]. For a single manipulator, Conitzer,
Sandholm and Lang give an O(n1.62m) time algorithm (called
CSL from now on) to compute the set of candidates that can
win a STV election [9].

In Figure 1, we give a new algorithm for computing a ma-
nipulation of the STV rule which improves upon CSL in sev-
eral directions First, our algorithm ignores elections in which
the chosen candidate is eliminated. Second, our algorithm ter-
minates search as soon as a manipulation is found in which
the chosen candidate wins. Third, our algorithm does not ex-
plore the left branch of the search tree when the right branch
gives a successful manipulation.

CSL algorithm Improved algorithm
n nodes time/s nodes time/s
2 1.46 0.00 1.24 0.00
4 3.28 0.00 1.59 0.00
8 11.80 0.00 3.70 0.00

16 59.05 0.03 12.62 0.01
32 570.11 0.63 55.20 0.09
64 14,676.17 33.22 963.39 3.00

128 8,429,800.00 6,538.13 159,221.10 176.68

Table 1. Comparison between the CSL algorithm and our
improved algorithm to compute a manipulation of a STV election.

To show the benefits of these improvements, we ran an ex-
periment in which n agents vote uniformly at random over n
possible candidates. The experiment was run in CLISP 2.42
on a 3.2 GHz Pentium 4 with 3GB of memory running Ubuntu
8.04.3. Table 1. gives the mean nodes explored and runtime
needed to compute a manipulation or prove none exists. Me-
dian and other percentiles display similar behaviour. We see
that our new method can be more than an order of magni-
tude faster than CSL. In addition, as problems get larger,
the improvement increases. At n = 32, our method is nearly
10 times faster than CSL. This increases to roughly 40 times
faster at n = 128. These improvements reduce the time to find
a manipulation on the largest problems from several hours to
a couple of minutes.

3 UNIFORM VOTES

We start with one of the simplest possible scenarios: elections
in which each vote is equally likely. We have one agent try-
ing to manipulate an election of m candidates where n other
agents vote. Votes are drawn uniformly at random from all
m! possible votes. This is the Impartial Culture (IC) model.

3.1 VARYING THE AGENTS

In Figures 2 and 3, we plot the probability that a manipulator
can make a random agent win, and the cost to compute if this
is possible when we fix the number of candidates but vary
the number of agents in the election. In this and subsequent
experiments, we tested 1000 problems at each point. Unless
otherwise indicated, the number of candidates and of agents
are varied in powers of 2 from 1 to 128.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

pr
ob

(m
an

ip
ul

ab
le

)

total number of agents voting, n+1

m=4
m=8

m=16
m=32
m=64

m=128

Figure 2. Manipulability of random uniform votes. The number
of candidates is fixed and we vary the number of agents.

The ability of an agent to manipulate the election decreases
as the number of agents increases. Only if there are few votes
and few candidates is there a significant chance that the ma-
nipulator will be able to change the result. Unlike domains
like satisfiability [22, 16], constraint satisfaction [15, 14], num-
ber partitioning [18, 20] and the traveling salesperson prob-
lem [19], the probability curve does not appear to sharpen to
a step function around a fixed point. The probability curve
resembles the smooth phase transitions seen in polynomial
problems like 2-coloring [1] and 1-in-2 satisfiability [29]. Note
that as elsewhere, we assume that ties are broken in favour
of the manipulator. For this reason, the probability that an
election is manipulable is greater than 1

m
.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100

m
ea

n
no

de
s

agents, n

m=128
m=64
m=32
m=16
m=8
m=4

Figure 3. Search to compute if an agent can manipulate an
election with random uniform votes. The number of candidates is

fixed and we vary the number of agents.

Finding a manipulation or proving none is possible is easy
unless we have both a a large number of agents and a large

Manipulate(c,R, (s1, . . . , sm), f)
1 if |R| = 1 ; Is there one candidate left?
2 then return (R = {c}) ; Is it the chosen candidate?
3 if f = 0 ; Is the top of the manipulator’s vote currently free?
4 then
5 d← arg minj∈R(sj) ; Who will currently be eliminated?
6 sd ← sd + w ; Suppose the manipulator votes for them
7 e← arg minj∈R(sj)
8 if d = e ; Does this not change the result?
9 then return

10 (c 6= d) and Manipulate(c,R− {d}, T ransfer((s1, . . . , sm), d, R), 0)
11 else return
12 ((c 6= d) and Manipulate(c,R− {d}, T ransfer((s1, . . . , sm), d, R), 0)) or
13 ((c 6= e) and Manipulate(c,R− {e}, T ransfer((s1, . . . , sm), e, R), d))
14 else ; The top of the manipulator’s vote is fixed
15 d← arg minj∈R(sj) ; Who will be eliminated?
16 if c = d ; Is this the chosen candidate?
17 then return false
18 if d = f ; Is the manipulator free again to change the result?
19 then return Manipulate(c,R− {d}, T ransfer((s1, . . . , sm), d, R), 0)
20 else return Manipulate(c,R− {d}, T ransfer((s1, . . . , sm), d, R), f)

Figure 1. Our improved algorithm to compute if an agent can manipulate a STV election.

