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Abstract
An important feature of many real world facility
location problems are capacity limits on the num-
ber of agents served by each facility. We provide
a comprehensive picture of strategy proof mecha-
nisms for facility location problems with capacity
constraints that are anonymous and Pareto optimal.
First, we prove a strong characterization theorem.
For locating two identical facilities with capac-
ity limits and no spare capacity, the INNERPOINT
mechanism is the unique strategy proof mechanism
that is both anonymous and Pareto optimal. Sec-
ond, when there is spare capacity, we identify a
more general class of strategy proof mechanisms
that interpolates smoothly between INNERPOINT
and ENDPOINT which are anonymous and Pareto
optimal. Third, with two facilities of different ca-
pacities, we prove a strong impossibility theorem
that no mechanism can be both anonymous and
Pareto optimal except when the capacities differ by
just a single agent. Fourth, with three or more facil-
ities we prove a second impossibility theorem that
no mechanism can be both anonymous and Pareto
optimal even when facilities have equal capacity.
Our characterization and impossibility results are
all minimal as multiple mechanisms exist if we
drop one property.

1 Introduction
In facility location, we decide where to locate one or more
facilities to serve a set of agents. This models geographi-
cal problems such as locating schools, mobile phone masts
and sewage plants, and non-geographical problems such as
deciding the budget for a communal purchase, or select-
ing the “best” products in a multi-dimensional parameter
space. As in previous work (e.g. [Fotakis and Tzamos, 2010;
Procaccia and Tennenholtz, 2013; Serafino and Ventre, 2015;
Sui and Boutilier, 2015; Golowich et al., 2018; Mei et al.,
2016; Procaccia et al., 2018; Aziz et al., 2021]), our goal is
to design mechanisms to locate the facilities fairly and effi-
ciently. The locations of the agents is private information. We
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therefore wish to identify strategy proof mechanisms where
agents have no incentive to mis-report their location, which
optimize or, at least, approximate an objective such as the to-
tal or maximum distance of agents from the facilities. For
example, when buying a communal coffee machine, can we
design a mechanism for fairly deciding the cost so that agents
have no incentive to mis-report their preferred spend?

In many real world problems, facilities have capacity lim-
its. A school has only places for a certain number of stu-
dents, a warehouse can only serve a given number of shops,
a hospital has only a limited number of beds, each committee
member can only represent a small number of constituents,
a maximum number of people can use the purchased coffee
machine etc. Previous work on mechanisms for facility loca-
tion problems have largely ignored such capacity constraints.
There are two notable exceptions. Aziz et al. [2019] consider
such capacity constraints but, unlike here, consider a setting
where there may be more agents than the total capacity of fa-
cilities. We consider a setting first considered by Aziz et al.
[2020] in which the total capacity permits every agent to be
served. We extend this work by characterizing those strategy
proof mechanisms for facility location with capacity limits
which are anonymous and Pareto optimal. See Tables 1 and 2
for a summary of our results.

2 Formal background
As in much previous work on mechanism design for facility
location (e.g. [Procaccia and Tennenholtz, 2013]), we con-
sider the one-dimensional setting where agents are located
along a line. This models a number of real world problems
such as locating wastewater plants along a river, warehouses
along a highway, or bus stops along a road. There are also
various non-geographical settings that can be viewed as one-
dimensional facility location problems (e.g. deciding the bud-
get for a communal coffee machine, selecting the temperature
for a classroom, or selecting a committee to represent people
with different political views). In addition, there are settings
where we can use the one-dimensional problem to solve more
complex problems (e.g. decomposing the two-dimensional
rectilinear problem into a pair of one-dimensional problems).
Finally, the one-dimensional problem is the starting point to
consider more complex metrics (e.g., trees, networks or two-
dimensional Euclidean space) and provides insights into these
more complex settings. For example, our proof that no strat-



no capacity limits equal capacity, equal capacity, unit capacity non-unit capacity
no spare capacity spare capacity difference difference

2 facilities ENDPOINT, 2LEFTPEAK, . . . INNERPOINT INNERGAP INNERCHOICE impossible
3 facilities 3LEFTPEAK, 3RIGHTPEAK,. . . impossible impossible impossible impossible
> 3 facilities 4LEFTPEAK, 5RIGHTPEAK,. . . impossible impossible impossible impossible

Table 1: Summary of known and new results proved here about existence of strategy proof mechanisms for facility location with and without
capacity limits that are anonymous and Pareto optimal.

