
What makes a good
co-evolutionary learning environment?

Alan D. Blair Jordan B. Pollack

Dept. of Computer Science Dept. of Computer Science
University of Queensland Brandeis University

4072, Australia Waltham, MA 02254
blair@cs.uq.edu.au pollack@cs.brandeis.edu

Abstract

There is growing evidence to suggest that the success of a co-evolutionary
learning system may depend critically on the nature of the environment in which
the learner is placed, and on certain attributes of the task domain, rather than
the details of the particular learning algorithm employed. We discuss how a
learning system can be modeled as a meta-level game between abstract entities
which we call performer, in�ltrator and evaluator. Learning can sometimes
fail due to collusive suboptimal equilibria in this meta-game of learning. But
some domains have special attributes which seem to prevent such collusions
and thereby facilitate co-evolutionary advancement. A better understanding of
these issues may help to improve the design of co-evolutionary learning systems
in the future.

1. Introduction

The success of a machine learning system depends very much on the learning en-
vironment in which it is placed. After it has extracted all the accessible information
from its original environment, it may need to be put into a new, more challenging,
environment in order to progress. `Curricular' or `staged' learning occurs when a
learner is placed into a pre-designed series of environments one after the other, as
it progresses (Langley, 1995). However, designing an appropriate series of environ-
ments may be very di�cult. This di�culty would be avoided if there were some way
for the learner and its environment to co-evolve with each other, so that the one
would always be appropriate for the other.

Strategic games provide a good opportunity to study this kind of co-evolutionary
learning. In theory, several machine learning systems trying to master a competitive
game could all learn to improve their strategies simultaneously by playing each other
and observing the outcomes { as each one improved, it would provide a slightly more
challenging opponent for the others, fuelling a continuing spiral of advancement.

While this idea has been around since the early days of arti�cial intelligence
(Samuel, 1959, Michie, 1961) most applications of it { for example, to chess, go, tic-
tac-toe and other games { have run into serious di�culties. In order to understand
these di�culties, we note that a learning system can, in general, be modeled as a
meta-level game which we call the meta-game of learning or MGL (Pollack & Blair,
1998) and to which we can apply a game theory analysis. In some cases, learning may
be stied due to various kinds of collusion, which show up as suboptimal equilibria
in this MGL, and indeed many of the problems encountered by co-evolutionary
learners can be put down to collusions of this kind. One example is where the
players repeatedly draw each other; another is a narrowing of scope in which they
keep playing the same kinds of games over and over, only exploring some narrow
portion of the strategy space, and missing out on key regions where they would then
be vulnerable to humans or other players.

1



However, there have been a few notable cases in which these problems have
apparently been avoided. One such instance came to light when Gerald Tesauro
(1992) compared two di�erent methods for training neural networks to play the
game of backgammon. The �rst network was trained on a large database of hand-
crafted positions, with corresponding moves chosen by a human expert; the second
network was trained by having it play against itself thousands of times and using
the outcome of each game to make a small adjustment in its strategy according to
the temporal di�erence or TD-learning algorithm (Sutton, 1988). Surprisingly, the
network that was trained by self-play, though it initially played a poor (essentially
random) game, eventually surpassed the network trained on the expert database,
and a later version called TD-Gammon (incorporating some additional hand-crafted
features) achieved world master level play (Tesauro, 1995). While the success of TD-
Gammon was originally attributed to the strength of the TD-learning algorithm, we
have shown in previous work (Pollack & Blair, 1998) that results similar to (Tesauro,
1992) can be achieved using a simple hill-climbing algorithm in place of TD-learning.
This `HC-Gammon' result { along with the fact that TD-learning has not led to
similar impressive breakthroughs in other, comparable, domains { suggests that a
large measure of TD-Gammon's success might be attributed to the nature of the co-
evolutionary learning framework, and to certain features of the backgammon domain
itself which work to prevent collusion in the MGL. A better understanding of these
issues may help to improve the design of co-evolutionary systems in the future.

In the present work, we provide a more detailed explanation of the MGL frame-
work with respect to both evolutionary and co-evolutionary learning (Section 2). We
then briey review the HC-Gammon results (Section 3) and discuss how backgam-
mon and other domains can be analysed within the MGL framework (Section 4).