We use integers from 1 to m for the candidates, integers from 1 to n for the agents (with n being the manipulator), c for the candidate who the

manipulator wants to win, R for the set of un-eliminated candidates, sj for the weight of agents ranking candidate j first amongst R, w for the

weight of the manipulator, and f for the candidate most highly ranked by the manipulator amongst R (or 0 if there is currently no constraint on

who is most highly ranked). The function Transfer computes the a vector of the new weights of agents ranking candidate j first amongst R after

a given candidate is eliminated. The algorithm is initially called with R set to every candidate, and f to 0.

number of candidates. However, in this situation, the chance
that the manipulator can change the result is very small.

3.2 VARYING THE CANDIDATES

In Figures 4, we plot the search to compute if the manipulator
can make a random agent win when we fix the number of
agents but vary the number of candidates. The probability
curve that the manipulator can make a random agent win
resembles Figure 2.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 20 40 60 80 100 120

m
ea

n
no

de
s

candidates, m

1.62**m
n=128
n=64
n=32
n=16
n=8
n=4

Figure 4. Search to compute if an agent can manipulate an
election with random uniform voting. The number of agents is

fixed and we vary the number of candidates.

Whilst the cost of computing a manipulation increases ex-

ponential with the number of candidates m, the observed scal-
ing is much better than the 1.62m. We can easily compute ma-
nipulations for up to 128 candidates. Note that 1.62m is over
1026 for m = 128. Thus, we appear to be far from the worst
case. We fitted the observed data to the model abm and found
a good fit with b = 1.008 and a coefficient of determination,
R2 = 0.95.

4 URN MODEL

In many real life situations, votes are not completely uniform
and uncorrelated with each other. What happens if we in-
troduce correlation between votes? Here we consider random
votes drawn from the Polya Eggenberger urn model [4]. We
also observed very similar results when votes are drawn at
random which are single peaked or single troughed. In the
urn model, we have an urn containing all m! possible votes.
We draw votes out of the urn at random, and put them back
into the urn with a additional votes of the same type (where
a is a parameter). As a increases, there is increasing correla-
tion between the votes. This generalizes both the Impartial
Culture model (a = 0) and the Impartial Anonymous Culture
(a = 1) model. To give a parameter independent of problem
size, we consider b = a

m!
. For instance, with b = 1, there is a

50% chance that the second vote is the same as the first.
In Figures 5 and 6, we plot the probability that a manipula-

tor can make a random agent win, and the cost to compute if
this is possible as we vary the number of candidates in an elec-
tion where votes are drawn from the Polya Eggenberger urn
model. The search cost to compute a manipulation increases

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

pr
ob

(m
an

ip
ul

ab
le

)

candidates, m

n=64
n=32
n=16
n=8
n=4

Figure 5. Manipulability of correlated votes. The number of
agents is fixed and we vary the number of candidates. The n fixed

votes are drawn from the Polya Eggenberger urn model with
b = 1.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 20 40 60 80 100 120

m
ea

n
no

de
s

candidates, m

1.62**m
n=64
n=32
n=16
n=8
n=4

Figure 6. Search to compute if an agent can manipulate an
election with correlated votes. The number of agents is fixed and
we vary the number of candidates. The n fixed votes are drawn

using the Polya Eggenberger urn model with b = 1. The curves for
different n fit closely on top of each other.

exponential with the number of candidates m. However, we
can easily compute manipulations for up to 128 candidates
and agents. We fitted the observed data to the model abm

and found a good fit with b = 1.001 and a coefficient of de-
termination, R2 = 0.99.

In Figure 7, we plot the cost to compute a manipulation
when we fix the number of candidates but vary the number
of agents. As in previous experiments, finding a manipulation
or proving none exists is easy even if we have many agents
and candidates. We also saw very similar results when we
generated single peaked votes using an urn model.

