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Abstract

Herman's RindInform. Process. Lett. 35 (1990) 63; http://www.cs.uiowa.edu/ftp/selfstab/H90.ps.gz] is an algorithm for self-
stabilization ofN identical processors connected uni-directionally in a synchronous ring; in its original form it has been shown
to achieve stabilization, with probability one, in expected step¥@og N). We give an elementary proof that the original
algorithm is in fact @N?2); and for the special case of three tokens initially we give an exact (quadratic) solutiabfM,
wherea, b, ¢ are the tokens’ initial separations. Thus the algorithm overall has worst-case expected running@i(ﬂéz))f
Although we use only simple matrix algebra in the proof, the approach was suggested by the general nabstraaifon
nondeterminisnandprobabilistic variantgA. Mclver, C. Morgan, Refinement and Proof for Probabilistic Systems, Technical
Monographs in Computer Science, Springer-Verlag, New York, 2004]. It is hoped they could also be useful for other, similar
problems. We conclude with an open problem concerning the worst-case analysis.

0 2005 Elsevier B.V. All rights reserved.
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1. Introduction whether tokeepits token (probability 12) or to pass
its token (also probability /2) to the next processor
Herman's Ring [1] comprises an odd number downstream. If ekeepingprocessor receives a token
N > 3 of processors connected unidirectionally in a from its passingmmediately-upstream neighbor, then
ring; at any moment each processor can hold either the two tokens are annihilated.
zero or one tokens. In each (synchronous) step of the  Herman showed [1] that, from any initial state in
stabilization algorithm, every token-holding proces- \hich the number of tokens is odd, the system as a
sor decides independently with an unbiased coin-flip \whole will with probability one eventually reachsta-
ble state in which there is only one token; he has also
"* Corresponding author. shown that the expected number of synchronous steps
E-mail addresscarrollm@cse.unsw.edu.au (C. Morgan). until stabilization is @N2log N).
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A number of researchers have described variations Conversely, if we have some that satisfies(1)
and improvements on the original algorithm, in some uniquely then, provided we have establisliieg some
cases reducing the (time) complexity t@/%%) [3]. other meangthat the expected time to stabilization is

Here we show that Hermandgiginal algorithm is everywhere finite, we will know it is given by tlkat
O(N?);! and by giving an exact solution for the ini-
tial case of three tokens we show that in fact in the
worst case it i< (N?). The proof is given in elemen- 3. Expected stepsto stabilization isfinite for
tary terms; the more general techniques that led to it Herman's Ring
are discussed in the conclusion.

We begin by showing that the ring’s stabilization
occurs “quickly” in the sense that the probability of
not yet having stabilized decreases exponentially. We
assume throughout that the ring size is fixedvat

2. Characterization of expected stepsto
stabilization

Let R (for ring) be the finite set of all ring configu-
rations in which the number of tokens is odd andre Lemma 2. There are constants >0 and0<m <1
than one. We write two-dimensional matrices, such such that from any initial configuration of the ring
as (Markov) transition matrices ovag, with a double ~ the probability Py that the ring will noi yet have sta-
underline; column matrices, such as random variables Pilized, afterk steps, is no more thann".
overR, have a single underline; and if a matrix or vec-

tor has entries all the same scatahen we write it f] Proof. Suppose at first that the number of steps
with the appropriate number of underlines. is (N — )b for someb, i.e., that it comprisesh
Let R be the (#R)-by-(#R) transition matrix of “blocks” of N —1 steps each; select some fixed proces-

probabilistic transitions determined by Herman’s al- SOr £ In each block of St(]?vpfque chance of stabiliza-
gorithm. It is substochastic—its rows sum to no tionisnoless tham = (1/2%)"= > 0, since that is a

more than one—because only the “unstable” not-yet- lower bound for the probability that in every one of the
terminated (i.e., more than one token) configurations NV — 1 steps of the block only the nearest-downstream-
are included irR. to-F token is passed, while all others are kept.