Anon, PO, SP ¬Anon, PO, SP Anon, ¬PO, SP Anon, PO, ¬SP
2 facilities INNERPOINT SD? family, . . . FIXEDPERCENT, MIDPOINT, . . . ENDPOINT?, 2LEFTPEAK?, . . .
3 facilities impossible SD? family, . . . FIXEDPERCENT, MIDPOINT, . . . impossible
> 3 facilities impossible SD? family, . . . FIXEDPERCENT, MIDPOINT, . . . impossible

Table 2: Summary of results about existence of mechanisms for facility location problems with capacity limits satisfying either all or two of
anonymity (Anon), Pareto optimality (PO) and strategy proofness (SP) in the setting of facilities of equal capacity and no spare capacity.

egy proof mechanism exists for the one-dimensional problem
with facilities of different capacity that is both anonymous
and Pareto optimal can be easily extended to show that no
such mechanism exists for such facility location problems in
two-dimensional Euclidean space – we simply need to con-
sider agents restricted to an one-dimensional line.

We have n agents located on the interval [0, 1] and wish
to locate m facilities in this interval to serve all the agents.
Each agent i is at location xi. We suppose agents are ordered
so that x1 ≤ . . . ≤ xn. The jth facility can serve up to cj
agents. We assume that

∑m
j=1 cj ≥ n so that every agent can

be served. One special setting we consider is when there is no
spare capacity (i.e.

∑m
j=1 cj = n). Another special setting

we consider is when facilities are identical (i.e. ci = cj for
all i < j). A solution is both a location yj for each facility
j, and an allocation of agent i to facility ai such that the ca-
pacity limit cj for each facility is not exceeded. Note that,
unlike the more traditional uncapacitated problem, an agent
may not be served by the nearest facility. This is an important
difference that, as we shall see, drastically changes the space
of possible strategy proof mechanisms. Let Nj denote the set
of agents allocated to facility j, i.e., Nj = {i|ai = j}. Then
the capacity constraints ensure |Nj | ≤ cj for all j ∈ [1,m].

3 Capacitated Mechanisms
We consider deterministic mechanisms for locating capaci-
tated facilities. We focus on two families of mechanisms with
good normative properties. The two families have previously
been proposed for uncapacitated facility location. For exam-
ple, PERCENTILE mechanisms without capacity limits are de-
fined in [Sui et al., 2013]. We generalize such mechanisms to
deal with capacity limits. Both families of mechanisms or-
der facilities left to right in increasing capacity, and allocate
agents left to right to the nearest facility with spare capacity,
tie-breaking to the leftmost facility.
PERCENTILE: With parameters p1 to pm with 0 ≤ p1 ≤

. . . ≤ pm ≤ 1, a member of this family of mechanisms
locates facility j at x1+bpj(n−1)c for j ∈ [1,m]. The
ENDPOINT mechanism has m = 2, p1 = 0 and p2 = 1,

and locates facilities at the left and rightmost agents, x1
and xn. The INNERPOINT mechanism has m = 2, p1 =
c1−1
n−1 and p2 = c1

n−1 , and locates one facility at xc1 serv-
ing the leftmost c1 agents, and the other at x1+c1 serving
the remaining agents. The FIXEDPERCENT mechanism
has pi = pj for 1 ≤ i < j ≤ m and locates every
facility at the same agent.

jLEFTkRIGHT: a member of this family of mechanisms lo-
cates j facilities at the leftmost j distinct locations of
the agents, and k facilities at the rightmost k distinct
locations. If agents declare insufficient distinct loca-
tions, multiple facilities are located at the rightmost.
The ENDPOINT mechanism is the jLEFTkRIGHT mech-
anism with j = k = 1, the 2LEFTPEAK mechanism has
j = 2 and k = 0, the 2RIGHTPEAK mechanism has
j = 0 and k = 2, the 3LEFTPEAK mechanism has j = 3
and k = 0, etc.

We also consider the MIDPOINT mechanism which locates
all facilities at 1/2.