2. Meta-Game of Learning

2.1 MGL Framework and Collusion. The familiar problem of premature con-
vergence in machine learning or evolutionary algorithms can be looked at from a
game theoretic perspective. The most obvious way for a candidate solution in a
machine learning environment to increase its chance of survival is by improving its
ability to perform the requisite task, i.e. raising its own �tness. But this is not
the only way to survive. Another way is to pass on to other candidate solutions
certain attributes which will restrict their ability to perform the task. This could
be achieved in a genetic algorithm by passing on strategic genes to other members
of the population, or in a hill-climbing or gradient-descent algorithm by guiding the
search into a region of the space where a local optimum is located. Although it may
seem paradoxical, in some cases considerable advantage can be gained by in�ltrating

others in this way, especially if the population is small or the e�ective dimensionality
low. We can anthropomorphise these competing inuences and think of the learning
process as an interaction between a performer, which looks for opportunities to im-
prove performance on the task, and an in�ltrator, which looks for opportunities to
restrict the performance of other candidate solutions. The in�ltrator and performer
interact with each other in a kind of meta-level game which we call the MGL.

In general, we hope that the performer and in�ltrator will be working against
each other and that the performer will have the upper hand. However, certain fea-
tures of the task domain or training environment may introduce Nash equilibria into
the MGL which allow the performer and in�ltrator to collude with each other and
drag the system into a suboptimal solution. Suppose the state space can somehow
be partitioned into two subspaces X and Y { for example, X could denote the set

2



of positions associated with a particular style of game, or those which follow a cer-
tain decisive move or sequence of moves. Then one strategy for the in�ltrator in
the MGL might be to move into the X region whenever possible. We will call this
strategy choose(X). An alternative strategy would be choose(Y), and other strate-
gies may exist which sometimes move into X, sometimes into Y. One strategy for
the performer would be to specialize in X by introducing attributes which enhance
performance in the X region (possibly to the detriment of the Y region). We will
call this strategy specialize(X). An alternative strategy would be specialize(Y), and
other strategies may exist which don't particularly specialize in either X or Y.

performer:

in�ltrator:

specialize(X)

choose(X)

?

6

Figure 1. Positive feedback between choose(X) and specialize(X) creates an

opportunity for collusion in the MGL between the in�ltrator and performer.

Now suppose that the performer follows the strategy specialize(X) while the
in�ltrator follows the strategy choose(X). Then the performer helps the in�ltrator by
creating a selective advantage for choosing X (see Figure 1) and the in�ltrator helps
the performer by spreading its inuence to other candidate solutions and ensuring
that they will also move into the X region whenever possible, thus narrowing the

scope of the search and providing the performer with an ideal arena in which to
showcase its own strengths. This collusion between the in�ltrator and performer
may force the algorithm to converge prematurely on a suboptimal solution (assuming
�tter solutions are possible which move freely between X and Y).

2.2 Co-evolutionary MGL. From this game theoretic perspective, techniques to
combat premature convergence such as �tness sharing, hall of fame, shared sampling,
etc. (Rosin & Belew, 1997) can be seen as attempts to remove opportunities for
collusion between the in�ltrator and performer by changing the structure of the
MGL. One such method is co-evolutionary learning, in which two learning systems
A and B competitively learn by acting as opponents for each other (Hillis, 1992).

In addition to the performer and in�ltrator roles, each system now plays a new
role { namely, that of evaluator for candidate solutions of the other co-evolving
system.1 The evaluator role of the B system can work to prevent collusion in the
A system, as illustrated in Figure 2. The in�ltrator of A, by following the strat-
egy chooseA(X), provides a selective advantage within the B system for the strategy
specializeB(X). But specializeB(X) provides a selective disadvantage for chooseA(X),
thus creating a negative feedback loop which may remove the opportunity for collu-
sion between the in�ltrator and performer of the A system.

But co-evolution is a two-edged sword. Although removing some opportunities
for collusion, regrettably it can also create others. For example, suppose that both
players participate in choosing between X and Y. Then a positive feedback loop can
be established (Figure 3) from specializeA(X) to chooseA(X) to specializeB(X) to
chooseB(X) and back to specializeA(X). Depending on the structure of the domain,

1The evaluator and performer correspond roughly to what were called the teacher and student

in (Pollack & Blair, 1998) and (Sklar, Blair & Pollack, 1998).

3



specializeA(X)

chooseA(X)

specializeB(X)

�
�
�
�
��

?

