
Developing and Reasoning

about Probabilistic Programs

in pGCL

Annabelle McIver1 and Carroll Morgan2

1 Department of Computer Science
Macquarie University

NSW, Australia
2 Department of Computer Science and Engineering

University of New South Wales
NSW, Australia

As explained in Chapter 1, Dijkstra’s guarded-command language, which we
call GCL, was introduced as an intellectual framework for rigorous reasoning
about imperative sequential programs; one of its novelties was that it contained
explicit “demonic” nondeterminism, representing abstraction from (or ignorance
of) which of two program fragments will be executed. By introducing probabilistic
nondeterminism into GCL, we provide a means with which also probabilistic
programs can be rigorously developed and reasoned about.

The programming logic of “weakest preconditions” for GCL becomes a logic
of “greatest pre-expectations” for what we call pGCL. An expectation is a gen-
eralized predicate suitable for expressing quantitative properties such as “the
probability of achieving a postcondition”.

pGCL is suitable for describing random algorithms, at least over discrete dis-
tributions. In our presentation of it and its logic we give a number of small ex-
amples, and two case studies. The first illustrates probabilistic “almost-certain”
termination; the second case study illustrates approximated probabilities, ab-
straction and refinement.

After a brief historical account of work on probabilistic semantics in Sec-
tion 1, Section 2 gives a brief and shallow overview of pGCL, somewhat infor-
mal and concentrating on simple examples. Section 3 sets out the definitions
and properties of pGCL systematically, and Section 4 treats an example of rea-
soning about probabilistic loops, showing how to use probabilistic invariants.
Section 5 illustrates termination arguments via probabilistic variants with a
thorough treatment of Rabin’s choice-coordination algorithm [219]; Section 6
illustrates abstraction and refinement, as well as “approximated probabilities”,
by giving a two-level treatment of an almost-uniform selection algorithm. An
impression of pGCL can be gained by reading Sections 2 and 4, with finally a
glance over Sections 3.1 and 3.2; more thoroughly one would read Sections 2,
3.1 and 3.2, then 2 (again) and finally 4. The more theoretical Section 3.3 can
be skipped on first reading. Appendix A describes basic concepts of probability
theory needed in this chapter.

124 Annabelle McIver and Carroll Morgan

1 Introduction

Probabilistic programs and systems are increasingly relevant: often random al-
gorithms are computationally feasible where their deterministic counterparts are
not; some concurrent applications are impossible without the symmetry breaking
that randomisation provides; and in hybrid systems the low-level hardware might
be represented by probabilistic program text that models quantitative unrelia-
bility. Because of that relevance, there has been a renewed interest in techniques
for establishing the correctness of such programs—for the more widespread they
become, the more we will depend on understanding their behaviour, and their
limits, exactly.

In this tutorial chapter we address that last concern, of understanding: we
survey a method for rigorous reasoning about probabilistic programs and sys-
tems. We give an impression of how they work, an operational view, and we
suggest how we should reason about them, a logical view—and we show how the
two views are designed to fit together.

We use Dijkstra’s Guarded Command Language GCL [81] as a simple and
“pared-down” syntax for presenting our ideas: it is a weakest-precondition based
method of describing computations and their meaning; here we extend it to
probabilistic programs, and we give examples of its use.

Most sequential programming languages contain a construct for “determin-
istic” choice, where the program makes a selection in a predictable way: for
example, in

if test thenThis elseThatfi (1)

the two-way choice between This and That is determined by test and the current
state.

In contrast, Dijkstra’s language of guarded commands brings to prominence
nondeterministic or “demonic” choice, in which the program’s behaviour is not
predictable, is not determined by the current state. At first [81], demonic choice
was presented as a consequence of “overlapping guards”, as almost an accident,
but as its importance became more widely recognized it developed a life of its
own. Nowadays it merits an explicit operator: the construct

This ! That

chooses between the alternatives unpredictably and, as a specification, indicates
abstraction from the issue of which will be executed. The customer will be happy
with either This or That; and the implementor may choose between them accord-
ing to his own concerns. An alternative but equivalent view is that the choice
between the alternatives is made at runtime by an adversarial “demon” whose
aim is to make the program as unlikely as possible to achieve its goal.

Early research on probabilistic semantics took a different route: demonic
choice was not regarded as fundamental. Rather it was abandoned altogether,
being replaced by probabilistic choice [140, 90, 89, 133, 132], written for example

This p⊕ That

to indicate a program that behaved like This with probability p, but otherwise

Developing and Reasoning about Probabilistic Programs in pGCL 125

like That. Without demonic choice, however, probabilistic semantics was divorced
from the contemporaneous work on specification and refinement: there was no
longer any means of abstraction.

More recently it has been discovered [131, 197, 247] how to bring the two
topics back together, taking the more natural approach of adding probabilistic
choice, while retaining demonic choice. In fact deterministic choice is a special
case of probabilistic choice, which in turn is a refinement of demonic choice.

We give the resulting probabilistic extension of GCL the name “pGCL”.

2 An impression of pGCL

Let square brackets [·] be used to embed Boolean-valued predicates within arith-
metic formulae which, for reasons explained below, we call expectations ; we allow
them to range over the unit interval [0 , 1]. Stipulating that [false] is 0 and [true]
is 1 makes [P] in a trivial sense the probability that a given predicate P holds: if
false, P holds with probability 0; if true, it holds with probability 1.

For (our first) example, consider the simple program

x : = −y 1
3
⊕ x : = +y (2)

over variables x , y: Z, using a construct 1
3
⊕ which, as explained above, we inter-

pret as “choose the left branch x : = −y with probability 1/3 , and choose the
right branch with probability 1 − 1/3”.

Recall [81] that for any predicate P over final states, and a standard com-
mand S , the “weakest precondition” predicate wp.S .P acts over initial states: it
holds just in those initial states from which S is guaranteed to reach P . (Through-
out this chapter, we use standard to mean “non-probabilistic”.) We also write
f .x instead of f (x) for function f applied to argument x , with left association.
Now suppose S is probabilistic, as Program (2) is; what can we say about the
probability that wp.S .P holds in some initial state?

It turns out that the answer is just wp.S .[P], once we generalize wp.S to
expectations instead of predicates. For that, we begin with the two definitions

wp.(x : = E).R =̂ “R with x replaced everywhere by E” 3 (3)

wp.(S p⊕ T).R =̂ p ∗wp.S .R
+ (1−p) ∗wp.T.R

(4)

in which R is an expectation, and for our example program we ask

what is the probability that the predicate “the final state will satisfy
x ≥ 0 ” holds in some given initial state of the Program (2)?

3 In the usual way, we take account of free and bound variables, and if necessary
rename to avoid variable capture.

126 Annabelle McIver and Carroll Morgan

To find out, we calculate wp.S .[P] in this case; that is

wp.(x : = −y 1
3
⊕ x : = +y). [x ≥ 0]

≡ (1/3) ∗ wp.(x : = −y). [x ≥ 0]
+ (2/3) ∗ wp.(x : = +y). [x ≥ 0]

using (3)

≡ (1/3) [−y ≥ 0] + (2/3) [+y ≥ 0] using (3)

≡ [y < 0] /3 + [y = 0] + 2 [y > 0] /3 using arithmetic

Thus our answer is the last arithmetic formula above, which we could call a “pre-
expectation”—and the probability we seek is found by reading off the formula’s
value for various initial values of y, getting

when y < 0 , 1/3 + 0 + 2 (0)/3 = 1/3
when y = 0 , 0/3 + 1 + 2 (0)/3 = 1
when y > 0 , 0/3 + 0 + 2 (1)/3 = 2/3

Those results indeed correspond with our operational intuition about the effect
of 1

3
⊕. Later we explain the use of “≡” rather than “=”.
The above remarkable generalisation of sequential program correctness is

due to Kozen [140], but in its original form was restricted to programs that did
not contain demonic choice !. When He et al. [131] and Morgan et al. [197]
successfully added demonic choice, it became possible to begin the long-overdue
integration of probabilistic programming and formal program development: in
the latter, demonic choice—as abstraction—plays a crucial role in specifications.
The extension was based on a general approach to probabilistic power-domains
due to Jones and Plotkin [132, 133], which recently has been further developed
by Tix et al. [247].

To illustrate the use of abstraction, in our second example we abstract from
probabilities: a demonic version of Program (2) is much more realistic in that
we set its probabilistic parameters only within some tolerance. We say infor-
mally (but still with precision) that

– x : = −y is to be executed with probability at least 1/3 ,
– x : = +y is to be executed with probability at least 1/4 and
– it is certain that one or the other will be executed.