We focus on three desirable properties of mechanisms for
facility location problems with capacity limits: anonymity,
Pareto optimality and strategy proofness. We extend the usual
definitions of these properties to take account of the fact that
facilities have capacity limits and agents are allocated to par-
ticular facilities. This impacts on what it means to be anony-
mous, Pareto optimal or strategy proof.

Definition. We say that a mechanism for facility location
problems with capacity limits is:

Anonymous: iff for any location of agents xi, given any per-
mutation of agents σ, when each agent i reports xσ(i)
rather than xi resulting in facilities located at y′j and an
allocation of agents to facility a′i, then y′a′i = yaσ(i) for
every agent i.

Pareto optimal: iff for any location of agents xi, there is no
other location of facilities y′j and allocation of agents to
facility a′i such that |y′a′i −xi| ≤ |yai −xi| for all agents
i, and |y′a′k − xk| < |yak − xk| for one agent k.



Strategy proof: iff for any location of agents xi, no agent
k can report a new location giving a location of facili-
ties y′j and allocation of agents to facilities a′i such that
|y′a′k − xk| < |yak − xk|.

Anonymity is a fundamental fairness property that requires
all agents to be treated alike. Pareto optimality is one of the
most fundamental normative properties in economics. It en-
sures that we cannot improve the solution so one agent is
nearer the facility serving them without other agents being
further away. Finally, strategy proofness is a fundamental
game theoretic property. It guarantees that no agent can mis-
report their location, and reduce their distance to the facility
serving them.

4 Uncapacitated problem
We begin by summarizing existing results about strategy
proof mechanisms for the uncapacitated problem. This will
serve as a baseline to compare against when we consider
capacity constraints on the facilities. Without capacity lim-
its, agents can always be served by their nearest facility.
With any number of facilities, every PERCENTILE mecha-
nism is anonymous and strategy proof (Theorem 1 in [Sui
et al., 2013]). Similarly, with any number of facilities m, any
jLEFTkRIGHT mechanism with j + k = m is strategy proof
and anonymous.

Pareto optimality is more difficult to achieve than
anonymity, especially as the number of facilities increases.
With a single facility, any PERCENTILE mechanism is Pareto
optimal and strategy proof. With two facilities, the only
PERCENTILE mechanism that is Pareto optimal and strategy
proof is the ENDPOINT mechanism. With three or more facil-
ities, no PERCENTILE mechanism is Pareto optimal. On the
other hand, with any number of facilities m (m ≥ 1), every
jLEFTkRIGHT mechanism with j+ k = m is Pareto optimal
in addition to being anonymous and strategy proof.

5 Two Capacitated Facilities
Since we suppose facilities have enough capacity to serve all
agents, the first non-trivial case to consider is two identical
facilities with equal capacity limits and no spare capacity.
Capacity constraints can make axiomatic properties harder
to achieve even in this simplest setting. With two facilities
and no capacity limits, the only PERCENTILE mechanism
that is strategy proof and Pareto optimal is the ENDPOINT
mechanism. However, the ENDPOINT mechanism stops be-
ing strategy proof when we add capacity limits. For example,
if agents are at 0, 1/8, 1/4 and 1, and we have two facilities,
each with capacity for two agents, the agent at 1/4 can profit
by mis-reporting their location as 0. They are then allocated
to the leftmost facility at 0 rather than the rightmost facility at
1, and this is closer to their true location at 3/4. In fact, to keep
strategy proofness when we add capacity limits, we must lo-
cate the two facilities not at the two extreme endpoints, but
at the two innermost points. It follows from Theorem 7 in
[Aziz et al., 2020], the only PERCENTILE mechanism that is
strategy proof and Pareto optimal with two identical facilities
is the INNERPOINT mechanism.

We now prove a strong characterization result: the
INNERPOINT mechanism is in fact the only strategy proof
mechanism that is anonymous and Pareto optimal when we
have two identical facilities and no spare capacity. We con-
trast this strong characterization result with the uncapacitated
problem where there are multiple strategy proof mechanisms
for locating two uncapacitated facilities that are anonymous
and Pareto optimal (e.g. in the uncapacitated setting, strategy
proof mechanisms that are anonymous and Pareto optimal in-
clude 2LEFTPEAK, 2RIGHTPEAK and ENDPOINT).