6

	

Figure 2. With co-evolution, the new role of evaluator creates a negative

feedback loop between chooseA(X) and specialize
B
(X), which may undermine

collusion between the in�ltrator and performer.

this positive feedback loop may be strong enough to override the negative inuence
from specializeB(X) to chooseA(X) and vice-versa, leading to a new kind of collusive
suboptimal equilibrium in this co-evolutionary MGL2 (see also Figure 6).

specializeA(X)

chooseA(X)

specializeB(X)

chooseB(X)

@
@
@
@
@I

�
�
�
�
��

??
	 R

Figure 3. If both players participate in choosing X, a new positive feed-

back loop emerges connecting specialize
A
(X) chooseA(X) specialize

B
(X) and

chooseB(X). This can create a new opportunity for collusion in the MGL in-

volving the performer and evaluator roles of both the A and B learning systems.

3. HC-Gammon

In this section we briey review the results of (Pollack & Blair, 1998) in which
a hill-climbing algorithm was used to develop a neural network backgammon player
(see Figure 4). A standard 2-layer feedforward neural network was set up in the
same fashion as (Tesauro, 1992) with 4 input units to represent the number of each
player's pieces on each of the 24 points, plus 2 inputs each to indicate how many are
on the bar and o� the board. In addition, one more unit was added which reports
whether or not the game has reached the racing stage, making a total of 197 input
units. These were fully connected to 20 hidden units, in turn connected to one
output unit which judges the position. The game is played by generating all legal
moves, converting the resulting board positions into the proper network input, and
choosing the one judged as best by the network. We start with all weights set to
zero. Our initial algorithm was simple hillclimbing:

1. add gaussian noise3 to the weights of the network to create a mutant
2. play the network against the mutant for a number of games
3. if the mutant wins more than half of these games, select it for the next generation

Surprisingly, this worked reasonably well. The networks so evolved improved rapidly
at �rst, but then sank into mediocrity. The problem we perceived is that comparing

2In the case of learning through self-play (as in TD-Gammon), A and B are consolidated and

a new MGL emerges in which the roles of performer, in�ltrator and evaluator interact in a more

complex way. However, in the present work we will not make a distinction between co-evolutionary
learning and self-learning.

3with standard deviation of 0.05

4



Figure 4. Backgammon is a board game which has been popular in the Middle

East and in Europe for more than 2000 years. Two players take turns throwing

dice and moving pieces around a board comprising 24 locations or points. Once

a player has moved all their pieces to the last 6 of these points, they can begin

moving them o� the board. The �rst player to move all their pieces o� the

board is the winner. It is forbidden to move a piece to a point already occupied

by two or more opponent pieces, but it is okay to move to a point occupied

by only one opponent piece, in which case that piece will be placed on a strip

in the center of the board (called the bar) and will have to start again from

the beginning. The two players move their pieces in opposite directions. When

all of one player's pieces have passed all of the other player's pieces, and there

are no more opportunities to put opponent pieces on the bar, we say that the

contact stage of the game has ended and the racing stage has begun.

two close backgammon players is like tossing a biased coin repeatedly: it may take
dozens or even hundreds of games to �nd out for sure which one is better. Replacing
a well-tested champion is dangerous without enough information to prove that the
challenger is really a better player and not just a lucky novice. Rather than burden
the system with so much computation, we instead introduced the following modi�-
cations to the algorithm to avoid this `Buster Douglas E�ect'5: Firstly, the games
are played in pairs, with the order of play reversed and the same random seed used
to generate the dice rolls for both games. This washes out some (though not all) of
the unfairness due to the dice rolls when the two networks are very close. Secondly,
when the challenger wins the contest, rather than just replacing the champion by
the challenger, we instead make only a small adjustment in that direction:

champion 0:95 � champion + 0:05 � challenger

This idea, similar to the `inertia' term in back-propagation (Rumelhart et al., 1986)
was introduced on the assumption that small changes in weights would lead to small
changes in decision-making by the evaluation function. So, by preserving most of
the current champion's decisions, we would be less likely to have a catastrophic
replacement of the champion by a lucky novice challenger. In the initial stages of
evolution, two pairs of parallel games were played and the challenger was required
to win 3 out of 4 of these games.

5Buster Douglas was world heavyweight boxing champion for nine months in 1990.

5



0 5 10 15 20 25 30 35
0

25

50

75

100

Generation (1000s)

%
 w

in
s

0 20 40 60 80 100
0

25

50

75

100

Generation (1000s)

%
 w

in
s

Figure 5(a). Algorithm without anneal-

ing. Percentage of wins (out of 200 games)

of �rst 35,000 players against PUBEVAL.

Figure 5(b). Annealed algorithm: Percen-

tage of wins against benchmark networks

1k (upper), 10k (middle) and 100k (lower).