(5)

Equivalently we could say that alternative x : = −y is executed with probability
between 1/3 and 3/4 , and that otherwise x : = +y is executed (therefore with
probability between 1/4 and 2/3).

With demonic choice we can write Specification (5) as

x : = −y 1
3
⊕ x : = +y

! x : = −y 3
4
⊕ x : = +y

(6)

because we do not know or care whether the left or right alternative of ! is
taken—and it may even vary from run to run of the program, resulting in an

Developing and Reasoning about Probabilistic Programs in pGCL 127

“effective” p⊕ with p somewhere between the two extremes. A convenient nota-
tion for (6) would be based on the abbreviation

S p⊕q T =̂ (S p⊕ T) ! (T q⊕ S) for p + q ≤ 1

we would then write x : = −y 1
3
⊕ 1

4
x : = +y.

To treat Program (6), we define the command

wp.(S ! T).R =̂ wp.S .R min wp.T.R (7)

using min because we regard demonic behaviour as attempting to make the
achieving of R as im-probable as it can. Repeating our earlier calculation (but
more briefly) gives this time

wp.(Program (6)). [x ≥ 0]

≡ [y ≤ 0] /3 + 2 [y ≥ 0] /3
min 3 [y ≤ 0] /4 + [y ≥ 0] /4

using (3), (3), (7)

≡ [y < 0] /3 + [y = 0] + [y > 0] /4 using arithmetic

Our interpretation is now

– When y is initially negative, the demon chooses the left branch of ! because
that branch is more likely (2/3 vs. 1/4) to execute x : = +y—the best we
can say then is that x ≥ 0 will hold with probability at least 1/3 .

– When y is initially zero, the demon cannot avoid x ≥ 0—either way the
probability of x ≥ 0 finally is 1.

– When y is initially positive, the demon chooses the right branch because
that branch is more likely to execute x : = −y—the best we can say then is
that x ≥ 0 finally with probability at least 1/4 .

The same interpretation holds if we regard ! as abstraction. Suppose Pro-
gram (6) represents some mass-produced physical device and, by examining the
production method, we have determined the tolerance (5) on the devices pro-
duced. If we were to buy one arbitrarily, all we could conclude about its proba-
bility of establishing x ≥ 0 is just as calculated above.

Refinement is the converse of abstraction: for two commands S , T we define

S (T =̂ wp.S .R ! wp.T.R for all R (8)

where we write ! for “everywhere no more than” (which ensures [false] ! [true]
as the notation suggests). From (8) we see that in the special case when R is an
embedded predicate [P], the meaning of ! ensures that a refinement T of S is
at least as likely to establish P as S is. That accords with the usual definition
of refinement for standard programs—for then we know wp.S .[P] is either 0 or
1, and whenever S is certain to establish P (whenever wp.S .[P] ≡ 1) we know
that T also is certain to do so (because then 1 ! wp.T.[P]).

For our third example we prove a refinement: consider the program

x : = −y 1
2
⊕ x : = +y (9)

which clearly satisfies Specification (5); thus it should refine Program (6). With

128 Annabelle McIver and Carroll Morgan

Definition (8), we find for any R that

wp.(Program (9)).R

≡ wp.(x : = −y).R/2 + wp.(x : = +y).R/2

≡ R−/2 + R+/2 introduce abbreviations

≡ (3/5)(R−/3 + 2R+/3)
+ (2/5)(3R−/4 + R+/4)

arithmetic

" R−/3 + 2R+/3
min 3R−/4 + R+/4

any linear combination exceeds min

≡ wp.(Program (6)).R

The refinement relation (8) is indeed established for the two programs.
The introduction of 3/5 and 2/5 in the third step can be understood by

noting that demonic choice ! can be implemented by any probabilistic choice
whatever: in this case we used 3

5
⊕. Thus a proof of refinement at the program

level might read

Program (9)

= x : = −y 1
2
⊕ x : = +y

= (x : = −y 1
3
⊕ x : = +y)

3
5
⊕ (x : = −y 3

4
⊕ x : = +y)

arithmetic

) x : = −y 1
3
⊕ x : = +y

! x : = −y 3
4
⊕ x : = +y

(!) ((p⊕) for any p

≡ Program (6)

3 Presentation of probabilistic GCL

In this section we give a concise presentation of probabilistic GCL—pGCL: its
definitions, how they are to be interpreted and their (healthiness) properties.

3.1 Definitions of pGCL commands

In pGCL, commands act between “expectations” rather than predicates, where
an expectation is an expression over (program or state) variables that takes its
value in the unit interval [0 , 1]. (A more general treatment is possible in which
expectations are arbitrarily non-negative but bounded [197, 181].) To retain the
use of predicates, we allow expectations of the form [P] when P is Boolean-
valued, defining [false] to be 0 and [true] to be 1.

Implication-like relations between expectations are

R ! R′ =̂ R is everywhere no more than R′

R ≡ R′ =̂ R is everywhere equal to R′

R " R′ =̂ R is everywhere no less than R′

Note that |= P ⇒ P ′ exactly when [P] ! [P ′], and so on; that is the motivation

Developing and Reasoning about Probabilistic Programs in pGCL 129

The probabilistic guarded command language pGCL acts over “expectations”
rather than predicates: expectations take values in [0 , 1].

wp.(x : = E).R The expectation obtained after replacing all free
occurrences of x in R by E , renaming bound vari-
ables in R if necessary to avoid capture of free vari-
ables in E .

wp.skip.R R
wp.(S ; T).R wp.S.(wp.T.R)
wp.(S ! T).R wp.S.R min wp.T.R
wp.(S p⊕ T).R p ∗ wp.S .R + (1−p) ∗ wp.T.R

S % T wp.S.R ! wp.T.R for all R

– R is an expectation (possibly but not necessarily [P] for a predicate
P);

– P is a predicate (not an expectation);
– ∗ is multiplication;
– S , T are probabilistic guarded commands (inductively);
– p is an expression over the program variables (possibly but not nec-

essarily a constant), taking a value in [0 , 1]; and
– x is a variable (or a vector of variables).

Deterministic choice if B then S elseTfi is a special case of probabilistic choice: it
is just S [B]⊕ T. Recursions are handled by least fixed points in the usual way;
in practice however, the special case of loops is more easily treated using (proba-
bilistic) invariants and variants.

Fig. 1. pGCL—the probabilistic Guarded Command Language

for the symbols chosen.
The definitions of the commands in pGCL are given in Fig. 1.

3.2 Interpretation of pGCL expectations

In its full generality, an expectation is a function describing how much each
program state “is worth”.

The special case of an embedded predicate [P] assigns to each state a worth
of 0 or of 1: states satisfying P are worth 1, and states not satisfying P are
worth 0. The more general expectations arise when one estimates, in the initial
state of a probabilistic program, what the worth of its final state will be. That

130 Annabelle McIver and Carroll Morgan

estimate, the “expected worth” of the final state, is obtained by summing over
all final states

the worth of the final state multiplied by the probability the program
“will go there” from the initial state.

Naturally the “will go there” probabilities depend on “from where”, and so that
expected worth is a function of the initial state.

When the worth of final states is given by [P], the expected worth of the
initial state turns out to be just the probability that the program will reach P .
That is because

expected worth of initial state

≡ (probability S reaches P)∗(worth of states satisfying P)
+ (probability S does not reach P)∗(worth of states not satisfying P)

≡ (probability S reaches P)∗1
+ (probability S does not reach P)∗0

≡ probability S reaches P

where, of course, matters are greatly simplified by the fact that all states satis-
fying P have the same worth. We must, however, moderate this to “the greatest
guaranteed probability” when there is demonic choice: this is why the general
judgement is the inequality p ! wp.S .[P] rather than the special case of equality
given at (10).

Typical analyses of programs S in practice lead to conclusions of the form

p ≡ wp.S .[P] (10)

for some p and P which, given the above, we can interpret in two equivalent
ways:

1. the expected worth [P] of the final state is at least the value of p in the
initial state; or

2. the probability that S will establish P is at least p.

Each interpretation is useful, and in the following example we can see them
acting together: we ask for the probability that two fair coins when flipped will
show the same face, and calculate

wp.

