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Abstract

The goal of this paper is to build a bridge from co-evolutionary machine learning

and game theory to education policy. A learning system can be modeled as a meta-

game between teacher and student, to which we can apply a game theory analysis.

In some cases, learning may be sti
ed by various forms of collusion, which appear

as suboptimal equilibria in the meta-game of learning. Some recent results in co-

evolutionary machine learning suggest that these opportunities for collusion may be

avoided if certain features are incorporated into the learning environment, raising

important issues for the future of education paradigms and policy.

1. Introduction

All education systems will face enormous challenges and opportunities in the years
ahead. The pressure to deregulate and privatise will likely lead to a major restructuring,
as publicly funded schools and universities face strong competition from an increasing
number of private alternatives. The information revolution will make new means of rapid

communication available to both teachers and students. But how can such changes be
managed without precipitating a breakdown in the system or gradual erosion of standards?

When it comes to the reward and promotion of teachers, e�ective learning usually takes
a back seat to other factors such as seniority (at the high school level) or research output
(at the university level). When teaching is taken into account, it is generally measured
in a way that is based not on the e�ectiveness with which the students have actually

been taught, but rather (which is not the same thing) the extent to which the students
themselves are satis�ed with their overall educational experience. The fact that students
and teachers are e�ectively evaluating each other can create opportunities for collusion

between teacher and student. For example, students sometimes put pressure on their
professors to make courses easier, or to narrow the scope of the material. A professor who

gives way to such pressure is rewarded with positive teaching evaluations, and a reduction
in time spent preparing lessons and listening to student grievances, thus allowing them to

publish more papers and earn promotion faster. If funding of departments is dependent
on the number of students they attract, it can create an incentive for them to water-down

their courses, in order to attract more students. These kinds of collusion can, over time,

erode standards substantially.

In (Pollack & Blair, 1998) a possible connection was pointed out between this kind

of collusion in educational settings and certain phenomena which have recently been
observed in studies of co-evolutionary machine learning. The present work is aimed at


eshing out some of the details of this connection. While ideas from education have been
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used extensively in the past for the design of machine learning systems, we put forward the

reciprocal view that the results of machine learning experimentsmay also help us to better

understand certain aspects of education systems. Section 2 introduces the meta-game of

learning analysis in education; Section 3 describes some recent results in co-evolutionary

machine learning; Section 4 discusses possible implications of these results for education

policy.

2. The Meta-Game of Learning in Education

An education system is a complicated entity with many players including teachers,

students, administrators, parents and funding bodies { each with di�erent goals and

di�erent reward systems. The complex interactions between these various participants

could be modeled using computer simulations and game theory analysis. Hopefully, such

Meta-Game of Learning (MGL) models (Pollack & Blair, 1998) will help us to understand

how learning can be enhanced and opportunities for collusion avoided, and predict the

likely consequences of proposed changes in education policy.

As an example, consider a model of a learning institution in which n teachers fTig1�i�n

are responsible for teaching groups of students. Assume that a new group of students
enters in each time period and is taught by a di�erent teacher in each of m time periods
prior to graduation (for simplicity, we take m = n). We further assume that students will
undergo some form of evaluation (assignments, examinations, etc.) testing them on the
material they have been taught.

Decisions must be made about how much material is taught by each teacher, how the

students are to be evaluated, and what grades are assigned to them. Let us assume that
the size of the course taught by Ti can be measured as an integer si representing the
amount of material over which the typical student has demonstrable competence at the
end of the course. We may think of si being determined by the curriculum assigned for
the course, the quality and scope of the teaching, and the standard of competence that

students are required to demonstrate in the evaluation.
This model is meant to cover incremental changes rather than major reorganisations.

If one teacher makes a slight increase or decrease in the material covered by his or her
course, then teachers of follow-on courses can easily accommodate this change by adding
or dropping the appropriate material from their own courses, as long as the change is not

too large. Speci�cally, we assume that si may change by �i in each time period, where
�i 2 f�1; 0;+1g. The three strategies +1, �1 and 0 may be thought of as raising or

lowering the standard of a course, or leaving it unchanged, respectively.