The probability ofnot stabilizing on the very next The probability that stabilization does not occur in
step isR- [1] (a column vector indexed by initial state); any©f theb blocks is thus no more than (L), that

and thus in generat* - [1] gives the probabilities that ' Pv—1p.r < (1—e)". Writing | | for thefloor func-

stabilization will not occur withink steps. From el- tion, we therefore have for ariythat

ementary probability theory [5], thexpected time to  p, |

stabilizationis then a column vectar= > "2 , RF.[1] ’

where this summation exists, provided stabilization

occurs with probability one: each element of the vec- cm®,

tor gives the expected time from that initial state. provided we set = 1/(1—¢) andm = (1— ¢)Y/N=D.
Where the summation does exist, matrix algebra

shows that in fact we have= [1] + R- e. We put these

observationsinalemma:

< PN-D)k/(N=-D)],r
< (1— g)k/(V-1)]
<

O

This quick stabilization gives us our finiteness re-

Lemma 1. If from every initial configuration in R sult directly.

the expected stepsto stabilization is finite, then it
satisfies

Re=e—[1]. (1)

Lemma 3. Stabilization occurs within a finite expected
number of steps.

Proof. Because theth entry of column vectog"- [1]
is just Pr,, we have that Lemma 2 bounds

1 ; )
Herman reports this result also [1], and notes that Dolev et al. Z;fio@kﬁ by Z/fio [ka]' which converges. O

have put it in the form of a game [4].
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4. Stabilization takes only O(N?) steps

We now establish the upper bound by showing that
the expected time to stabilization is no more than a
guadratic function ofN. We begin with a technical
lemma.

Lemmad4. For R as above we hav@n;_, , R¥ = [0].

Proof. From the proof of Lemma 3 we have
limk— o0 R*-[1] = [0], and the result then follows be-
cause all entries ak are non-negative. O

The following lemma will be used to bound the sta-
bilization complexity:

Lemma5. For “terminating” R as above, suppose for
some column vectoks u we haveR-e = e — [1] and
R-u < u — [1], where “<” is taken componentwise.
Thene <u.

(n—e),

(—e

Proof. We have immediately that: (u —e) <
whence by induction we obtaiR*- (u — ) <
for all k > 0. Lemma 4 then gives

[01=[0 w—¢) = lim R* w—e)<u—e. O
- = k—o00—

As a corollary we note that if in fad®- u = u — [1]
thene = u, so that (1) has at most one solution for
terminatingR.

Now from Lemmas 3 and 1 we know that the ex-
pected timee to stabilization satisfie®-e¢ = e — [1].
From that and Lemma 5 we have our first result.

Lemma 6 (Herman'’s ring upper bound)he expected
time to stabilization of Herman’s Ring B(N?).

Proof. Choose for an upper bound the column vec-
tor u of height fR whoser-entry is 2, (2N — x, — 1)
for each configuration, wherex, is theextentof r, the
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5. Exact stabilization for threeinitial tokensis
quadratic

Now consider the special case in which exactly
three processors have tokens initially. We give an exact
value for the expected time to stabilization.

Lemma 7. The expected time to stabilization of a ring
with initially three tokens idabc/ N, wherea, b, ¢ are
the initial separations of the token®ote thata + 5 +
c=N.)

Proof. LetR3 be the set of three-token configurations
of the ring. Define column vectars over Rz so that
for r in Rz the r-entry of ez is 4a,b,c,/N, where
ay, by, c, are the particular separationsb, ¢ in that
configurationr. Let R3 be the reduced transition ma-
trix for R3 only; we can make this restriction because
the two-token case is impossible. Direct calculation
(Appendix B) shows thaRz- e3 = e3 — [1] and, from
the corollary to Lemma 5, we see thathas that prop-
erty uniquely. o

From Lemma 3 we know that the expected time to
stabilization is finite. Thus by Lemma 1, theentry of
e3 gives the expected time to stabilization for each
INR3. O

6. Stabilization takes @ (N?) steps

Our main result follows directly from the bounds
proved above.

Theorem 8. Herman’s Ring takes expectedl(N?)
steps to stabilization in the worst case.

Proof. From Lemma 6 Herman’s Ring is(@?). Its
worst-case lower-bound complexity is the worst over
all possible initial configurations, including the three-
token configurations where + b 4+ ¢ = N; from

minimum length of any span of contiguous segments| emma 7 it is thus2 (N2), sinceabc ~ N3/27 when

that includes all token-holding processorssinNote
that sincex, < N — 1 for all configurations-, each
entry of u is O(N?) as a function ofN. Elementary
(but detailed) calculation shows th&t u < u — [1];
see Appendix A. - o

Hence we have < u, from Lemma 5, giving that
each entry ok is O(N?). O

arb~c~N/3. O

7. Conclusion

The idea of the “extent” arises from using proba-
bilistic variants to show termination. The general tech-
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“ideal” probabilites— (...0,0,1/4 /2, 1/4,0,0,...)
t t t
outcomes for,, — Xpp=xr —Llxy=x xo=x,+1

Fig. 1. Ideal outcome if others tokens’ effects are ignored.

nigue was described by Hart et al. [6], and was later
embedded in the quantitative program logic of Morgan

etal. [2,7,8]; it seems simpler than most other methods

for showing termination with probability one.