(
c: = H 1

2
⊕ c: = T ;

d : = H 1
2
⊕ d : = T

)
. [c = d]

≡ 1
2
⊕, : = and sequential composition

wp.(c: = H 1
2
⊕ c: = T).([c = H] /2 + [c = T] /2)

≡ (1/2)([H = H] /2 + [H = T] /2)
+ (1/2)([T = H] /2 + [T = T] /2)

1
2
⊕ and : =

≡ (1/2)(1/2 + 0/2) + (1/2)(0/2 + 1/2) definition [·]

Developing and Reasoning about Probabilistic Programs in pGCL 131

≡ 1/2 arithmetic

We can then use the second interpretation above to conclude that the faces are
the same with probability (at least) 1/2 . Knowing there is no demonic choice
in the program, we can in fact say it is exact.

But part of the above calculation involves the more general expression

wp.(c: = H 1
2
⊕ c: = T).([c = H] /2 + [c = T] /2)

and what does that mean on its own? It must be given the first interpretation,
since its post-expectation is not of the form [P], and it means

the expected value of the expression [c = H] /2 + [c = T] /2 after exe-
cuting c: = H 1

2
⊕ c: = T ,

which the calculation goes on to show is in fact 1/2 . But for our overall con-
clusions we do not need to think about the intermediate expressions—they are
only the “glue” that holds the overall reasoning together.

Exercise 1. We consider again the two coin-like variables c and d which are
flipped in various ways. We use the notation c: = H p⊕ T to represent the as-
signment of H to c with probability p, and of T with probability 1−p; similarly,
we write d : = H p⊕ T .

1. What if one of the two coins is not fair? Calculate

wp.(c: = H p⊕ T ; d : = H 1/2⊕ T). [c = d]
and wp.(c: = H 1/2⊕ T ; d : = H q⊕ T). [c = d]

2. What if one of the two coins is not even flipped, but rather is placed face-up
or -down at will? (At whose will?) Calculate

wp.(c: = H ! T ; d : = H 1/2⊕ T). [c = d]
and wp.(c: = H 1/2⊕ T ; d : = H ! T). [c = d] .

3. Of the five answers to the questions above, (including the two-fair-coins
example in the text) one is conspicuous. Which one? How do you explain
that answer?

3.3 Properties of pGCL

Recall that all GCL constructs satisfy the property of conjunctivity—that is, for
any GCL command S and post-conditions P ,P ′ we have

wp.S .(P ∧ P ′) = wp.S .P ∧ wp.S .P ′

That “healthiness property” [81] is used to prove general properties of programs.
In pGCL the healthiness condition becomes “sublinearity” [197], a generali-

sation of conjunctivity:

132 Annabelle McIver and Carroll Morgan

Definition 1 (Sub-linearity). Let a, b and c be non-negative finite reals, and
R and R′ expectations; then all pGCL constructs S satisfy

wp.S.(aR + bR′ , c) " a(wp.S.R) + b(wp.S.R′) , c (11)

This property of S is called sublinearity. We have written aR for a ∗ R, and so
on. Truncated subtraction , is defined

x , y =̂ (x − y) max 0

with syntactic precedence lower than +.

Sublinearity characterizes probabilistic and demonic commands. In Kozen’s orig-
inal probability-only formulation [140] the commands are not demonic, and there
they satisfy the much stronger property of “linearity” [179].

Although it has a strange appearance, from sublinearity we can extract a
number of very useful consequences, as we now show [197]. We begin with
monotonicity, feasibility and scaling.

monotonicity: increasing a post-expectation can only increase the pre-expect-
ation. Suppose R ! R′ for two expectations R,R′; then

wp.S .R′

≡ wp.S .(R + (R′ − R))

" wp.S .R + wp.S .(R′−R) sublinearity with a, b, c : = 1 , 1 , 0

" wp.S .R R′−R well defined, hence 0 ! wp.S .(R′−R)

feasibility: pre-expectations cannot be “too large”. First note that wp.S .0 must
be 0, as we show below.

wp.S .0

≡ wp.S .(2 ∗ 0)

" 2 ∗ wp.S .0 sublinearity with a, b, c : = 2 , 0 , 0

Now write max R for the maximum of R over all its variables’ values; then

0

≡ wp.S .0 feasibility above

≡ wp.S .(R , max R) R , max R ≡ 0

" wp.S .R , max R sublinearity with a, b, c : = 1 , 0 , max R

But from 0 " wp.S .R , (max R) we have trivially that

wp.S .R ! max R (12)

which we identify as the feasibility condition for pGCL. Conveniently, the
general (12) implies the earlier special case wp.S .0 ≡ 0 .

Developing and Reasoning about Probabilistic Programs in pGCL 133

scaling: multiplication by a non-negative constant distributes through com-
mands. Note first that wp.S .(aR) " a(wp.S .R) directly from sublinearity.
For ! we have two cases: when a is 0, trivially from feasibility

wp.S .(0 ∗ R) ≡ wp.S .0 ≡ 0 ≡ 0 ∗ wp.S .R

and for the other case a -= 0 we reason as follows, establishing the identity
wp.S .(aR) ≡ a(wp.S .R) generally.

wp.S .(aR)

≡ a(1/a)wp.S .(aR) a -= 0

! a(wp.S .((1/a)aR)) sublinearity using 1/a

≡ a(wp.S .R)

That completes monotonicity, feasibility and scaling.
The remaining property we examine is probabilistic conjunction. Since stan-

dard conjunction ∧ is not defined over numbers, we have many choices for a
probabilistic analogue & of it, requiring only, for consistency with embedded
Booleans, that

0 & 0=0
0 & 1=0
1 & 0=0
1 & 1=1

(13)

Obvious possibilities for & are multiplication ∗ and minimum min, and each of
those has its uses; but neither satisfies anything like a generalisation of conjunc-
tivity. Instead we define

R & R′ =̂ R + R′ , 1 (14)

whose right-hand side is inspired by sublinearity when a, b, c : = 1 , 1 , 1 . We now
state a (sub-)distribution property for it, a direct consequence of sublinearity.
This same operator (and its other propositional companions) was introduced by
"Lukasiewicz in the 1920’s [103]; here we have synthesized it by quite different
means.

sub-conjunctivity: the operator & subdistributes through commands. From
sublinearity with a, b, c : = 1 , 1 , 1 we have

wp.S .(R & R′) " wp.S .R & wp.S .R′

for all S.

Unfortunately there does not seem to be a full (rather than sub-)conjunctivity
property.

Beyond sub-conjunctivity, we say that & generalizes conjunction for several
other reasons. The first is of course that it satisfies the standard properties (13).

The second reason is that sub-conjunctivity implies “full” conjunctivity for
standard programs. Standard programs, containing no probabilistic choices, take

134 Annabelle McIver and Carroll Morgan

standard [P]-style post-expectations to standard pre-expectations: they are the
embedding of GCL in pGCL, and for standard S we now show that

wp.S .([P] & [P ′]) ≡ wp.S . [P] & wp.S . [P ′] (15)

First note that “"” comes directly from sub-conjunctivity above, taking R,R′

to be [P] , [P ′].
For “!” we appeal to monotonicity, because [P] & [P ′] ! [P] whence we

have wp.S .([P] & [P ′]) ! wp.S. [P], and similarly for P ′. Putting those together
gives

wp.S .([P] & [P ′]) ! wp.S. [P] min wp.S . [P ′]

by elementary arithmetic properties of !. But on standard expectations—which
wp.S. [P] and wp.S . [P ′] are, because S is standard—the operators min and &
agree.

A last attribute linking & to ∧ comes straight from elementary probability
theory. Let A and B be two events, unrelated by ⊆ and not necessarily indepen-
dent: then we can show that

if the probabilities of A and B are at least p and q respectively, then
the most that can be said about the joint event A ∩ B is that it has
probability at least p & q [235].

The & operator also plays a crucial role in the proof [193, 181] (not given here)
of the probabilistic loop rule presented and used in the next section.

Exercise 2. Say that a probabilistic program is standard if it takes 0/1 -valued
post-expectations to 0/1 -valued pre-expectations; typical examples are pro-
grams written in pGCL that nevertheless do not use p⊕. Show that such pro-
grams distribute minimum for all post-expectations. For hints, consult the ref-
erence text on pGCL [181].

4 Probabilistic invariants for loops

To show pGCL in action, we state a proof rule for probabilistic loops and apply
it to a simple example.