How then can we de�ne an appropriate `payo�' for each of these strategies? First we
have to take account of the e�ort required to teach a course, which we assume to be a

linear function of the material (si + �i) it contains:

e�ort = E0 + �(si + �i)

where E0 and � are constants. This term is meant to re
ect:

(i) time taken to prepare lectures, assignments and other teaching materials,

(ii) time spent answering students' questions and responding to their complaints,
(iii) the stress of dealing with students' requests for higher grades (which can

be alleviated by lowering the standards or truncating the curriculum).
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We divide the bene�ts of teaching into two terms: �rstly, there is the bene�t that a

teacher derives individually from the teaching of his/her own course, in the form of respect

from peers and admiration from students. This we model as:

individual bene�t = A0 + �(si + �i)

Second, there is the bene�t that is shared by all teachers collectively, due to the relative

ease of teaching students who enter classes better prepared, and the prestige accrued to

the institution if students appear well-educated upon graduation.1 We model this as

collective bene�t = B0 + �
nX

j=1

(sj + �j)

Putting these terms together, we arrive at the following payo� function:2

payo�(Ti) = �[E0 + �(si + �i)] + [A0 + �(si + �i)] + [B0 + �
nX

j=1

(sj + �j)]

If we assume that each teacher Ti has sole authority to choose �i in each time period, then

Ti's best strategy is:

�i =
n �1, if �+ � < �

0, if �+ � = �

+1, if �+ � > �

We would argue that society has recently been witnessing a gradual shift towards the
region where �+ � < �. A number of factors have contributed to this shift. Historically,

both students and teachers typically remained in the same geographical region for many
years, thus making teachers accountable to each other, as well as employers, parents, for-
mer students and the wider community. Moreover, classes were generally taught according
to a well-established curriculum, so it was easy for other teachers to notice if students
knew more or less than they were \supposed to know" after attending a particular course
(which appears as an increase of � in the above equation). In contrast, today's courses

are restructured frequently in response to changing technology, community attitudes or
educational fads. Academics move with greater rapidity from one place to another, while
students typically drift away to another community once their education is complete.

These factors have created a situation in which accountability is reduced because
no-one is very sure about who is supposed to know what and at which stage (causing

a decrease in �). The mobility of academics also makes them less concerned for the
infrastructure and prestige of their current institution (causing a decrease in �).

The current trend towards `distance education' will likely accelerate both these e�ects,
as face-to-face interaction diminishes and learning becomes more and more anonymous

with respect to both teacher and institution. Students in the future may even play a

greater role in structuring their own education (see Section 4).

Returning to our game theory analysis, we will assume from now on that n > 1 and

� < � � � < n�. Therefore the optimal strategy for each teacher is �i = �1. This may

1There should really be a time-delay associated with the prestige payo� re
ecting the time taken for
students to graduate, but we do not explicitly build this into our model.

2Note: �, � and � are the important parameters; E0, A0 and B0 play no role in the game theory
analysis.
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be recognised as a classic prisoner's dilemma (Axelrod, 1984) or tragedy of the commons

(Hardin, 1968) in which, by making rational decisions independently, all teachers end up

su�ering a loss of (n�+���) in each time period, when they could instead stand to gain

the corresponding amount if they co-operated in all choosing � = +1.

3. Co-Evolutionary Machine Learning

The goal of Machine Learning is to design software systems which can learn, from

interacting with their environment, information that will help them to perform particular

tasks better. Such systems, if successful, will automatically adapt to new environments

without re-programming, thus saving humans the trouble of designing all the relevant

features by hand.

The success of a machine learning system depends very much on the learning environ-

ment in which it is placed. After it has extracted all the accessible information from its

original environment, it may need to be put in a new environment in order to progress.

\Curricular" or \staged" learning (Langley, 1995) occurs when a learner is placed into a

pre-designed series of environments one after the other, as it progresses. However, design-
ing an appropriate series of environments may be very di�cult. This di�culty would be
avoided if there were some way for the learner and its environment to co-evolve with each
other, so that the one would always be appropriate for the other (Axelrod, 1984).

Strategic games provide a good opportunity to study this kind of co-evolutionary
learning. In theory, several machine learning systems trying to master a competitive
game could all learn to improve their strategies simultaneously by playing each other
and observing the outcomes { as each one improved, it would provide a slightly more

challenging opponent for the others, fuelling a continuing spiral of advancement (in the
MGL framework, each player would act as a teacher for its opponents). While this idea has
been around since the early days of Arti�cial Intelligence, interestingly some applications
of it have been very successful while others have run into serious di�culties. These
di�culties can generally be put down to various kinds of collusion between teacher and

student which give rise to suboptimal equilibria in the MGL. One example (e.g. in chess
or tic-tac-toe) is where the student and teacher draw each other, or take turns `throwing'
alternate games. Another is a narrowing of scope in which the players keep playing the
same kinds of games over and over, only exploring some narrow portion of the strategy
space and missing out on key regions where they would then be vulnerable to humans or

other players.