The extent and associated “ideal transitions”
(Fig. 1) are similar to the “inter-token distance” mea-
sure used by Herman and others [1,9]. Like Duflot
et al. [9] we use abstraction, but we abstract the whole

random walk with absorbing barrier at 0 and reflecting
atv —1.

Pick some configuration with extentx,; focus on
a particular (minimal) span in of that lengthx,; and
observe that single step fromto some other’ will
have three possible outcomes with respect to the new
extentx,.

ring—Herman, and subsequently Duflot et al., abstract (1) With probability /4 = 1/2 x 1/2 the leading to-

from the two-token case only; the subsequent decom-

position of the original system into a succession of
halves then introduces the unnecessary factor avlog

For inspiration we relied on a model of proba-
bilistic programming more extensive than the Markov
setting [2,7]; its general application to analysis of ex-
pected complexity is described by Celiku and Mclver
[10]. Other treatments of expected complexity include
Dolev et al.'s scheduler-luck games [4].

We are not the first to note the(®2) upper bound
for Herman’s Ring: Rosaz’s asynchronous leader-
election algorithm specializes to a synchronous ver-
sion which is close to Herman’s, and which also is
shown to have that v2) complexity [3] (although
not using an elementary proof). However we be-
lieve the lower bound is new: we borrowed it from
a gambling-game puzzle [11, p. 103]. Intriguingly the
numbers our lower bound yields for theaximurmini-
tial separation agree to six places with the PRISM [12]
probabilistic model-checker by Kwiatkowska and her
colleagues foall initial configurations.

Is the worst-case initial configuration for Herman’s
Ring therefore just three maximally-separated tokens,
for all odd ring sizesv?

Appendix A. Calculationsfor Lemma 6

We show thatR-u < u — [1]; the calculations are
elementary, if intricate.

In summary we argue as followsThe extentx, of
a configuration- is the minimal number of contiguous

ken of the span is kept but the trailing token is
passed; in this case the extent after the step
satisfiest, > x,.

(2) With probability 1/2 =1/4+ 1/4 both tokens are
passed or both kept; in this case we have< x,.

(3) With probability 1/4 the trailing token is kept but
the leading token is passed; in this case we have
X < xp + 1.

The inequalities are because of “complicating ef-
fects” due to the precise arrangement of tokens in
configuration- over which the extent, has been mea-
sured. For example, since there can be several shortest
spans, the value af can decrease even though case (2)
or (3) was the outcome for the span we chose to ob-
serve: that will happen if somether minimum span
shortens, even though this one did not. Similarly, we
may find that the leader catches up to the trailer in
case (3) whenx, = N — 1, or in case (1) the leader-
minus-one catches up to the leader. In both of those
outcomes the resulting annihilation of the colliding to-
kens might decreaseby more than one.

The distribution ofx, after the step fromr to »’
can be written as row-vector of widtfiv — 1); and
the above shows that the row can be thought of as
taking the “ideal” outcome as in Fig. 1 and then in-
troducing the inequalities by post-multiplying with
a lower-triangular matrixZ, with (< 1)-summing
rows, that shifts probabilistic weights some distance
(possibly zero) to the left towards lower values of
x,». Fig. 2 illustrates the case of a five-place three-
token ring (N — 1 = 4) of extent 3 in configuration
[e-ce-], where the black tokens indicate the span

segments containing all tokens; it behaves roughly as achosen.



A. Mclver, C. Morgan / Information Processing Letters 94 (2005) 79-84 83

ideal outcome

00O
1
o111 |%z2 79
424 0030
1 1
le 02?0

actualoutcome

=(0, 7. 3.0)< some row

x=4

Fig. 2. Accounting for the effects of other tokens.

Consider, for example, the second columrLofts
second entry A2 “throws away”(1 — 1/2) of position
x = 2's value to annihilation; but its fourth entry/2
“steals” 1/2 of positionx = 4’s value ¥4, i.e., 18,
and gives it to positionr = 2; the same applies to po-
sition x = 3, which loses 18 to annihilation but again
gains %8 from positionx = 4. Positionx = 4 how-
ever, having lost half its value to each of= 2 and
x =3, becomes zero.