Just as for standard loops, we can deal with invariants and termination sep-
arately: common sense suggests that the probabilistic reasoning should be an
extension of standard reasoning, and indeed that is the case. One proves a pred-
icate invariant under execution of a loop’s body; and one finds a variant that
ensures the loop’s eventual termination: the conclusion is that if the invariant
holds initially then the invariant and the negation of the loop guard together
hold finally. Probability does lead to differences, however—and here are some of
them:

– The invariant may be probabilistic, in which case its operational meaning
is more general than just “the computation remains within a certain set of
states”.

Developing and Reasoning about Probabilistic Programs in pGCL 135

– The variant might have to be probabilistically interpreted, since the usual
“must strictly decrease and is bounded below” technique is no longer ade-
quate, even for simple cases. (It remains sound.)

– When both the invariant and the termination condition are probabilistic,
one cannot use Boolean conjunction to combine “correct if terminates” and
“it does terminate”.

4.1 Probabilistic invariants

In a standard loop, the invariant holds at every iteration of the loop. It describes
a set of states from which continuing to execute the loop body is guaranteed to
establish the postcondition, if the guard ever becomes false—that is, if termina-
tion occurs.

For a probabilistic loop we have a post-expectation rather than a postcon-
dition, but otherwise the situation is much the same. Moreover, if that post-
expectation is some [P] say, then—as an aid to the intuition—we can look for
an invariant that gives a lower bound on the probability that we will establish
P by (continuing to) execute the loop body. Often that invariant will have the
form

p ∗ [I] (16)

with p a probability and I a predicate, both expressions over the state. From
the definition of [·] we know that the interpretation of (16) is

probability p if I holds, and probability 0 otherwise.

We see an example of such invariants in Section 4.3.

4.2 Termination

The probability that a program will terminate generalizes the usual definition: re-
calling that [true] ≡ 1 we see that a program’s probability of termination is
given by

wp.S .1 (17)

As a simple example of that, suppose S is the recursive program

S =̂ S p⊕ skip (18)

in which we assume that p is some constant strictly less than 1: on each re-
cursive call, P has probability 1−p of termination, continuing otherwise with
further recursion. Elementary probability theory shows that S terminates with
probability 1 (after an expected p/(1−p) recursive calls). By calculation based
on (17) we see that

wp.S .1

≡ p ∗ (wp.S .1) + (1−p) ∗ (wp.skip.1)

136 Annabelle McIver and Carroll Morgan

≡ p ∗ (wp.S .1) + (1−p)

so that (1−p) ∗ (wp.S .1) ≡ 1−p. Since p is not 1, we can divide by 1−p to see
that indeed wp.S .1 ≡ 1 : the recursion will terminate with probability 1 (for if
p is not 1, the chance of recursing N times is pN , which for p < 1 approaches 0
as N increases without bound).

We return to probabilistic termination in Section 5.

4.3 Probabilistic correctness of loops

As in the standard case, it is easy to show that if [P] ∗ I ! wp.S.I then

I ! wp.(doP → S od).([¬P] ∗ I)

provided the loop terminates. Thus the notion of invariant carries over smoothly
from the standard to the probabilistic case. This is an immediate consequence of
the definition of loops as least fixed points: indeed, for the proof one simply car-
ries out the standard reasoning almost without noticing that expectations rather
than predicates are being manipulated. The precise treatment of “provided” uses
weakest liberal pre-expectations [193, 180].

When termination is taken into account as well, we get the rule below [193].

Definition 2 (Proof rule for probabilistic loops). For convenience, we
write T for the termination probability of the loop, so that

T =̂ wp.(doP → Sod).1

Then partial loop correctness—preservation of a loop invariant I—implies total
loop correctness if that invariant I nowhere exceeds T: that is,

if [P] ∗ I ! wp.S.I
and I ! T
then I ! wp.(doP → Sod).([¬P] ∗ I)

Note that it is not the same to say “implies total correctness from those initial
states where I does not exceed T”: in fact I must not exceed T in any state.
The weaker alternative is not sound.

We illustrate the loop rule with a simple example. Suppose we have a machine
that is supposed to sum the elements of a sequence ss of N elements indexed from
0 to N−1 , except that the mechanism for moving along the sequence occasionally
moves the wrong way. A program for the machine is given in Figure 2, where
the unreliable component

k : = k + 1 c⊕ k : = k − 1

misbehaves with probability 1−c. With what probability does the machine ac-
curately sum the sequence, establishing

r =
∑

ss (19)

on termination?

Developing and Reasoning about Probabilistic Programs in pGCL 137

var k : Z •
r , k : = 0 , 0 ;
do k < N →

r : = r + ss.k ;
k : = k + 1 c⊕ k : = k − 1 ← failure possible here

od

Fig. 2. An unreliable sequence-summer

We first find the invariant. Relying on our informal discussion above, we ask
the following question:

during the loop’s execution, with what probability are we in a state from
which completion of the loop would establish (19)?

The answer is in the form (16)—take p to be cN−k , and let I be the standard
invariant

0 ≤ k ≤ N ∧ r =
∑

ss[0 ..k)

Then our probabilistic invariant—call it J—is just p ∗ [I], which is to say that

if the standard invariant holds then it is cN−k , the probability of going
on to successful termination; if it does not hold, then it is 0.

Having chosen a possible invariant, to check it we calculate

wp.

(
r : = r + ss.k ;
k : = k + 1 c⊕ k : = k − 1

)
.J

≡ wp.(r : = ss.k).(
c ∗ wp.(k : = k + 1).J

+(1−c) ∗ wp.(k : = k − 1).J)

; and c⊕

" wp.(r : = r + ss.k).

cN−k ∗
[
0 ≤ k + 1 ≤ N
r =

∑
ss[0 ..k)

] drop second term, and wp.(: =)

≡ cN−k ∗
[

0 ≤ k + 1 ≤ N
r + ss.k =

∑
ss[0 ..k)

]
wp.(: =)

" [k < N] ∗ J arithmetic

where in the last step the guard k < N , and k ≥ 0 from the invariant, allow the
removal of +ss.k from both sides of the lower equality.

A more concise rendering of the above can be given using the following con-
vention. When reasoning “backwards”, as above, the compact notation

PostE

· " PreE applying wp.Prog

allows the linear “step-by-step” layout of the proof to be more easily continued.

138 Annabelle McIver and Carroll Morgan

The “·” at left warns that we are asserting PostE " wp.Prog.PreE (rather than
PostE " PreE itself). Using this convention we would have written instead

J

· ≡ c ∗ wp.(k : = k + 1).J
+ (1−c) ∗ wp.(k : = k − 1).J

applying wp.(k : = k + 1 c⊕ k : = k − 1)

" cN−k ∗
[
0 ≤ k + 1 ≤ N
r =

∑
ss[0 ..k)

]
drop second term; wp.(:=)

· ≡ cN−k ∗
[

0 ≤ k + 1 ≤ N
r + ss.k =

∑
ss[0 ..k)

]
applying wp.(r : = r + ss.k)

" [k < N] ∗ J

Now we turn to termination: we note (informally) that the loop terminates with
probability at least

cN−k ∗ [0 ≤ k ≤ N]

which is just the probability of N − k correct executions of k : = k + 1 , given
that k is in the proper range to start with; hence trivially J ! T as required by
the loop rule.

That concludes reasoning about the loop itself, leaving only initialisation
and the post-expectation of the whole program. For the latter we see that on
termination of the loop we have [k ≥ N] ∗ J , which indeed “implies” (is in the
relation ! to) the post-expectation [r =

∑
ss] as required.

Turning finally to the initialisation we finish off with

wp.(r , k : = 0 , 0).J

≡ cN ∗
[

0 ≤ 0 ≤ N
0 =

∑
ss[0 ..0)

]

≡ cN ∗ [true]

≡ cN

and our overall conclusion is therefore

cN ! wp.(sequence-summer). [r =
∑

ss]

just as we had hoped: the probability that the sequence is correctly summed is
at least cN .

Note the importance of the inequality ! in our conclusion just above. It is
not true that the probability of correct operation is equal to cN in general, for
it is certainly possible that r is correctly calculated in spite of the occasional
malfunction of k : = k + 1 . The exact probability, should we try to calculate it,
might depend intricately on the contents of ss. (It could be very involved if ss
contained some mixture of positive and negative values.) If we were forced to
calculate exact results (as in earlier work [238]), rather than just lower bounds
as we did above, this method would not be at all practical.

Further examples of loops are given elsewhere [193].

Developing and Reasoning about Probabilistic Programs in pGCL 139

5 First case study: probabilistic termination

In this case study, we treat an algorithm whose termination argument is fairly
involved, showing how it is dealt with using probabilistic-variant arguments.
This example has also been given an automated proof using the pB proba-
bilistic extension of the B development method [182, 3]. For another example of
“easy correctness but difficult termination”, see the Probabilistic Dining Philoso-
phers [149], [181, Section 3.2].