Theorem 1. With 2k agents and two facilities of capacity k,
a strategy proof mechanism is anonymous and Pareto optimal
iff it is the INNERPOINT mechanism.

Proof: It is easy to see that the INNERPOINT mechanism is
anonymous, Pareto optimal and strategy proof. Therefore it
remains to show that if a strategy proof mechanism is anony-
mous and Pareto optimal then it is the INNERPOINT mecha-
nism.

We actually prove a stronger statement: if a strategy proof
mechanism is anonymous and Pareto optimal for 2k agents
and two facilities of capacity k, or for 2k + 1 agents and
a facility of capacity k and another of capacity k + 1 in a
given fixed order left to right then that mechanism must be
the INNERPOINT mechanism. The proof uses induction on k,
the capacity of the facilities.

To be able to complete the induction step, we extend the
definition of facility location problem to include optionally
one special agent at one of the two extreme locations, 0 or 1.
The location of this special agent is fixed and it is allocated
respectively to the leftmost or rightmost facility. As we will
argue, this fixed agent can be factored out of consideration
given that agents are allocated to particular facilities. We can
simply consider mechanisms for one fewer agent provided we
reduce the capacity limit of the facility to which this special
agent is allocated.

Base case: k = 1. There are three subcases. In the first
subcase, we have just two agents and two facilities of capacity
1. The unique Pareto optimal solution locates a facility at
the location of each agent. A mechanism that does this is
a strategy proof and anonymous. This is also the solution
returned by the INNERPOINT mechanism.

In the second subcase, we have three agents, a facility of
capacity 1 on the left and a facility of capacity 2 on the right.
Suppose the three agents are at x1 ≤ x2 ≤ x3. The Pareto op-
timal solution puts the smaller facility at x1 serving the left-
most agent and the larger facility somewhere in the interval
[x2, x3] serving the other two agents. Now move the agent at
x3 to x2. The unique Pareto optimal solution puts the smaller
facility at x1 serving the leftmost agent and the larger facility
at x2 serving the two agents there. We next move the right-
most agent from x2 back towards its original position at x3.
Let x be the distance of the rightmost agent from x2 so that
x varies from 0 to x3 − x2, and f(x) be the distance of the
rightmost agent from the facility serving them. It is not hard
to show that since the mechanism is strategy proof, f(x) must
be a continuous function of x. Any discontinuity would give
the rightmost agent an opportunity to mis-report their loca-
tion strategically and travel less distance. The location of the



rightmost facility therefore tracks continuously to the right,
staying within the interval [x2, x2 + x] to ensure Pareto opti-
mality.

There are four scenarios for where the mechanism locates
the rightmost facility as we vary x: (a) the larger facility
remains at x2 as with the INNERPOINT mechanism, (b) the
larger facility remains at x2 + x, (c) the larger facility tracks
x2 + x until some x′ with x2 + x′ < x3 after which the
location of the larger facility remains static or (d) the larger
facility at some point tracks behind and is strictly between x2
and x2 + x. Note that the larger facility cannot track to right
of x2 + x as this would not be Pareto optimal. In case (b),
consider x1 = 1/5, x2 = 2/5, x3 = 1 and x = 3/5. Then
the middle agent at x2 can profitably mis-report their location
as 0. The leftmost facility will then be located at 0 serving
the middle agent. The distance the middle agent travels to
be served thereby decreases from 3/5 to 2/5 violating the as-
sumption that the mechanism is strategy proof. In case (c),
suppose x1 = x

2 , x2 = x then the agent at x2 can profitably
mis-report their location as x

2 , contradicting the assumption
that the mechanism is strategy proof. In case (d), the larger
facility tracks strictly behind x2+x. By continuity arguments,
we can identify two values, x = a and x = b with a < b such
that when the rightmost agent is at x2 + b, the rightmost fa-
cility is located at x2 + a, and when the rightmost agent is at
x2+a, the rightmost facility is located at x2+c where c < a.
Then if agents are at x1, x2 and x2+a, the rightmost agent at
x2+a can profitably mis-report their location as x2+ b. This
violates the assumption that the mechanism is strategy proof.
Therefore the only case that does not lead to a contradiction
is case (a). That is, the mechanism acts like the INNERPOINT
mechanism. This completes the proof of the second subcase.