Figure 5(a) shows the �rst 35,000 generation players rated against a strong
public-domain player called PUBEVAL, trained by Tesauro using human expert pref-
erences. There are three things to note: (1) the percentage of wins against PUBEVAL
increases from 0% to about 33% by 20,000 generations, (2) the frequency of success-
ful challengers increases over time as the network improves, and (3) in some places
(e.g. starting at 20,000) the performance against PUBEVAL begins to falter. The
�rst fact shows that our simple self-playing hill-climber is capable of learning. The
second fact is quite counter-intuitive { we expected that as the player improved, it
would be harder to challenge it. This is true with respect to a uniform sampling of
the 4000 dimensional weight space, but not true for a sampling in the neighbourhood

of a given player: once the player is in a good part of weight space, small changes
in weights can lead to mostly similar strategies, ones which make mostly the same
moves in the same situations. However, because of the few games we were using to
determine relative �tness, this increased rate of change allows the system to drift,
which may account for the subsequent degrading of performance.

To counteract the drift, we decided to change the rules of engagement according
to the following `annealing schedule': after 10,000 generations, the number of games
that the challenger is required to win was increased from 3 out of 4 to 5 out of 6;
after 70,000 generations, it was further increased to 7 out of 8 (Note: the numbers
10,000 and 70,000 were originally chosen on an ad hoc basis from observing the
frequency of successful challenges in this run; in replication experiments, the number
of games was increased every time the challenger success rate exceeded 15% when
averaged over 1,000 generations). After 100,000 games, this `annealed' hill-climbing
algorithm led to a surprisingly strong player, capable of winning 40% of the games
against PUBEVAL.

In co-evolutionary learning, it is always important to test later generation players
against earlier ones in order to see whether progress is monotonic, or punctuated
with cycles of dominance followed by invasion (Axelrod, 1984). To this end, players
were sampled every 100 generations and tested against three `benchmark' networks
at generation 1,000, 10,000 and 100,000. Figure 5(b) shows the percentage of wins
for the sampled players against the three benchmark networks. Note that the three
curves cross the 50% line at 1, 10 and 100, respectively and show a noisy but nearly
monotonic increase in player skill as the evolution proceeds.

6



4. Discussion

These results show that the game of backgammon can be learned quite well
with a co-evolutionary approach { whether it be a sophisticated technique like TD-
Learning or a simple hillclimbing algorithm. We do not claim HC-Gammon to be as
good as TD-Gammon, but it is surprisingly good considering the simplicity of the
algorithm used { which strongly suggests that there is something special about the
domain of backgammon which allows co-evolutionary learning techniques to succeed.

4.1 Common Features. TD-Learning has worked well on a number of other
tasks including elevator control (Crites & Barto, 1996) and job shop scheduling
(Zhang & Dietterich, 1996). In addition, co-evolutionary learning techniques have
been successfully applied in a variety of areas. One example is the Evolving Virtual
Creatures (EVC) domain: in a simulated competitive game devised by Karl Sims
(1995) two virtual creatures in a at playing arena compete for control of a cube
placed initially between them. In each round of competition, all creatures from one
species play against the champion of the other species from the previous round.
Over several generations, competing species were observed to leap-frog each other
in evolutionary arms races, as they each discovered methods for reaching the cube,
and then further evolved strategies to counter the opponent's behaviour. Some
creatures pushed their opponent away from the cube, some moved the cube away
from its initial location and then followed it, while others simply covered up the
cube to block the opponent's access.

We list here some of the features which these domains seem to have in common:

Ergodicity: The backgammon and EVC domains are both ergodic in the sense that
any position can be followed at a later time by any other position.6

Continuity: The EVC domain makes use of a continuous state space with no dis-
crete edges or internal boundaries. The same is true for a number of other simulated
physics domains to which co-evolutionary learning techniques have been successfully
applied (e.g. Miller & Cli�, 1994).

Stochasticity: The moves in backgammon are governed by random dice rolls, which
leads self-play into a much larger part of the search space than would otherwise be
explored, as noted in (Tesauro, 1992).

Broad Spectrum of Opportunity: In both of these domains each player appar-
ently has available to it, at any given time, a number of avenues for improvement. In
backgammon, there are many aspects of the game which can be developed indepen-
dently (e.g. blocking, racing, back-game strategy, etc.) Virtual creatures, like their
biological counterparts, can improve by developing a slightly longer arm, slightly
better sensors, or becoming slightly faster, etc. This is in contrast to some other
domains where learning can only proceed along a particular path (learn A, then B,
then C, etc. in a pre-determined order).