5.1 Introduction

Rabin’s choice-coordination algorithm (explained in Sections 5.2 and 5.3 below)
is an example of the use of probability for symmetry-breaking: identical processes
with identical initial conditions must reach collectively an asymmetric state, all
choosing one alternative or all choosing the other. The simplest example is a coin
flipped between two people—each has equal right to win, the coin is fair, the
initial conditions are thus symmetric; yet, at the end, one person has won and
not the other. In this example, however, the situation is made more complex by
insisting that the processes be distributed : they cannot share a central “coin”.

Rabin’s article [219] explains the algorithm he invented and relates it to a
similar algorithm in nature, carried out by mites who must decide whether they
should all infest the left or all the right ear of a moth, but he does not give a
formal proof of its correctness. We do that here.

Section 5.3 writes the algorithm as a loop, containing probabilistic choice,
and we show the loop terminates “with probability 1” in a desired state: we use
invariants, to show that if it terminates it is in that state; and we use probabilistic
variants to show that indeed it does terminate. “Termination with probability
1”’ is the kind of termination exhibited for example by the algorithm “flip a fair
coin repeatedly until you get heads, then stop”. For our purposes that is as good
as “normal” guarantees of termination.

In this example, the partial correctness argument is entirely standard and so
does not illustrate the new probabilistic techniques. (It is somewhat involved,
however, and thus interesting as an exercise in any case.) In such cases one
treats probabilistic choice as nondeterministic choice and proceeds with stan-
dard reasoning, since the theory shows that any wp-style property proved of the
“projected” nondeterministic program is valid for the original probabilistic pro-
gram as well. More precisely, replacing probabilistic choice by nondeterministic
choice is an anti-refinement.

The termination argument is novel however, since probabilistic variant tech-
niques [107, 193] must be used.

5.2 Informal description of Rabin’s algorithm

This informal description is based on Rabin’s presentation [219].

140 Annabelle McIver and Carroll Morgan

A group of tourists are to decide between two meeting places: inside a (cer-
tain) church, or inside a museum. They may not communicate all at once as a
group.

Each tourist carries a notepad on which he will write various numbers; out-
side each of the two potential meeting places is a noticeboard on which various
messages will be written. Initially the number 0 appears on all the notepads and
on the two noticeboards.

Each tourist decides independently (demonically) which meeting place to
visit first, after which he strictly alternates his visits between them. At each
visit he looks at the noticeboard there, and if it displays “here” goes inside. If
it does not display “here” it will display a number instead, in which case the
tourist compares that number K with the one on his notepad k and takes one
of the following three actions:

if k > K —The tourist writes “here” on the noticeboard (erasing K), and goes
inside.

if k = K —The tourist chooses K ′, the next even number larger than K , and
then flips a coin: if it comes up heads, he increases K ′ by a further 1. He
then writes K ′ on the noticeboard and on his notepad (erasing k and K),
and goes to the other place. For example if K is 8 or 9, first K ′ becomes 10
and then possibly 11.

if k < K —The tourist writes K on his notepad (erasing k), and goes to the
other place.

Rabin’s algorithm terminates with probability 1; and on termination all tourists
will be inside, at the same meeting place.

5.3 The program

Here we make the description more precise by giving a pGCL program for it (see
Figure 3). Each tourist is represented by an instance of the number on his pad.

The program informally Call the two places “left” and “right”.
Bag lout (rout) is the bag of numbers held by tourists waiting to look at the

left (right) noticeboard; bag lin (rin) is the bag of numbers held by tourists who
have already decided on the left (right) alternative; number L (R) is the number
on the left (right) noticeboard.

Initially there are M (N) tourists on the left (right), all holding the number
0; no tourist has yet made a decision. Both noticeboards show 0.

Execution is as follows. If some tourists are still undecided (so that lout (rout)
is not yet empty), select one: the number he holds is l (r). If some tourist
has (already) decided on this alternative (so that lin (rin) is not empty), this
tourist does the same; otherwise there are three further possibilities:

If this tourist’s number l (r) is greater than the noticeboard value L (R), then
he decides on this alternative (joining lin (rin)).

Developing and Reasoning about Probabilistic Programs in pGCL 141

lout , rout : = ((0))M , ((0))N ;
lin, rin: = !, !;
L,R: = 0 , 0 ;

do lout *= ! →
take l from lout ;
if lin *= ! then add l to lin else

l > L → add l to lin
[] l = L → L: = L + 2 1

2
⊕ (L + 2); addL to rout

[] l < L → addL to rout
fi

[] rout *= ! →
take r from rout ;
if rin *= ! then add r to rin else

r > R → add r to rin
[] r = R → R: = R + 2 1

2
⊕ (R + 2); addR to lout

[] r < R → addR to lout
fi

od

Fig. 3. Rabin’s choice-coordination algorithm

If this tourist’s number equals the noticeboard value, he increases the notice-
board value, copies that value and goes to the other alternative (rout (lout)).

If this tourist’s number is less than the noticeboard value, he copies that value
and goes to the other alternative.

Notation We use the following notations in the program and in the subsequent
analysis.

– 11· · ·22 — Bag (multiset) brackets.
– ! — The empty bag.
– 11n22N — A bag containing N copies of value n.
– b0 + b1 — The bag formed by putting all elements of b0 and b1 together

into one bag.
– take n from b — A program command: choose an element nondeterministi-

cally from non-empty bag b, assign it to n and remove it from b.
– add n to b — Add element n to bag b.
– if B thenProg else · · · fi — Execute Prog if B holds, otherwise treat · · · as

a collection of guarded alternatives in the normal way.
– n — The “conjugate” value n + 1 if n is even, and n − 1 if n is odd.
– ñ — The minimum n min n of n and n.
– #b — The number of elements in bag b.
– x : = m p⊕n — Assign m to x with probability p, and n to x with probability

1−p.

142 Annabelle McIver and Carroll Morgan

Correctness criteria We must show that the program is guaranteed with
probability 1 to terminate, and that on termination it establishes

#lin = M+N ∧ rin = ! ∨ lin = ! ∧ #rin = M+N

That is, on termination the tourists are either all inside on the left or all inside
on the right.

5.4 Partial correctness

The arguments for partial correctness involve no probabilistic reasoning; but
there are several invariants.

Three invariants The first invariant states that tourists are neither created
nor destroyed:

#lout + #lin + #rout + #rin = M + N (20)

It holds initially, and is trivially maintained.
The second invariant is

lin, lout ≤ R
rin, rout ≤ L

(21)

and expresses that a tourist’s number never exceeds the number posted at the
other place. By b ≤ K we mean that no element in the bag b exceeds the integer
K . To show invariance we reason as follows:

– It holds initially.
– Since L,R never decrease, it can be falsified only by adding elements to the

bags.
– Adding elements to lin, rin cannot falsify it, since those elements come from

lout , rout .
– The only commands adding elements to lout , rout are

addL to rout and addR to lout

and they maintain it trivially.

Our final invariant for partial correctness is

max lin > L if lin -= !

max rin > R if rin -= !
(22)

expressing that if any tourist has gone inside, then at least one of the tourists
inside must have a number exceeding the number posted outside.

By symmetry we need only consider the left (lin) case. The invariant holds
on initialisation (when lin = !); and inspection of the program shows that it

Developing and Reasoning about Probabilistic Programs in pGCL 143

is trivially established when the first value is added to lin since the command
concerned

l > L → add l to lin

is executed when lin = ! to establish lin = 11l22 for some l > L.
Since elements never leave lin, it remains non-empty and max lin can only

increase; finally L cannot change when lin is non-empty.

On termination. . . With these invariants we can show that on termination (if
it occurs) we have lout = rout = !—in fact with invariant (20) we need only

lin = ! ∨ rin = !

Assuming for a contradiction that both lin and rin are non-empty, we then have
from invariants (21) and (22) the inequalities

L ≥ max rin > R ≥ max lin > L

which give us the required impossibility.

5.5 Showing termination: the variant

For termination we need probabilistic arguments, since it is easy to see that no
standard variant will do: suppose that the first M + N iterations of the loop
take us to the state below, differing from the initial state only in the use of 4’s
rather than 0’s.

lout , rout = 11422M , 11422N
lin, rin = !, !