5 COALITION MANIPULATION

Our algorithm for computing manipulation by a single agent
can also be used to compute if a coalition can manipulate an
election when the members of coalition vote in unison. This
ignores more complex manipulations where the members of
the coalition need to vote in different ways. Insisting that the
members of the coalition vote in unison might be reasonable if
we wish manipulation to have both a low computational and
communication cost. In Figures 8 and 9, we plot the probabil-
ity that a coalition voting in unison can make a random agent

 1

 10

 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100 120

m
ea

n
no

de
s

agents, n

m=64
m=32
m=16
m=8
m=4

Figure 7. Search to compute if an agent can manipulate an
election with correlated votes. The number of candidates is fixed
and we vary the number of agents. The n fixed votes are drawn

using the Polya Eggenberger urn model with b = 1.

win, and the cost to compute if this is possible as we vary the
size of the coalition. Theoretical results in [31] and elsewhere
suggest that the critical size of a coalition that can just ma-
nipulate an election grows as

√
n. We therefore normalize the

coalition size by
√
n.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

pr
ob

(m
an

ip
ul

ab
le

)

normalized coalition size, k/sqrt(n)

n=4
n=8

n=16
n=32
n=64

Figure 8. Manipulability of an election as we vary the size of
the manipulating coalition. The number of candidates is the same

as the number of non-manipulating agents.

The ability of the coalition to manipulate the election in-
creases as the size of the coalition increases. When the coali-
tion is about

√
n in size, the probability that the coalition can

manipulate the election so that a candidate chosen at random
wins is around 1

2
. The cost to compute a manipulation (or

prove that none exists) decreases as we increase the size of
the coalition. It is easier for a larger coalition to manipulate
an election than a smaller one.

These experiments again suggest different behaviour occurs
here than in other combinatorial problems like propositional
satisfiability and graph colouring [6, 26, 27, 28]. For instance,
we do not see a rapid transition that sharpens around a fixed
point as in 3-satisfiability [22]. When we vary the coalition
size, we see a transition in the probability of being able to
manipulate the result around a coalition size k =

√
n. How-

ever, this transition appears smooth and does not seem to
sharpen towards a step function as n increases. In addition,
hard instances do not occur around k =

√
n. Indeed, the hard-

est instances are when the coalition is smaller than this and

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
ea

n
no

de
s

normalized coalition size, k/sqrt(n)

n=64
n=32
n=16
n=8
n=4

Figure 9. Search to compute if a coalition can manipulate an
election as we vary coalition size.

has only a small chance of being able to manipulate the result.

6 SAMPLING REAL ELECTIONS

Elections met in practice may differ from those sampled so
far. There might, for instance, be some votes which are never
cast. On the other hand, with the models studied so far every
possible random/single peaked vote has a non-zero probability
of being seen. We therefore sampled some real voting records
[17, 13].

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 20 40 60 80 100 120

m
ea

n
no

de
s

candidates, m

1.62**m
n=128
n=64
n=32
n=16
n=8
n=4

Figure 10. Search to compute if an agent can manipulate an
election with votes sampled from the NASA experiment. The

number of agents is fixed and we vary the number of candidates.

Our first experiment uses the votes cast by 10 teams of sci-
entists to select one of 32 different trajectories for NASA’s
Mariner spacecraft [11]. Each team ranked the different tra-
jectories based on their scientific value. We sampled these
votes. For elections with 10 or fewer agents voting, we simply
took a random subset of the 10 votes. For elections with more
than 10 agents voting, we simply sampled from the 10 votes
with uniform frequency. For elections with 32 or fewer candi-
dates, we simply took a random subset of the 32 candidates.
Finally for elections with more than 32 candidates, we dupli-
cated each candidate and assigned them the same ranking.
Since STV works on total orders, we then forced each agent
to break any ties randomly.

In Figures 10 to 11, we plot the cost to compute if a manip-
ulator can make a random agent win as we vary the number

 1

 10

 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100 120

m
ea

n
no

de
s

agents, n

m=128
m=64
m=32
m=16
m=8
m=4

Figure 11. Search to compute if an agent can manipulate an
election with votes sampled from the NASA experiment. The

number of candidates is fixed and we vary the number of agents.

of candidates and agents. Votes are sampled from the NASA
experiment as explained earlier. The probability that the ma-
nipulator can manipulate the election resembles the proba-
bility curve for uniform random votes. The search needed to
compute a manipulation again increases exponential with the
number of candidates m. However, the observed scaling is
much better than 1.62m. We can easily compute manipula-
tions for up to 128 candidates and agents.