4.2 MGL Revisited. The kind of collusion described in Section 2 relies on the
ability to partition the state space into two regions X and Y. We hypothesise that in
some domains, certain features including those listed above somehow preclude this
kind of collusion, by preventing the state space from being so neatly partitioned. In
the EVC domain, for example, our evaluator and performer might in theory try to
forge an agreement whereby the evaluator always keeps the cube in the left hand

6With the exception, in backgammon, of racing positions that occur in the last few moves of
the game, and contact positions with some pieces o� the board or out of play, which have only a

marginal impact on the playing strategy.

7



side of the arena, or within a certain distance of its starting position, or below a
certain speed, etc., while the performer develops special skills to handle situations
with those particular properties. But in fact the performer is unlikely to comply
with any such agreement because the continuity of the domain allows parameters
such as maximum speed or distance to be adjusted gradually in small steps until
they cover the entire bene�cial range. Competence in the left hand side of the arena
can be gradually expanded to include competence in the center of the arena and
eventually competence in the whole arena, because there is no `natural barrier' to
halt its expansion. Furthermore, ergodicity and stochasticity will make it di�cult
for the evaluator to keep its part of the bargain. If any state can potentially be
followed at a later time by any other state, the task of restricting players to a proper
subset of the state space cannot be achieved with a single decisive move but instead
requires ongoing vigilance on the part of the evaluator.

Figure 6. Collusion in the MGL may be

thought of as a kind of secret pact between

the players to always play a particular style

of game, or to play for a draw rather than a

win or loss, or to take turns giving the other

player an easy win by making an early se-

quence of suboptimal moves.

Draws are impossible in backgammon so collusion by repeated draws is pre-
cluded. Some domains allow for a kind of collusion where each player takes turns
giving the other player an easy win (Angeline, 1994) by making an early sequence
of suboptimal moves. However the stochasticity of backgammon seems to make this
unlikely because a position that appears to provide an easy win may in fact turn out
to be a losing position depending on the outcome of subsequent dice rolls. What
many observers �nd exciting about backgammon, and what helps a novice some-
times overcome an expert, is the number of situations where one dice roll, or an
improbable sequence, can dramatically reverse which player is expected to win.

In order to quantify this `reversibility' e�ect, we collected some statistics from
games played by HC-Gammon (100k) against itself. For each n between 0 and 120
we collected 100 di�erent games in which there was still contact at move n, and, for
n > 6, 100 other games which had reached the racing stage by move n (but were
still in progress). We then estimated the probability of winning from each of these
100 positions by playing out 200 di�erent dice-streams. Figure 7 shows the standard
deviation of this probability (assuming a mean of 0.5) as a function of n, as well
as the probability of a game still being in the contact or racing stage at move n.
Figure 8 shows the distribution in the probability of winning, as a function of move
number, symmetrized and smoothed out by convolution with a gaussian function.

These data indicate that the probability of winning tends to hover near 50% in
the early stages of the game, gradually moving out as play proceeds, but typically
remaining within the range of about 15% to 85% as long as there is still contact, thus
allowing a reasonable chance for a reversal. Our conjecture is that these dynamics
facilitate the learning process by providing, in almost every situation, a nontrivial
chance of winning and a nontrivial chance of losing, therefore potential to learn from

8



0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Move Number

S
ta

n
d

a
rd

 D
e

vi
a

tio
n

0 20 40 60 80 100 120
0

0.5

1

Move Number

P
ro

b
a

b
ili

ty

Figure 7(a). Standard deviation in the

probability of winning for contact posi-

tions (solid) and racing positions (dotted).

Figure 7(b). Probability of a game

still being in the contact stage (solid)

or racing stage (dotted) at move n.

0
20

40
60

80 0

0.5

1

0

1

2

3

4

5

0

20

40

60

80 0
0.5

1

0

1

2

3

4

5

Figure 8. Smoothed distributions of the probability of winning as a function

of move number, for contact positions (left) and racing positions (right).

the consequences of the current move. This is in deep contrast to many other domains
in which early blunders could lead to a hopeless situation from which learning is
virtually impossible because the reward has already become e�ectively unattainable.

Many other reinforcement learning tasks also involve stochasticity of one kind
or another (Zhang & Dietterich, 1996, Crites & Barto, 1996). Additionally, many
attempts have been made to add randomness or force initial moves in deterministic
games (Fogel, 1993, Epstein, 1994, Walker et al., 1994, Schraudolph et al., 1994).
However the mere addition of randomness cannot be expected to make the problem
tractable in all cases. The critical factor is whether it makes enough di�erence in
the structure of the MGL to remove opportunities for collusion.