However, there have been a few notable cases in which these problems have appar-
ently been avoided. One such instance came to light when Tesauro (1992) compared two

di�erent methods for training neural networks to play the game of Backgammon. The
�rst network was trained on a large database of hand-crafted positions, with correspond-

ing moves chosen by a human expert; the second network was trained by having it play
against itself thousands of times and using the outcome of each game to make a small

adjustment in its strategy according to the temporal di�erence or TD-learning algorithm

(Sutton, 1988). Surprisingly, the network trained by self-play, though it initially played

a poor (essentially random) game, eventually surpassed the network trained on the ex-

pert database, and a later version called TD-Gammon (incorporating some additional
hand-crafted features) achieved world master level play (Tesauro, 1995).
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A second example is provided by the Evolving Virtual Creatures (EVC) domain. In a

game devised by Karl Sims (1995) two virtual creatures compete in a world with simulated

physics for control of a cube initially placed between them. In each round of competition,

all creatures from one species played against the champion of the other species from the

previous round. Over several generations, competing species were observed to leap-frog

each other in evolutionary arms races, as they each discovered methods for reaching the

cube and then further evolved strategies to counter the opponent's behaviour. Some

creatures pushed their opponent away from the cube, some moved the cube away from

its initial location and then followed it, while others simply covered up the cube to block

the opponent's access.

While the exact reasons for these successes were unclear at �rst, our hypothesis is that

these two domains have special attributes which help to prevent sub-optimal equilibria

in the MGL (Pollack & Blair, 1998). Although further work is needed to gain a better

understanding of these issues, we can say at this stage that the following features seem

to play an important role:

Well-de�ned evaluation: Backgammon always ends in a win or a loss rather than a draw,

thus preventing collusion by repeated draws. In the EVC domain, victory is clearly

de�ned in terms of proximity to the cube at the end of the simulation, and constrained by
the (simulated) laws of physics.3 In biological ecosystems (where the term co-evolution

originates) success is de�ned in a clear-cut fashion by survival and reproduction.

Broad spectrum of opportunity: in both these domains, the learner has available to it,

at any given time, a number of avenues for improvement. In backgammon, there are
many aspects of the game which can be developed independently (e.g. blocking, racing,
back-game strategy, etc.). In addition, the dice rolls sometimes allow a weak player to
score a victory over a strong one { an experience from which both can learn. Virtual
creatures, like their biological counterparts, can improve by developing a slightly longer

arm, slightly better sensors, or becoming slightly faster, etc. This is in contrast to some
other domains, where learning can only proceed along a set path (learn A, then B, then
C, etc. in a pre-determined order).

4. Discussion

The goal of this paper is to suggest some links between co-evolutionary learning and
education, in the hope of stimulating further discussion between the two �elds. Game

domains providing a broad spectrum of opportunity, such as those described in Section 3,
may perhaps be compared with open-ended or constructionist learning environments, in

which students are able to explore ideas for themselves without having to stick to a �xed

curriculum (Papert, 1993) and which provide students at all levels of ability with an
opportunity to learn. On the other hand, the need for a well de�ned evaluation in co-

evolutionary learning suggests that students, in addition to a rich environment, also need
an incentive to explore, and a way of monitoring their own progress. One of Tesauro's

key �ndings was that a neural network trained by co-evolutionary learning played better
backgammon than a similar network trained on a database of `expert preferences'. It

would be interesting to see whether this result can be related to the notion of `situated

learning' in education.

3Indeed, Sims (1995) reported that creatures were quick to exploit early bugs in his simulation which
allowed for non-conservation of energy and momentum.
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As noted in Section 2, the student of the future might be expected to act with a

great deal of autonomy { auditing pre-recorded lectures or multi-media presentations,

working with interactive learning environments, doing assignments either individually or

collectively, and consulting the (human) teacher from time to time for general guidance

and resolution of particular di�culties. Ideas from co-evolutionary machine learning may

prove very helpful in the design of such learning paradigms. In particular, they should

encompass a broad spectrum of opportunity, so that students will not get bored with the

material or stuck on a particular point at a time when they have no immediate access to

a teacher. One approach would be to develop software agents which `co-evolve' with their

human trainees, continually adapting to the needs and interests of individual students

(Sklar, Blair & Pollack, 1998).

5. Conclusion

In this paper we have attempted to build a bridge from co-evolutionary machine learn-

ing and game theory to education policy. The education system is a complex and highly

non-linear entity, and radical changes currently under discussion or already in progress

would make it even more complex. Computational simulations and theoretical analyses

based on the meta-game of learning framework may provide a better understanding of the
likely consequences of these changes, and play an important role in guiding the design of
educational paradigms and the future direction of education policy.
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