In our second experiment, we used votes from a faculty
hiring committee at the University of California at Irvine [10].
We sampled from this data set in the same ways as from the
NASA dataset and observed very similar results. It was easy
to find a manipulation or prove that none exists. The observed
scaling was again much better than 1.62m.

7 RELATED WORK

As indicated, there have been several theoretical results re-
cently that suggest elections are easy to manipulate in prac-
tice despite NP-hardness results. For example, Procaccia and
Rosenschein proved that for most scoring rules and a wide
variety of distributions over votes, when the size of the coali-
tion is o(

√
n), the probability that they can change the result

tends to 0, and when it is ω(
√
n), the probability that they

can manipulate the result tends to 1 [23]. They also gave a
simple greedy procedure that will find a manipulation of a
scoring rule in polynomial time with a probability of failure
that is an inverse polynomial in n [24].

As a second example, Xia and Conitzer have shown that
for a large class of voting rules including STV, as the number
of agents grows, either the probability that a coalition can
manipulate the result is very small (as the coalition is too
small), or the probability that they can easily manipulate the
result to make any alternative win is very large [31]. They
left open only a small interval in the size for the coalition
for which the coalition is large enough to manipulate but not
obviously large enough to manipulate the result easily.

Friedgut, Kalai and Nisan proved that if the voting rule is
neutral and far from dictatorial and there are 3 candidates
then there exists an agent for whom a random manipulation
succeeds with probability Ω(1

n
) [12]. Starting from different

assumptions, Xia and Conitzer showed that a random manip-
ulation would succeed with probability Ω(1

n
) for 3 or more

candidates for STV, for 4 or more candidates for any scoring
rule and for 5 or more candidates for Copeland [32].

Walsh empirically studied manipulation of the veto rule
by a coalition of agents whose votes were weighted [30]. He
showed that there was a smooth transition in the probability
that a coalition can elect a desired candidate as the size of the
manipulating coalition increases. He also showed that it was
easy to find manipulations of the veto rule or prove that none
exist for many independent and identically distributed votes
even when the coalition was critical in size. He was able to
identify a situation in which manipulation was computation-
ally hard. This is when votes are highly correlated and the
election is “hung”. However, even a single uncorrelated agent
was enough to make manipulation easy again.

Coleman and Teague proposed algorithms to compute a
manipulation for the STV rule [7]. They also conducted an
empirical study which demonstrates that only relatively small
coalitions are needed to change the elimination order of the
STV rule. They observed that most uniform and random
elections are not trivially manipulable using a simple greedy
heuristic. On the other hand, our results suggest that, for ma-
nipulation by a single agent, a limited amount of backtracking
is needed to find a manipulation or prove that none exists.

8 CONCLUSIONS

We have studied empirically whether computational complex-
ity is a barrier to the manipulation for the STV rule. We have
looked at a number of different distributions of votes includ-
ing uniform random votes, correlated votes drawn from an
urn model, and votes sampled from some real world elections.
We have looked at manipulation by both a single agent, and
a coalition of agents who vote in unison. Almost every one
of the millions of elections in our experiments was easy to
manipulate or to prove could not be manipulated. These re-
sults increase the concerns that computational complexity is
indeed a barrier to manipulation in practice.

REFERENCES

[1] D. Achlioptas, Threshold phenomena in random graph colour-
ing and satisfiability, Ph.D. dissertation, Department of Com-
puter Science, University of Toronto, 1999.

[2] J.J. Bartholdi and J.B. Orlin, ‘Single transferable vote resists
strategic voting’, Social Choice and Welfare, 8(4), 341–354,
(1991).

[3] J.J. Bartholdi, C.A. Tovey, and M.A. Trick, ‘The computa-
tional difficulty of manipulating an election’, Social Choice
and Welfare, 6(3), 227–241, (1989).

[4] S. Berg, ‘Paradox of voting under an urn model: the effect of
homogeneity’, Public Choice, 47, 377–387, (1985).

[5] J.R. Chamberlin, ‘An investigation into the relative manipu-
lability of four voting systems’, Behavioral Science, 30, 195–
203, (1985).

[6] P. Cheeseman, B. Kanefsky, and W.M. Taylor, ‘Where the
really hard problems are’, in Proceedings of the 12th IJCAI,
pp. 331–337. (1991).

[7] T. Coleman and V. Teague, ‘On the complexity of manipu-
lating elections’, in Proceedings of the 13th The Australasian
Theory Symposium (CATS2007), pp. 25–33, (2007).

[8] V. Conitzer and T. Sandholm, ‘Nonexistence of voting rules
that are usually hard to manipulate’, in Proceedings of the
21st National Conference on AI. AAAI, (2006).