5. Conclusion and Further Work

While the traditional focus in machine learning has been on the learning algo-
rithms employed, the prevention of stagnation or premature convergence in evolu-
tionary algorithms has also been an active area of research.

We believe much can also be learned by focusing on the nature of the environ-
ments and the tasks being learned. Indeed, certain domains appear to have special

9



attributes which facilitate co-evolutionary advancement by preventing collusive sub-
optimal equilibria in the meta-game of learning. In ongoing work, we are trying to
identify and study other domains with similar attributes, in the hope that a better
understanding of these phenomena may lead to improved design of co-evolutionary
learning systems in general.

Acknowledgments

Thanks to Elizabeth Sklar for helping to improve the presentation of this work,
and to Gerald Tesauro, Tom Dietterich, Wei Zhang, Rich Sutton, Andrew Moore,
Justin Boyan, Mark Pendrith, Xin Yao and David Fogel for helpful comments and
suggestions. This work was partially funded by a University of Queensland Post-
doctoral Fellowship.

References

Angeline, P.J. 1994. An alternate interpretation of the iterated prisoner's dilemma and the
evolution of non-mutual co-operation, Proc. 4th Arti�cial Life Conference, 353{358.

Axelrod, R. 1984. The evolution of co-operation, Basic Books, New York.

Crites, R.H. & A.G. Barto, 1996. Improving elevator performance using reinforcement
learning, Advances in Neural Information Processing Systems 8, 1017{1023.

Epstein, S.L., 1994. Toward an Ideal Trainer, Machine Learning 15(3), 251{277.

Fogel, D.B., 1993. Using Evolutionary Programming to Construct Neural Networks that are
Capable of Playing Tic-Tac-Toe, Proc. 1995 IEEE Int. Conf. on Neural Networks, 875.

Hillis, W.D. 1992. Co-evolving parasites improve simulated evolution as an optimization
procedure, in Langton et al., eds., Arti�cial Life II, Addison Wesley, 313{324.

Langley, P., 1995. Order E�ects in Incremental Learning, in P. Reimann & H. Spada (eds),
Learning in Humans and Machines: Towards an Interdisciplinary Learning Science.

Michie, D. 1961. Trial and Error, in Science Survey, part 2 (Penguin), 129{145.

Miller, G. & R. Cli�, 1994. Protean behavior in dynamic games: arguments for the co-
evolution of pursuit-evasion tactics, Proc. Simulation of Adaptive Behavior 3, 411-420.

Pollack, J.B. & A.D. Blair, 1998. Co-Evolution in the successful learning of backgammon
strategy, Machine Learning (to appear).

Rosin, D. & R.K. Belew, 1997. New methods for competitive coevolution, Evolutionary
Computation 5 (1), 1{29.

Rumelhart, D., G. Hinton & R.Williams, 1986. Learning representations by back-propagating
errors, Nature 323, 533{536.

Samuel, A.L., 1959. Some studies in machine learning using the game of checkers, IBM
Journal of Research and Development 3(3), 210{229.

Schraudolph, N.N., P. Dayan & T.J. Sejnowski, 1994. Temporal di�erence learning of posi-
tion evaluation in the game of go, Adv. NIPS 6, 817{824.

Sims, K. 1995. Evolving 3d morphology and behavior by competition, Proceedings of the
Fourth International Conference on Arti�cial Life, MIT Press, 28{39.

Sklar, E., A.D. Blair & J.B. Pollack, 1998. Co-evolutionary learning: machines and hu-
mans schooling together, Workshop on Current Trends and Applications of Arti�cial

Intelligence in Education, Mexico (to appear).

Sutton, R. 1988. Learning to predict by the method of temporal di�erences, Mach. Learn. 3, 9.

Tesauro, G. 1992. Practical Issues in temporal di�erence learning,Machine Learning 8, 257.

Tesauro, G. 1995. Temporal di�erence learning and TD-Gammon, Comm. ACM 38(3), 58.

Walker, S., R. Lister & T. Downs, 1994. Temporal di�erence, non-determinism, and noise:
a case study on the `othello' board game, Int. Conf. Arti�cial Neural Networks, 1428.

Zhang, W. & T.G. Dietterich, 1996. High-performance job-shop scheduling with a time-delay
TD(lambda) network, Adv. Neural Information Processing Systems 8, 1024{1030.

10