L,R = 4 , 4

All coin flips came up heads, and each tourist had exactly two turns. Since
the program contains no absolute comparisons, we are effectively back where
we started: the program checks only whether various numbers are greater than
others, not what the numbers actually are. Because of that, there can be no
standard variant that decreased on every step we took.

So is not possible to prove termination using a standard variant whose strict
decrease is guaranteed. Instead we appeal to the following rule [107, 193, 181]:

Definition 3 (Probabilistic variant rule). If an integer-valued function of
the program state—a probabilistic variant—can be found that

– is bounded above,
– is bounded below and
– with probability at least p is decreased by the loop body, for some fixed non-

zero p,

then with probability 1 the loop will terminate. (Note that the invariant and guard

144 Annabelle McIver and Carroll Morgan

of the loop may be used in establishing the three properties.)

The rule differs from the standard one in two respects: the variant must be
bounded above (as well as below); and it is not guaranteed to decrease, but
rather does so only with some probability bounded away from 0. Note that the
probability of decrease may differ from state to state, but the point of “bounded
away from zero”—distinguished from simply “not equal to zero”—is that over
an infinite state space the various probabilities cannot be arbitrarily small. Over
a finite state space there is no distinction.

To find our variant, we note that the algorithm exhibits two kinds of be-
haviour: the shuttling back-and-forth of the tourists, between the two meeting
places (small scale); and the pattern of the two noticeboard numbers L,R as
they increase (large scale). Our variant therefore will be “lexicographic”, one
within another: the small-scale inner variant will deal with the shuttling, and
the large-scale outer variant will deal with L and R.

Inner variant: tourists’ movements The aim of the inner variant is to show
that the tourists cannot shuttle forever between the sites without eventually
changing one of the noticeboards. Intuition suggests that indeed they cannot,
since every such movement increases the number on some tourist’s notepad, and
from invariant (21) those numbers are bounded above by L max R.

The inner variant is based on that idea. For neatness we make it increasing
rather than decreasing, which is of no consequence since we have taken care to
ensure that it is bounded above and below by fixed values, independent of L
and R—we could always subtract it from the upper bound to convert it back
to decreasing. The independence from L,R is important, given our variant rule,
because L and R can themselves increase without bound. We define V0 to be

#11x : lout+rout | x ≥ L22
+ #11x : lout+rout | x ≥ R22
+ 3 × #(lin+rin)

(23)

This is bounded above by 3 (M+N), because

(23) ≤ 2#(lout+rout) + 3#(lin+rin) ≤ 3#(lout+rout+lin+rin) = 3 (M+N)

where the last equality is supplied by the invariant (20). Since the outer variant
will deal with changes to L and R, in checking the increase of V0 we can restrict
our attention to those parts of the loop body that leave L,R fixed—and we show
in that case that the variant must increase on every step:

– If lin -= ! then an element is removed from lout (V0 decreases by at most 2)
and added to lin (but then V0 increases by 3); the same reasoning applies
when l > L.

– If l = L then L will change; so we need not consider that. (It will be dealt
with by the outer variant.)

– If l < L then V0 increases by at least 1, since l is replaced by L in
lout+rout—and (before) l -≥ L but (after) L ≥ L.

The reasoning for rout , on the right, is symmetric.

Developing and Reasoning about Probabilistic Programs in pGCL 145

Outer variant: changes to L and R For the outer variant we need further
invariants; the first is

L̃ − R̃ ∈ {−2 , 0 , 2} (24)

stating that the notice-board values can never be “too far apart”. It holds ini-
tially; and, from invariant (21), the command

L: = L + 2 1
2
⊕ (L + 2)

is executed only when L ≤ R, thus only when L̃ ≤ R̃, and has the effect

L̃: = L̃ + 2

Thus we can classify L,R into three sets of states:

– L̃ = R̃ − 2 ∨ L̃ = R̃ + 2—write L -=̃ R for those states.
– L = R (equivalently L = R)—write L =̃ R.
– L = R.

Then we note that the underlying iteration of the loop induces state transitions
as follows. (We write 〈L = R〉 for the set of states satisfying L = R, and so on;
nondeterministic choice is indicated by !; the transitions are indicated by →.)

〈L -=̃ R〉 → 〈L -=̃ R〉 ! 〈L = R〉 1
2
⊕ 〈L =̃ R〉

〈L = R〉 → 〈L = R〉 ! 〈L -=̃ R〉
〈L =̃ R〉 → 〈L =̃ R〉

To explain the absence of a transition leaving states 〈L =̃ R〉 we need yet
another invariant

L -∈ rout ∧ R -∈ lout (25)

It holds initially, and cannot be falsified by the command addL to rout , because
L -= L. That leaves the command L: = L + 2 1

2
⊕ (L + 2); but in that case,

from (21), we have

rout ≤ L < L + 2 , (L + 2) = (L + 2), (L + 2)

so that in neither case does the command set L to the conjugate of a value
already in rout .

Thus with (25) we see that execution of the only alternatives that change
L,R cannot occur if L =̃ R, since, for example, selection of the guard l = L
implies L ∈ lout , impossible if L =̃ R and R -∈ lout .

For the outer variant we therefore define V1 to be

2 , if L = R
1 , if L -=̃ R
0 , if L =̃ R

(26)

and note that whenever L or R changes, the quantity V1 decreases with proba-
bility at least 1/2 .

146 Annabelle McIver and Carroll Morgan

The two variants together If we put the two variants together lexicographi-
cally, with the outer variant V1 being the more significant, then the composite
satisfies all the conditions required by the probabilistic variant rule. In particular
it has probability at least 1/2 of strict decrease on every iteration of the loop.
Remember that the inner variant increases rather than decreases—we subtract
it from 3 (M+N) to make it decrease.

Thus the algorithm terminates with probability 1—and we are done.

Exercise 3. Argue informally that the loop

c := H p⊕ T ;
do c -= H →

c: = H p⊕ T ;
od

terminates with probability one provided p > 0 . Then prove it formally by
finding a variant function and using the Probabilistic variant rule.

Exercise 4. Show that the loop

c, d : = H ,H ;
do c = d →

c: = H p⊕ T ;
d : = H p⊕ T

od

establishes c = H on termination with probability 1/2 for any p, provided
0 < p < 1 . (Note that the two coins have the same bias, although it is almost
arbitrary: think of it as the same coin flipped repeatedly, where in the loop
guard we are comparing the last two results.) Hint: Consider the invariant (a
real-valued function) defined by the matrix

(
1
2 1
0 1

2

)

where c selects the row and d selects the column. Do not forget the variant.

Exercise 5. Let H be T and T be H , so that d : = d simply turns d over. Show
that the loop

c, d : = H ,H ;
do c = H →

c: = H 1/2⊕ T ;
d : = d

od

establishes d = H on termination with probability exactly 1/3 . (This is a good
way of dealing with the “one ice-cream, three sons” problem.) Hint: Consider
the invariant

(
1
3

2
3

1 0

)

Developing and Reasoning about Probabilistic Programs in pGCL 147

6 Second case study: approximated probabilities,
abstraction and refinement

In this case study, we give a small example of a probabilistic program developed
in two stages, linked by abstraction and refinement, and in which the issue of
“approximate” probabilities is highlighted. This section is based on an example
in Hurd’s thesis, where, however, the probabilities are exact [125]; we treat the
exact case elsewhere [196].

For practical purposes we suppose a source of randomness is available as a
stream of unbiased random bits; however many applications’ correctness relies
on more elaborate distributions. Those distributions can be generated by using
various sampling methods; here (Figure 4) we consider a small program which
uses (nearly) unbiased bits to generate a (nearly) uniform choice over a positive
number N of alternatives. That is, we imagine we have access to a stream of
bits, each equally likely to be 0 or 1, but we need to choose uniformly between
N alternatives (rather than just 2, which the bits could do directly). We want
to write a program to carry this out.

{ [0≤K<N]/Nε }

var k : N •
k : = N ;
do k ≥ N →

var n: N;
k , n: = 0 ,N−1 ;
do n *= 0 →

k : = 2k 1
2
−ε⊕ 1

2
−ε k : = 2k + 1 ;

n: = n div 2
od

od

{ [k=K] }

The inner loop selects k almost uniformly such that 0 ≤ k < $N , where $N is the
least power-of-two no less than N . The outer loop accepts that choice only if k < N ;
otherwise the inner loop is repeated. The effect overall is to select k almost uniformly
so that 0 ≤ k < N .
The pre- and post-expectation annotations express that for any K the probability of
achieving k = K on termination is at least 1/Nε if 0 ≤ K < N (and at least zero
otherwise), where Nε ≥ N . The “excess” Nε −N quantifies the inaccuracy, and should
tend to zero as ε does.