We see below that the idealized system will have

the exact solutioru for expected time to termina-
tion [13, Ch. XIV, Sec. 3]; and we show that left-

shifting as illustrated in Fig. 2 can only decrease that

1/4x 2(x — 1)(2N — (x — 1) — 1)
4+1/2x2x(2N —x —1)
+1/4x2x +D(2N — (x + 1) — 1)
=xN —x%/2— N +x/2
+2xN —x?—x
+xN —x2/24+N—-3x/2-1
which is just 2 (2N —x — 1) — 1, elemenk of v — [1]

as required. In the other two cases we relyxos 1
andx = N — 1, respectively; the result is the same.

We now make the connection between the ideal

expectation (i.e., speed up its termination). That will and the actuar systems. Let thé#R)-by-(N — 1) ma-

give us the result.

This is the detailed argument.Consider an idealized
systemX = {1.. N — 1} of extents, whoséN — 1)-by-
(N — 1) sub-stochastic transition matriX is deter-

mined by the following rules for a single step in which

x, x” are the row, column indices, respectively:

when x = 1—setx’ = x with probability /2 and
x’ = x + 1 with probability /4 (the probabil-
ity 1/4 transition to zero is implicit);

when 1< x < N — 1—setx’ = x — 1 with probabil-
ity 1/4, x’ = x with probability /2 andx’ = x +1
with probability 1/4;

when x = N —1—setx’ = x — 1 with probability /4
andx’ = x with probability 3/4.

Now let v be the column vector of heighit — 1 ab-
stracted fromu, so that itsc-entry is 2(2N — x — 1).
Elementary algebra then shows thétv = v — [1].
We set out the k x < N — 1 case as an example: el-
ementr of X-v equals

2 We adapt the expected duratiofu — z) of the 1/2, 1/2 random
walk: replace the walker’s position by the extent:; replace the
upper barrielz by 2N — 1 because our upper barrier is reflecting;
and multiply by 2 because our probabilities ayd 11/4.

trix A (for abstraction) contain value one in row
column x just whenx is the extent ofr, and zero
otherwise. As a result we have = A-v immedi-
ately. -

Now the (#R)-by-(N — 1) matrix R- A gives in
its row r, at positionx, the probability that one step
from r in theactualsystemR will result in a new con-
figuration of extentc. Matrix A- X has the same size,
but its rowr gives at each the probability that first
converting initialr to its extent and then taking one
step, in thadealizedsystemX, will give final extentx.
Thus, as Fig. 2 showed, we must have a “shifting” re-
lationship between corresponding rows: we can write
for some lower-triangular row< 1)-summingL, the
equality (A- X)(y- L, = (R- A)(), Where(r) selects
row r andL, may depend on.

Now inspection of column vectop shows it is
monotonic inx. (The entries 2(2N — x — 1) of v are
non-decreasing asvaries from 1 tov — 1.) Because
of L,’s special properties, and that monotonicity, we

haveL, v < v, and so

R-Apyv=A X Lrv< (A X)),

for all r. Thus taking all rows at once gives in fact
R-A-v <A X v, and we can now conclude our argu-
ment with simple matrix algebra. We have
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Token movements Final values
a/ b/ C/
No token passed a b c
a—1 b c+1
One token passed [ a+1 b-1 c
a b+1 c—1
a b—1 c+1
Two token passed a+1 b c—1
a—1 b+1 c
All token passed a b c

Fig. 3. Effects of one step on token separations, c. The separa-
tionsa, b, c are named from upstream to downstream; each outcome
occurs with probability 18.

which is the inequality we sought.

Appendix B. Calculationsfor Lemma 7

We must show thaks- ez = e3 — [1].

In a three-token system there are eight equiprobable

outcomes for a single step, ranging from “all tokens
kept” to “all tokens passed”. Their effects anb, ¢
are tabulated in Fig. 3. Direct calculation of thth
entry in R3- e3 gives

abc+ (a—1Db(c+1)
+@+1D0b—-Dec+ab+D(c-1
+a®—-D(c+D+@+Db(c—-1
+(@—1)(b+ Dc +abc,
wherea, b, ¢ are the separations in configuration
Via a + b + ¢ = N that expression simplifies to
4abc/N — 1, which is therth entry ofez — [1], as
required.

1/8x 4/N x
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