In the third subcase, we have three agents, a facility of ca-
pacity 2 on the left and a facility of capacity 1 on the right.
This is symmetric to the second subcase. This completes the
proof of the third subcase, and of the base case as a whole.

Step case: we suppose that the only strategy proof mech-
anism that is anonymous and Pareto optimal for 2k agents
and two facilities of capacity k, or for 2k + 1 agents and fa-
cilities of capacity k and k + 1 in some fixed order is the
INNERPOINT mechanism. We need to prove three subcases.
We consider the first subcase with 2k + 2 agents and two fa-
cilities of capacity k + 1. Suppose the 2k + 2 agents are at
x1 ≤ x2 ≤ . . . ≤ x2k ≤ x2k+1 ≤ x2k+2. We move the left-
most agent at x1 to 0 and suppose it is fixed and served by the
leftmost facility. Because the agent at 0 is fixed and allocated
to the leftmost facility, this agent does not change the image
sets for the other agents. We therefore have a facility location
problem with the remaining 2k + 1 agents, and a facility of
capacity k on left and k + 1 on the right. By the induction
hypothesis, the only strategy proof mechanism that is anony-
mous and Pareto optimal is the INNERPOINT mechanism that
locates one facility at xk+1 serving agents located in the in-
terval [x2, xk+1], and the other facility at xk+2 serving the
remaining agents. We next move the leftmost agent from 0
back to x1. By similar continuity arguments used in the base
case, the leftmost facility must remain at xk+1. By a symmet-
ric argument moving the rightmost agent at x2k+2 to 1 and
then back to its original position, the rightmost facility must

remain at xk+2. Pareto efficiency prevents other agents from
being served by a different facility when xk+2 > xk+1 as
such a switch changes the distances traveled. If xk+2 = xk+1

we don’t care which facility serves which agent as the two fa-
cilities are co-located and switching is irrelevant. Hence, the
solution is that returned by the INNERPOINT mechanism.

This leaves the second subcase of 2k + 3 agents and a fa-
cility of capacity k + 1 on the left and a facility of capacity
k + 2 on the right. Suppose the agents are at x1 ≤ x2 ≤
. . . ≤ x2k ≤ x2k+1 ≤ x2k+2 ≤ x2k+3. We move the right-
most agent at x2k+3 to 1 and suppose it is fixed and served
by the rightmost facility. We now have a facility location
problem with 2k + 2 agents, and two facilities of capacity
k + 1. By the previous case, the only strategy proof mech-
anism for such a setting that is anonymous and Pareto opti-
mal is the INNERPOINT mechanism that locates one facility
at xk+1 serving agents located in the interval [x1, xk+1], and
the other facility at xk+2 serving the remaining agents. We
next move the rightmost agent from 1 back to x2k+3. By sim-
ilar continuity arguments, the rightmost facility must remain
at xk+2. Similar arguments also prevent the leftmost facil-
ity moving away from xk+1 or for agents to switch facilities.
Hence, with the rightmost agent back at x2k+3, the solution
is that returned by the INNERPOINT mechanism.

This leaves the third subcase of 2k+3 agents and a facility
of capacity k + 2 on the left and a facility of capacity k + 1
on the right. This is symmetric to the second subcase. This
completes the proof of the induction step, and of the proof as
a whole. �

We next prove that this characterization result is minimal
by dropping in turn anonymity, Pareto optimality and strat-
egy proofness. There are multiple strategy proof mechanisms
that are Pareto optimal but not anonymous. For example, the
following family of serial dictator mechanisms modified to
take account of capacity limits are strategy proof and Pareto
optimal, but not anonymous.

SD? mechanism: Given a permutation σ of agents, we lo-
cate the first facility at xσ(1). Let j = min{i | xσ(i) 6=
xσ(1)}∪{k+1} where k is the capacity of each facility.
We locate the second facility at xσ(j). We then allocate
agents to facilities in permutation order. Each is allo-
cated to the nearest facility with remaining capacity. If
an agent is equidistant from both facilities and both fa-
cilities have spare capacity, we skip allocating this agent
till the next and final phase. In this phase, we allocate the
equidistant agents, again in permutation order, and again
respecting the remaining capacities of the facilities, tie-
breaking with the leftmost facility where ties remain.
This serial dictatorship mechanism can be extended to
three or more facilities, respecting capacity constraints
yet ensuring Pareto optimality.