Fig. 4. Almost-uniform selection algorithm

6.1 Approximation via nondeterminism

Suppose we have access to a stream of bits b each of which is independently
unbiased but only to within some tolerance ε, by which we mean that the prob-

148 Annabelle McIver and Carroll Morgan

ability of a 1 (or 0) is only within ε of 1/2 on each occasion. In pGCL we would
express this by using the statement

b: = 0 1
2 −ε⊕ 1

2 −ε b: = 1

That is, we are using this statement to model what probably is a piece of hard-
ware, and the ε in the probabilistic-choice operator represents how accurate we
have observed this hardware to be: if it were completely accurate (ε = 0) then
the statement would be just a “coin flip” of b.

In fact because we will always be “shifting left” our random bits into a bit-
string represented by k , we will use the statement

k : = 2k 1
2 −ε⊕ 1

2 −ε k : = 2k + 1 (27)

at the point where we access the random bit-stream. We recall that, for p+q ≤ 1
in general, by This p⊕q That we mean the nondeterministic combination

This p⊕ That ! That q⊕ This (28)

of the two programs that (on the left) executes This with probability p (and
That with probability 1−p), and (on the right) executes That with probability
q (and This with probability 1−q).

The operational semantics of pGCL identifies Program (28) with one that
chooses This (rather than That) with any probability r satisfying p ≤ r ≤ 1−q,
because the space of possible program behaviours is “convex-closed” [131, 197,
181], reflecting that nondeterministic choices can be resolved to arbitrary prob-
abilistic ones. Thus the program fragment (27) “flips the coin” with any proba-
bility r satisfying 1/2 − ε ≤ r ≤ 1/2 + ε, which captures our intended meaning
above of “unbiased only to within some tolerance ε”. The value of r can vary
between separate executions of the fragment, and we recall that it is adversarial
in the sense that its choice is treated as worst-case by our program logic, in
effect determined by a “demon” whose aim is to make our program as unlikely
as possible to produce a uniform distribution.

What is the aim of the program? It is to set k to some value K in the
range [0 ,N), and the effect of the introduced nondeterminism will be to make
it less likely to do that than the 1/N we would expect of an exactly uniform
distribution.

6.2 Overall analysis strategy

We will give a conservative analysis of the program, which is safe but slightly
pessimistic, on the grounds that it is simpler than an exact analysis would be,
and that for small biases the assurance it gives us is good enough. Informally
our reasoning will be as follows.

The inner loop chooses a number k in the range [0 , $N), where $N is the
smallest power-of-two no less than N ; it does that by assembling a "N -bit number

Developing and Reasoning about Probabilistic Programs in pGCL 149

via a series of calls to the random bit generator, where "N is the minimum
number of bits sufficient to represent any number in the given range.

Because the bit generator is biased, however, the minimum guaranteed prob-
ability of producing any particular K with 0 ≤ K < $N is only 1/δ"N (instead
of 1/2 "N , that is 1/$N), where for convenience we set 1/δ : = 1/2 − ε. Thus—
informally—the maximum guaranteed probability x of producing K in the given
range satisfies

x ≥ 1/δ"N + ($N − N)x/δ"N (29)

where the second term is a lower bound on the probability that the inner loop
chooses a k that is “too big”, that is with k ≥ N , thus forcing a subsequent
iteration. It is only a lower bound because the actual probability of achieving
N ≤ k < $N is usually higher, given the way in which k is constructed.

For example, note that although the minimum guaranteed probability of
setting k to $N−1 is 1/δ"N , and similarly to $N−2 , the probability of achieving
either, that is $N−2 ≤ k < $N , is in fact 1/δ"N−1 because in that case only the
first "N−1 bits of k are constrained. That is more than the sum 1/δ"N + 1/δ"N

given by considering the two values separately (unless there is no bias, that is
unless δ = 2 exactly).

This is the essence of our abstraction, that we ignore the bit-by-bit structure
of k in order to get a good-enough result by simpler means. Solving (29) gives

x ≥ 1/(N + (δ"N − $N))

which identifies the quantity δ"N − $N as a sort of “excess” E which lowers the
probability from the uniform 1/N to some 1/Nε where Nε: = N + E .

6.3 Proofs for inner loop

We analyse the program in two levels, first the inner loop and then the outer
loop.

As well as the definitions above, we let "n be the number of bits used in
the binary representation of n, and let $n be the smallest power-of-two strictly

exceeding n, so that 2 "n = $n (which makes it clear that "0 = 0). These “strict”
definitions have slightly better algebraic properties than the “non-strict” ones
above, and simplify the calculation. In fact $N = $(N+1) of course, so we are
just avoiding a mess of brackets and +1 ’s.

For the inner loop, where the selection range is $N , a nice power of two, it’s
a reasonable guess that the effect of the bias introduced by the nondeterminism
will be to reduce any particular K ’s chances from 1/$N , that is 1/2 "N , down to
1/δ"N—and we note (reassuringly) that when ε = 0 those two probabilities are
equal. That suggests the overall precondition for our approximating inner loop,
and similar considerations suggest an invariant for it: the resulting annotated
loop is shown in Figure 5. In the following, we justify the annotations.

150 Annabelle McIver and Carroll Morgan

On initialisation This is straightforward; we reason
[
k($n) ≤ K < (k+1)($n)

]
/δ"n invariant

· ≡ applying wp.(k , n: = 0 ,N−1)
[
0 ($(N−1)) ≤ K < (0+1)($(N−1))

]
/δ"(N−1)

≡ [0 ≤ K < $N] /δ"N arithmetic gives pre-expectation

While iterating We reason backwards from the end of the loop body towards
its beginning. The novelty here is the demonic nondeterminism in 1

δ
⊕ 1

δ
which

we interpret as at (28), leading to the use of min as indicated by the semantics
given at in (7).

[
k($n) ≤ K < (k+1)($n)

]
/δ"n invariant

· ≡ applying wp.(n: = ndiv2)
[
k($(ndiv2)) ≤ K < (k+1)($(ndiv2))

]
/δ"(ndiv2)

· ≡ applying wp.(k : = 2k 1
δ
⊕ 1

δ
2k + 1)

1/δ ∗

(2k)($(ndiv2))

≤K
<((2k)+1)($(ndiv2))

 /δ"(ndiv2)

+ (1−1/δ) ∗

(2k+1)($(ndiv2))

≤K
<((2k+1)+1)($(ndiv2))

 /δ"(ndiv2)

min

(1−1/δ) ∗

(2k)($(ndiv2))

≤K
<((2k)+1)($(ndiv2))

 /δ"(ndiv2)

+ 1/δ ∗

(2k+1)($(ndiv2))

≤K
<((2k+1)+1)($(ndiv2))

 /δ"(ndiv2)

" arithmetic; 1/δ ≤ 1−1/δ

(2k)($(ndiv2))

≤K
<(2k+1)($(ndiv2))

 /δ"(ndiv2)+1

+

(2k+1)($(ndiv2))

≤K
<(2 (k+1))($(ndiv2))

 /δ"(ndiv2)+1

" [n -= 0] ∗
(
[
k($n) ≤ K < (2k+1)($(ndiv2))

]
/δ"n

+
[
(2k+1)($(ndiv2)) ≤ K < (k+1)($n)

]
/δ"n)

2$(ndiv2) = $n; #(ndiv2)+1 = #n

Developing and Reasoning about Probabilistic Programs in pGCL 151

{ [0≤K<$N]/δ#N }

k ,n: = 0 , N−1 ;
{ [k($n)≤K<(k+1)($n)]/δ#n }

do n *= 0 →
{ [k($n)≤K<(k+1)($n)]/δ#n }

k : = 2k 1
δ
⊕ 1

δ
2k + 1 ;

{ [k$(ndiv2)≤K<(k+1)$(ndiv2)]/δ#(ndiv2) }

n: = n div 2
{ [k($n)≤K<(k+1)($n)]/δ#n }

od

{ [k=K] }

Fig. 5. Approximating inner loop with annotations

" merging inequalities gives guard and invariant

[n -= 0] ∗
[
k($n) ≤ K < (k+1)($n)

]
/δ"n

On termination This is immediate; we have

[n = 0] ∗
[
k($n) ≤ K < (k+1)($n)

