
Poster Abstract: Ear-Phone-Assessment of Noise Pollution with
Mobile Phones

Rajib Kumar Rana† Chun Tung Chou† Salil Kanhere† Nirupama Bulusu⊎ Wen Hu‡

†School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
⊎Department of Computer Science, Portland State University, USA

‡CSIRO ICT Centre Australia
{rajibr,ctchou,salilk}@cse.unsw.edu.au, nbulusu@cs.pdx.edu, wen.hu@csiro.au

Abstract
Noise map can provide useful information to control noise

pollution. We propose a people-centric noise collection sys-
tem called the Ear-Phone. Due to the voluntary participa-
tion of people, the number and location of samples cannot
be guaranteed. We propose and study two methods, based
on compressive sensing, to reconstruct the missing samples.
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1 Introduction
The negative impacts of environmental noise on human

health and quality of life are undisputed [2]. Santini et al.[4]
have recently proposed the deployment of wireless sensor
network (WSNs) to monitor noise pollution, but deployment
cost of static WSNs will be costly.

Several research projects (e.g. [3]) suggest an alternate
approach of using microphones of mobile phones as inex-
pensive noise pollution sensors. Mobile phones can also be
recharged and possibly calibrated with the assistance of its
user. However, people-centric sensing cannot strictly guar-
antee the availability of data samples, since it relies on the
voluntary participation of people whose presence is irregu-
lar in space and time. Furthermore, volunteers have priority
in using their mobile phones for conversation. Therefore,
a people-centric noise monitoring application poses a fun-
damental problem of signal reconstruction from incomplete
and random samples. We address these challenges. Our con-
tributions are:

1. We present a sensing system, Ear-Phone, to recover a
noise map from incomplete and random samples in the
people-centric sensing platform.
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2. Within Ear-phone we investigate two sensing strategies,
a) projection method: each volunteer sends one aggre-
gated noise level to the central server and b) raw-data
method: each volunteer sends noise samples without
aggregation. We report sampling requirements, recon-
struction accuracy and communication overhead trade-
off of these two sensing strategies.

2 Ear-Phone System
Our Ear-Phone architecture is shown in Figure 1. The

signal-processing unit is used to compute the loudness level
over one second from acoustic samples collected from the
microphone sampled at 16 kHz. An A-weighting filter is
then applied to the loudness level and the equivalent sound
level LAeq,1s is computed. Computed LAeq 1s is then at-
tested with the location and time collected simultaneously
from the GPS receiver. The Communication unit finally
transmits the information to the central server. Once infor-
mation is sent to the central server, the reconstruction unit
recovers the missing data and generates the noise map.

Figure 1: Ear-Phone architecture

Figure 2: People-Centric sensing

2.1 Signal Reconstruction
We exploit the theory of Compressive Sensing (CS) to re-

construct the noise map from incomplete samples. CS recon-
structs compressible signals with significantly fewer samples
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Figure 3: Noise map reconstruction

than required by the traditional sampling methods. A distinc-
tive feature of compressive sensing is that it uses projections
to collect information. The projection of the vectorx ∈ R

n

on a projection vectorψ ∈ R
n is defined by the inner prod-

uct ψT x. We propose two sensing strategies based on two
different methods of doing projections. Let us illustrate the
sensing strategies with an example.

Let us consider the trajectories of volunteers,A and B
along three segments:ℓ1, ℓ2 andℓ3 of sectionSG of a street
(see Figure 2). Assume that at timet1 and t2, volunteerA
collects noise samples in segmentsℓ1 andℓ2, andB collects
samples in segmentsℓ3 and ℓ1 respectively. Note that the
complete noise level in sectionSG, during timet1 andt2 can
be represented as a vectorx = [d(ℓ1,t1), ...,d(ℓ3,t2)]T, where
d(ℓ,t) is the noise level at locationsℓ = ℓ1, ℓ2, ℓ3 and time
t = t1,t2. In this paper we refer to the vectorx as a noise
profile. Samples collected byA andB can be represented as
vectorsxA andxB respectively.

In the projection method,A multiplies his measurement
vector xA with a projection vectorφA = [φ1

A,0,0,0,φ5
A,0]

(hereφ1
A,φ5

A are drawn from the standard Gaussian distribu-
tion.) and sends the projected value,yA = φT

A xA to central
server. In the raw-data method,A directly sends his measure-
ments to the central server where the projection vectors for
A’s data is regenerated asφA = [1,0,0,0,0,0;0,0,0,0,1,0].
Finally, the reconstruction module accumulates the projected
values and uses Compressive Sensing [1] to recover the miss-
ing data. We compute the root mean square (RMS) error to
evaluate reconstruction accuracy and compute communica-
tion cost from the number of bytes transmitted by each of
the sensing strategies. Note that the projection method saves
communication cost from data aggregation, but due to aggre-
gation some information is lost.

3 Initial Pilot and Future Work
We installed the mobile phone component on 6 HP iPAQ

6965 mobile phones (MobSLM) and conducted 4 outdoor
experiments by placing them in 6 equally spaced locations
along a major road with the microphone pointed towards the
road measuring LAeq,1s . We used the recorded noise levels
as reference noise profiles and simulated both sensing strate-
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gies to reconstruct them. In Figure 3(a) we present 3 snap-
shots (t1–t3) (from one of our experiments) of LAeq,1s over
6 spatial locations (l1–l6) and Figure 3(b) is the correspond-
ing reconstruction. Note that the reconstructed snapshotsare
very close to the reference. Approximately 47% of measure-
ments were used for the reconstruction which produced< 3
dBA RMS error (a difference of 3 dBA is non-perceptible by
human being). Averaging the reconstructed snapshots over
a given time period will produce a noise map which can be
overlaid on an Internet map.

Figure 4(a) demonstrates the sampling requirements and
reconstruction accuracy trade-off of the sensing strategies.
On average, using only 50% of information, the raw-data
method reconstructs the noise profile within 3 dBA recon-
struction error. In addition, it requires 30% less information
compared to the projection method.

Figure 4(b) reports the communication cost and recon-
struction accuracy trade-off of the sensing strategies. Let
Cmethod be the number of bytes transmitted by either raw-data
or projection method andCre f be the number of bytes trans-
mitted, if LAeq,1s samples from the complete noise profile
are transmitted. We achieve 3 dBA reconstruction accuracy
whenCpro ject is much smaller (about 35%) thanCre f , but
Craw being only 15% smaller thanCre f achieves the same ac-
curacy. However, with the increase of missing information,
communication cost of the raw-data becomes smaller than
the projection method.
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