[9] V. Conitzer, T. Sandholm, and J. Lang, ‘When are elections
with few candidates hard to manipulate’, Journal of the As-
sociation for Computing Machinery, 54, (2007).

[10] J.L. Dobra, ‘An approach to empirical studies of voting para-
doxes: An update and extension.’, Public Choice, 41, 241–250,
(1983).

[11] J.S. Dyer and R.F. Miles, ‘An actual application of collective
choice theory to the selection of trajectories for the Mariner
Jupiter/Saturn 1977 project’, Operations Research, 24(2),
220–244, (1976).

[12] E. Friedgut, G. Kalai, and N. Nisan, ‘Elections can be manip-
ulated often’, in Proc. 49th FOCS. IEEE Computer Society
Press, (2008).

[13] I.P. Gent, H. Hoos, P. Prosser, and T. Walsh, ‘Morphing:
Combining structure and randomness’, in Proceedings of the
16th National Conference on AI. AAAI, (1999).

[14] I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, and
T. Walsh, ‘Random constraint satisfaction: Flaws and struc-
ture’, Constraints, 6(4), 345–372, (2001).

[15] I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh, ‘Scaling
effects in the CSP phase transition’, in 1st International Con-
ference on Principles and Practices of Constraint Program-
ming (CP-95), pp. 70–87. Springer-Verlag, (1995).

[16] I.P. Gent and T. Walsh, ‘The SAT phase transition’, in Pro-
ceedings of 11th ECAI, ed., A G Cohn, pp. 105–109. John
Wiley & Sons, (1994).

[17] I.P. Gent and T. Walsh, ‘Phase transitions from real com-
putational problems’, in Proceedings of the 8th International
Symposium on Artificial Intelligence, pp. 356–364, (1995).

[18] I.P. Gent and T. Walsh, ‘Phase transitions and annealed the-
ories: Number partitioning as a case study’, in Proceedings of
12th ECAI, (1996).

[19] I.P. Gent and T. Walsh, ‘The TSP phase transition’, Artificial
Intelligence, 88, 349–358, (1996).

[20] I.P. Gent and T. Walsh, ‘Analysis of heuristics for num-
ber partitioning’, Computational Intelligence, 14(3), 430–451,
(1998).

[21] A. Gibbard, ‘Manipulation of voting schemes: A general re-
sult’, Econometrica, 41, 587–601, (1973).

[22] D. Mitchell, B. Selman, and H. Levesque, ‘Hard and Easy
Distributions of SAT Problems’, in Proceedings of the 10th
National Conference on AI, pp. 459–465. AAAI (1992).

[23] A. D. Procaccia and J. S. Rosenschein, ‘Average-case
tractability of manipulation in voting via the fraction of ma-
nipulators’, in Proceedings of 6th Intl. Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-07),
pp. 718–720, (2007).

[24] A. D. Procaccia and J. S. Rosenschein, ‘Junta distribu-
tions and the average-case complexity of manipulating elec-
tions’, Journal of Artificial Intelligence Research, 28, 157–
181, (2007).

[25] M. Satterthwaite, ‘Strategy-proofness and Arrow’s condi-
tions: Existence and correspondence theorems for voting pro-
cedures and social welfare functions’, Journal of Economic
Theory, 10, 187–216, (1975).

[26] T. Walsh, ‘The Constrainedness Knife-edge’, in Proceedings
of the 15th National Conference on AI. AAAI, (1998).

[27] T. Walsh, ‘Search in a small world’, in Proceedings of 16th
IJCAI. (1999).

[28] T. Walsh, ‘Search on high degree graphs’, in Proceedings of
17th IJCAI. (2001).

[29] T. Walsh, ‘From P to NP: COL, XOR, NAE, 1-in-k, and Horn
SAT’, in Proceedings of the 17th National Conference on AI.
AAAI, (2002).

[30] T. Walsh, ‘Where are the really hard manipulation problems?
the phase transition in manipulating the veto rule’, in Pro-
ceedings of 21st IJCAI. (2009).

[31] Lirong Xia and Vincent Conitzer, ‘Generalized scoring rules
and the frequency of coalitional manipulability’, in EC ’08:
Proceedings of the 9th ACM conference on Electronic com-
merce, pp. 109–118, New York, NY, USA, (2008). ACM.

[32] Lirong Xia and Vincent Conitzer, ‘A sufficient condition for
voting rules to be frequently manipulable’, in EC ’08: Pro-
ceedings of the 9th ACM conference on Electronic commerce,
pp. 99–108, New York, NY, USA, (2008). ACM.