We also consider dropping Pareto optimality and strategy
proofness. There are multiple strategy proof mechanisms for
locating two capacitated facilities that are anonymous but not
Pareto optimal (e.g. any FIXEDPERCENT mechanism, or the
MIDPOINT mechanism). Finally, there are multiple mecha-
nisms that are anonymous and Pareto optimal but not strategy
proof. Due to capacity limits, neither the ENDPOINT mech-



anism nor the 2LEFTPEAK mechanism are strategy proof.
However, while both mechanisms are Pareto optimal, nei-
ther is anonymous when we impose capacity limits. For the
ENDPOINT mechanism, consider facilities of capacity 2 and
one agent at 0, two at 1

4 and one at 1. For the 2LEFTPEAK
mechanism, consider facilities of capacity 2 and one agent at
0, one at 1

4 and two at 1. However, it is possible to modify
both mechanisms to make them anonymous.

ENDPOINT? mechanism: Given two facilities of capacity
k, if k + 1 or more agents are at a single location, then
we locate both facilities at this location. If k agents are
at the same location and this is not an endpoint, then we
locate a facility at this location, and the other facility at
the left endpoint. Otherwise we locate one facility at
each endpoint.

2LEFTPEAK? mechanism: Given two facilities of capacity
k, if k + 1 or more agents are at a single location, then
we locate both facilities at this location. If k agents are
at the same location and this is not one of the two left-
most distinct locations, then we locate a facility at this
location, and the other facility at the left endpoint. Oth-
erwise we locate one facility at each of the two leftmost
distinct locations.

Both the ENDPOINT? and 2LEFTPEAK? mechanisms are
anonymous and Pareto optimal, but not strategy proof. In
conclusion, anonymity, Pareto optimality and strategy proof-
ness are the minimal combination of these axioms character-
izing the INNERPOINT mechanism.

6 Spare Capacity
So far, we have supposed that there is no spare capacity in
the problem. We now relax this assumption. We will identify
a new class of strategy proof mechanisms that smoothly in-
terpolates between the ENDPOINT and INNERPOINT mecha-
nisms which are anonymous and Pareto optimal in the pres-
ence of spare capacity.

INNERGAP family of mechanisms: For a facility location
problem with two facilities of capacity k and j units
of spare capacity where 0 ≤ j < k (i.e. 2k − j
agents in total), the INNERGAPj mechanism is an in-
stance of PERCENTILE with parameters p1 = k−j−1

2k−j−1
and p2 = k

2k−j−1 which locates facilities at xk−j and
xk+1.

We give a few examples. INNERGAP0 is the INNERPOINT
mechanism, locating facilities at xk and xk+1 and allocating
the leftmost k agents to the facility at xk and the rightmost k
agents to the facility at xk+1. INNERGAP1 locates facilities
at xk−1 and xk+1, and allocates the agent at xk to whichever
facility is nearest. Note that capacity limits permit xk to be
allocated to either facility as the leftmost facility serves the
k−1 agents at x1 to xk−1, while the rightmost facility serves
the k−1 agents at xk+1 to x2k−1 leaving one unit of spare ca-
pacity in either facility to serve the agent at xk. INNERGAP2
locates facilities at xk−2 and xk+1, and allocates the agents at
xk−1 and xk to whichever facility is nearest. Again capacity
limits permit xk−1 and xk to be allocated to either facility as

the leftmost facility serves the k − 2 agents at x1 to xk−2,
while the rightmost facility serves the k − 2 agents at xk+1

to x2k−2 leaving two units of spare capacity in either facil-
ity to serve agents at xk−1 and xk. Finally INNERGAPk−1 is
the ENDPOINT mechanism, locating facilities at x1 and xk+1

which are the two endpoints of the k+1 agents, and allocates
every agent to the nearest endpoint.
Theorem 2. With two facilities, each of capacity k and j
units of spare capacity for j ≥ 0, the following strategy proof
mechanisms are anonymous and Pareto optimal:

1. case j = 0: the INNERPOINT mechanism;
2. case 0 ≥ j ≥ k − 1: the INNERGAPj mechanism;
3. case j ≥ k − 1: the ENDPOINT mechanism.
When there is lots of spare capacity, there are in fact

multiple strategy proof mechanisms that are anonymous and
Pareto optimal. For example, in the third case with k − 1
or more units of spare capacity, both the ENDPOINT and the
2LEFTPEAK mechanisms are anonymous, Pareto optimal and
strategy proof. On the other hand, with no spare capacity,
there is an unique strategy proof mechanism that is anony-
mous and Pareto optimal. Spare capacity thus makes it easier
for strategy proof mechanisms to be anonymous and Pareto
optimal.

7 Unequal Capacity
So far, we have supposed that all facilities have the same ca-
pacity. What happens if facilities have unequal capacities?
You might think this would be similar to the previous setting
with spare capacity. Suppose we have a facility location prob-
lem with spare capacity such as five agents and two facilities
with equal capacity for three agents. Then any solution in-
evitably allocates two agents to one facility, and three agents
to the other. It therefore resembles a facility location problem
with unequal capacities.

Despite this similarity between spare and unequal capacity,
anonymity and Pareto optimality are more difficult to achieve
with facilities of unequal capacity than in facility location
problems where we have facilities of equal capacity but there
is spare capacity. In particular, with two facilities of different
capacities, we prove an impossibility result that no mecha-
nism can be both anonymous and Pareto optimal except in
one special case. In this case, where the capacities of the
two facilities differ by just a single agent, we propose a new
strategy proof mechanism that is both anonymous and Pareto
optimal.
INNERCHOICE mechanism: For a facility location prob-

lem with two facilities of capacity k and k + 1 agents,
if xk+1 − xk < xk+2 − xk+1 then this mechanism lo-
cates the facility of capacity k + 1 at xk and the other
at xk+2. Otherwise it locates the facilities at the same
locations but in the opposite order. In either case, agents
are allocated left to right to facilities up to their capacity
limit.

Theorem 3. With two facilities of capacity k and k + d, no
mechanism is both anonymous and Pareto optimal when d >
1. For d = 1, the INNERCHOICE mechanism is anonymous,
Pareto optimal and strategy proof.



Proof: Consider d > 1. Suppose k + 1 agents are at 0, and
k+d−1 at 1. There are two cases. In the first case, one agent
at 0 is served by the facility of capacity k at some location x.
By anonymity, all k + 1 agents at 0 are served by facilities at
x. Therefore both facilities are at x. If x < 1 this is not Pareto
optimal as locating the facility of capacity k+ d at x, serving
k + 1 agents at 0 and d− 1 agents at 1, and the other facility
at 1 dominates. If x = 1 this is also not Pareto optimal as
locating the facility of capacity k at 0 serving k agents at 0,
and the other facility at 1 dominates. This completes the first
case. In the second case, no agent at 0 is served by the facility
of capacity k. Therefore the facility of capacity k serves only
agents at 1. Suppose the facility of capacity k is at y. By
anonymity, all k+ d− 1 agents at 0 are served by facilities at
y. Therefore both facilities are at y. By a similar argument to
the first case, this is not Pareto optimal. �

We can show that this impossibility result is minimal. In-
deed, if we drop one of anonymity or Pareto optimality, we
can even add back strategy proofness. There are multiple
strategy proof mechanisms for locating two facilities of un-
equal capacity that are Pareto optimal but not anonymous
(e.g. the SD? mechanism modified to take account of the
unequal capacities). Similarly, there are multiple strategy
proof mechanisms for locating two facilities of unequal ca-
pacity that are anonymous but not Pareto optimal (e.g. any
FIXEDPERCENT mechanism, or the MIDPOINT mechanism).
This impossibility theorem is in contrast to the uncapacitated
problem where there are multiple strategy proof mechanisms
for locating two facilities without capacity limits that are both
anonymous and Pareto optimal (e.g. the 2LEFTPEAK and
ENDPOINT mechanisms).