]
/δ"n negated guard and invariant

!
[
k($0) ≤ K < (k+1)($0)

]
/δ"0 arithmetic

! [k ≤ K < (k+1)] $0 = 1

! [k = K] k , K ∈ N gives post-expectation

6.4 The algebra of abstractions

We now use what we have proved about the inner loop to deduce a property for
use in the outer loop. As mentioned in Section 6.2, we are taking a conservative
view (though sound) to simplify the calculations. We write PostEK

k for PostE
with variable k replaced by constant K , and use sub-linearity from (11) to reason

wp.Inner.PostE

" arithmetic, wp.Inner monotonic

wp.Inner.(
∑

0≤K<$N PostEK
k ∗ [k = K])

" sublinearity (11) used $N−1times

(
∑

0≤K<$N PostEK
k ∗ wp.Inner. [k = K])

" (
∑

0≤K<$N PostEK
k ∗ [0 ≤ K < $N] /δ"N) Section 6.3

" (
∑

0≤K<$N PostEK
k) /δ"N within summation [0 ≤ K < $N] = 1

" (
∑

0≤k<$N PostE) /δ"N change bound variable K to k

(30)

152 Annabelle McIver and Carroll Morgan

If we now took (30) as the wp-definition of Inner, rather than merely a property of
it, we would effectively have an abstraction (i.e. an anti-refinement) of the actual
inner loop. As usual for refinement, any conclusion we draw about Inner (such
as its contribution to the correctness of the outer loop, argued below) are valid
for the actual inner loop as well.

6.5 Proofs for outer loop

The complete annotations for our outer loop are given in Figure 6. Since it has
nonzero probability N /δ"N of termination on each iteration, its overall termina-
tion probability is one. We leave Nε undetermined for now: at the appropriate
moment in the proof we will discover what it must be.

{ [0≤K<N]/Nε }

k : = N ;
{ [k=K] !k<N" [0≤K<N]/Nε }

do k ≥ N →
{ [0≤K<N]/Nε }

Inner
{ [k=K] !k<N" [0≤K<N]/Nε }

od

{ [k=K] }

Fig. 6. Outer loop, with inner loop abstracted

The on-initialisation and on-termination arguments are trivial. The while-
iterating argument is as follows:

[k = K] " k < N # [0 ≤ K < N] /Nε invariant

· ≡ (
∑

0≤k<N [k = K]
+

∑
N≤k<$N [0 ≤ K < N] /Nε

) /δ"N

applying wp.Inner from (30), and $N ≥ N

≡ ([0 ≤ K < N]
+($N − N) [0 ≤ K < N] /Nε

) /δ"N

arithmetic

" [0 ≤ K < N] /Nε see below

" [k = K] " k < N # [0 ≤ K < N] /Nε assuming guard k ≥ N

The deferred justification in the second-last step is the information we need to
determine Nε: it is sufficient to have

(1 + ($N − N)/Nε)/δ"N ≥ 1/Nε

that is Nε ≥ N + (δ"N − $N) = N + E , say.

Developing and Reasoning about Probabilistic Programs in pGCL 153

6.6 Discussion

The “excess” E can be regarded as a price we must pay for the bias in our
random-bit source: because δ ≥ 2 and so δ"N ≥ $N , it is never negative; and,
as expected, if the bias ε is zero then δ is 2 exactly, making the excess E zero
as well.

Another special case is when N is an exact power of two, whence N = $N
and so Nε ≥ δ"N , again as one would expect.

As an example of the general case, we suppose our bit-source is up to 1%
biased either way, and we are using it to make uniform selections from 10 alter-
natives; then we would have

ε = .01
and N = 10 ,

hence δ = 1/0 .49 ≈ 2 .04 ,
E ≈ 2 .04 4 − 16 ≈ 1 .35

and Nε ≥ ∼11 .35

so that our conservative estimate gives each of our ten choices a guaranteed prob-
ability of just under one-in-eleven of being chosen. A more exact but informal
analysis in our earlier style would look at the actual bit patterns as follows. The
probability of setting k : = K within the inner loop is at least 1/δ4 ; otherwise
there is a guaranteed probability that k will be set “high” so that the inner loop
will be tried again, as in this table:

inner-loop outcomes where k is “high”

10− 1010
11− 1011

}
probability 1/δ3

12− 1011
13− 1100
14− 1101
15− 1111

probability 1/δ2

This leads to the inequality

x ≥ 1/δ4 + (1/δ2 + 1/δ3)x

giving Nε ≥ ∼11 .14—which is not much improvement for the extra trouble. In
general, exact calculations for the high-outcome probabilities would be unpleas-
ant.

7 Conclusion

It seems that a little generalisation can go a long way: Kozen’s use of expectations
and the definition of p⊕ as a weighted average [140] is all that is needed for a
simple probabilistic semantics, albeit one lacking abstraction. Then He’s sets of

154 Annabelle McIver and Carroll Morgan

distributions [131] and our min for demonic choice together with the fundamental
property of sublinearity [197] take us the rest of the way, allowing abstraction
and refinement to resume their central role—this time in a probabilistic context.
And as Sections 4 and 5 illustrate, many of the standard reasoning principles
carry over almost unchanged.

Being able to reason formally about probabilistic programs does not of course
remove per se the complexity of the mathematics on which they rely: we do not
now expect to find astonishingly simple correctness proofs for all the large collec-
tion of randomized algorithms that have been developed over the decades [201].
Our contribution—at this stage—is to make it possible in principle to locate and
determine reliably what are the probabilistic/mathematical facts the construc-
tion of a randomized algorithm needs to exploit. . . which is of course just what
standard predicate transformers do for conventional algorithms.

In practice however, one is interested not only in certain and correct termina-
tion of random algorithms, but in how long they take to do so. Such algorithms’
performance cannot be put within bounds in the normal way: instead, one speaks
of the expected time to termination, how long “on average” should one expect the
algorithm to take. When the algorithm is also nondeterministic (as in Rabin’s,
where no assumptions are made about the order or frequency of the tourists’
travels), the estimate would have to be “worst-case” expected.

And there is the larger issue of probabilistic modules, and the associated
concern of probabilistic data refinement. That is a challenging problem, with
lots of surprises: using our new tools we have already seen that probabilistic
modules sometimes do not mean what they seem [183], and that equivalence or
refinement between them depends subtly on the power of demonic choice and
its interaction with probability.

Other areas in which probabilistic semantics is relevant include concurrent-
and relational models. For the former there is an extremely large literature on
probabilistic labelled transition systems in the CCS style [148, 248, for example],
with (as usual) an emphasis on bisimulation; the denotational approach favoured
by CSP is represented by a smaller but no less elegant body of research [234,
172, 198, 190]. A connection between the latter and our sequential approach can
be made via action systems [195].

Probabilistic semantics has attractions for relational programming as well,
where programs are represented directly as relations between initial and final
states (or as predicates over them) as in the UTP (see Chapter 6). An attractive
generalisation is to replace the Booleans by real values, so that the “extended
relation” produces directly the probability of making a transition from a given
initial to a given final state; a challenge is to do this without losing the ability
to describe demonic nondeterminism as well.

Developing and Reasoning about Probabilistic Programs in pGCL 155

Exercise 6. Let n be a natural number. The loop

c,n: = H , 0 ;
do c = H →

c: = H 1/2⊕ T ;
n: = n+1

od

terminates with probability one, and can produce any positive integer as the
final value of n. Thus it is not image-finite, a condition normally considered
to be a “well-behavedness” criterion for sequential programs, and guaranteeing
their continuity.

But what do we mean by continuity in this context? Is the above program
continuous after all? If it is, can you give an example of a pGCL program that
is not?

Exercise 7. A more immediate approach to probabilistic semantics might be to
retain Boolean logic while extending the wp modality to include an explicit
lower-bound probability: thus

wpp .S .P (31)

would describe those initial states from which termination of S in a final state
satisfying P was guaranteed with probability at least p. (Free variables in p, if
present, would be resolved in the initial state.) Thus we could write for example
wp 1

2
.(c: = H 1/2⊕T).(c = H) to describe those states from which c: = H 1/2⊕T

is guaranteed to establish c = H with probability at least 1/2 (which is in fact
all states).

1. Write the precondition wpp .S .P in our logic of expectations, thus showing
that the latter is at least as expressive.

2. By considering the two programs

x : = A ! (x : = B 1/2⊕ x : = C)
and (x : = A ! x : = C) 1/2⊕ (x : = B ! x : = C) ,

show that in fact (31) is not expressive enough.