8 Three or More Capacitated Facilities
If we increase the number of facilities then anonymity and
Pareto optimality become harder to achieve simultaneously.
Indeed, even with facilities that have equal capacity, no mech-
anism for locating three or more capacitated facilities can be
both anonymous and Pareto optimal.

Theorem 4. With three or more capacitated facilities with
greater than unit capacity, no mechanism is both anonymous
and Pareto optimal.

Proof: Suppose we have m facilities with capacity k where
m > 2 and k > 1. Consider d 3k2 e agents at 0, b 3k2 c agents at
1
2 , and the remaining (m − 3)k agents at 1. Note that when
m = 3, agents are just at 0 and 1

2 . To ensure anonymity and
Pareto optimality, (m−3) facilities are at 1 serving the agents
at 1. Again when m = 3, there are no agents or facilities at
1. We turn our focus to the other 3k agents at 0 and 1

2 , as
well as the 3 facilities which serve them. Capacity constraints
require two facilities to serve the agents at 0. Anonymity re-
quires both these facilities to be at the same location. Capac-
ity constraints also require two facilities to serve the agents at
1
2 . Anonymity again requires both these facilities to be at the
same location. Hence, all three facilities must be at the same
location. But this is not Pareto optimal. Any Pareto optimal
solution has one facility at 0, one facility at 1

2 , and the third
facility somewhere in [0, 12 ]. �

This impossibility result is also minimal. Indeed, if we
drop one of anonymity or Pareto optimality, we can again
add back strategy proofness. For example, there are multiple
strategy proof mechanisms for locating three or more capaci-
tated facilities that are Pareto optimal but not anonymous (e.g.
any SD? mechanism). Similarly, there are multiple strategy
proof mechanisms that are anonymous but not Pareto opti-
mal (e.g. any FIXEDPERCENT mechanism). This impossi-
bility theorem is again in contrast to the uncapacitated prob-
lem where there are multiple strategy proof mechanisms for
locating three facilities without capacity limits that are both
anonymous and Pareto optimal (e.g. the 3LEFTPEAK and
3RIGHTPEAK mechanisms).

9 Conclusions
We have studied the impact of capacity constraints on mecha-
nisms for facility location satisfying three important axioms:
anonymity which is a fundamental fairness property, Pareto
optimality which is a fundamental efficiency property, and
strategy proofness which is a fundamental property about in-
centives to report sincerely. Our four key results provide a
comprehensive understanding of the strategy proof mecha-
nisms for locating capacitated facilities which are anonymous
and Pareto optimal. First, we proved a strong characteri-
zation theorem: the INNERPOINT mechanism is the unique
strategy proof mechanism for locating two identical facilities
with no spare capacity that is both anonymous and Pareto op-
timal. Second, if there is spare capacity, we identified a more
general class of strategy proof mechanisms that interpolates
smoothly between the INNERPOINT and ENDPOINT mecha-
nisms that are anonymous and Pareto optimal. Third, with fa-
cilities of different capacities, we proved an impossibility the-
orem that no mechanism can be both anonymous and Pareto
optimal except when the difference in capacity limits is just a
single agent. Fourth, with three or more facilities, we proved
a second impossibility result that no mechanism can be both
anonymous and Pareto optimal, even when facilities have
equal capacity. In all our characterization and impossibility
results, if we drop one of the axioms (anonymity, Pareto op-
timality or strategy proofness as appropriate), multiple mech-
anisms exist satisfying the remaining axioms. Hence, these
results are minimal.

There are many directions for future work. For example,
randomization is a useful tool to enable mechanisms to en-
sure desirable axiomatic properties like anonymity and strat-
egy proofness. It would therefore be interesting to extend
our analysis from purely deterministic to randomized mecha-
nisms for capacitated facility location. As a second example,
many problems have a richer underlying metric. Can we ex-
tend these results to trees, or networks? As a third example,
there is a dual class of obnoxious facility location problems
where agents wish to be as far as possible from the facility
such as a rubbish dump, nuclear power station, or prison (e.g.
[Ibara and Nagamochi, 2012; Cheng et al., 2013]). There
are also mixed facility location problems where some agents
wish to be close to the facility and others far away such as
a playground or cell phone tower (e.g. [Zou and Li, 2015;
Feigenbaum and Sethuraman, 2015]).
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