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Abstract. Formal proofs of functional correctness and rigorous anal-
yses of fault tolerance have, traditionally, been separate processes. In
the former a programming logic (proof) or computational model (model
checking) is used to establish that all the system’s behaviours satisfy
some (specification) criteria. In the latter, techniques derived from engi-
neering are used to determine quantitative properties such as probability
of failure (given failure of some component) or expected performance (an
average measure of execution time, for example).

To combine the formality and the rigour requires a quantitative ap-
proach within which functional correctness can be embedded. Program-
ming logics for probability are capable in principle of doing so, and in
this article we illustrate the use of the probabilistic guarded-command
language (pGCL) and its logic for that purpose.

We take self-stabilisation as an example of fault tolerance, and present
program-logical techniques for determining, on the one hand, that termi-
nation occurs with probability one and, on the other, the the expected
time to termination is bounded above by some value. An interesting
technical novelty required for this is the recognition of both “angelic”
and “demonic” refinement, reflecting our simultaneous interest in both
upper- and lower bounds.

1 Introduction

Formal methods establishes correctness of a program (or system) by mathemat-
ical methods which have independently been proved sound. Ideally, a formal
verification should cover as much of the system’s construction as possible: be-
ginning with a specification that is so clear the user can have no doubt of its
meaning; and ending with an implementation that is so concrete the manufac-
turer can have no doubt of how to build it. With the caveat that there always is
a gap at either end (“Is this the right specification?” — “Has the implementa-
tion been correctly transliterated?”), traditional formal methods concerns itself
with so-called “absolute” correctness: a successful formal development ensures
(modulo the caveats) that the program will satisfy its user every time.

Fault tolerance has a matching traditional form, where the unavoidable fail-
ures that reality serves up —in spite of all our efforts— are handled by backup
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mechanisms, redundancy, etc. whose aim is to make that so-called “absolute”
correctness in fact as likely as possible. That is, independent of formal methods
(and with a much longer history), the techniques of risk- and failure analysis are
used to take account of statistical, that is quantitative information about possi-
ble component-failures and, from it, to derive an estimate about the reliability
of the system as a whole.

Our recent work (about ten years [12,10]) has been to address that phrase
“independent of formal methods”, and the contribution of this article is to illus-
trate some of the progress that has been made. We choose self-stabilisation as a
fault-tolerance paradigm, and show to what extent quantitative behaviour can be
included in formal reasoning about correctness, rather than being independent
of it or an adjunct to it.

Self-stabilisation is a compensating mechanism for systems prone to faults
which are either too expensive or impossible to eliminate: when a fault occurs,
and is detected, the system automatically takes steps to return itself to a state
from which the fault has been removed. The “fault-free” state is considered
stable in the sense that an absolute-correctness argument has established (or is
supposed to have established. . .) that the system will not itself introduce faults
through programming error.

The context for self-stabilisation is usually algorithms which are physically
distributed, and “good style” generally dictates that the stabilisation process be
symmetric and (hence) to some extent randomised deliberately. Symmetry is to
avoid “weak links” whose failure on their own could bring down the whole system;
but that symmetry itself introduces a problem because the stable configurations
are asymmetric — and only randomisation can take a symmetric system to an
asymmetric one.1

There are two especially important aspects of randomised algorithms: with
what probability are they correct; and how long should we expect them to take.
The technical theme of this paper is to show how to deal with those issues in a
programming logic, i.e. formally. In particular, we investigate the following:

1. The theoretical foundations for reasoning at the source-code level about
worst-case, i.e. upper bounds for expected performance of random algo-
rithms;

2. A sound program-logic rule for estimating those bounds;
3. Practical techniques for using annotations to prove the bounds; and
4. Two case studies illustrating the techniques in action.

One case study deals with expected time to termination (where termination
itself is obvious); the other, a more complicated situation, concentrates on show-
ing termination itself.

A key methodological aspect is the prominent role of refinement in our anal-
yses: rather than proving performance properties of “direct” representations of

1 That is why coins are used in cricket matches: the symmetric state is that the two
teams have equal right to bat first; but the outcome —where just one team does
so— is asymmetric, and is brought about by the coin flip.
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the algorithms, we prove properties of their abstractions. Working with abstrac-
tions makes the reasoning more tractable but, most importantly, relies on the
properties’ being preserved by refinement. That means of course that the refine-
ment rules must be carefully formulated to do that, depending on the properties
in question; in our case here, that accounts for our use of angelic nondetermin-
ism when in Sec. 3 we are trying to preserve upper- (rather than the more usual
lower) bounds.

We use the these notations. Function f applied to argument x is written f.x,
where the dot “.” is left-associative. This allows for example f.g.x rather than
(f(g))(x) .

A discrete probability distribution d over a set X is a one-summing function
from X into [0, 1], thus assigning probability d.x to point x.

For some x ∈ X the point probability distribution “x with probability one” is
written x; for a subset X ′ ⊆ X the characteristic function taking 1 on X ′ and 0
on the remainder X−X ′ is written [X ′].

Under abuses of notation we collect the following: for the characteristic func-
tion of a point we write [x] rather than [{x}]; for the probability of a set we
write d.X ′ rather than

∑
x∈X′ d.x; for the expected value of a function over a

distribution we write d.f rather than
∑

x∈X(d.x × f.x).
Where context supplies unambiguously a predicate language for describing

subsets, we write predicates directly for the subsets they denote. Thus for exam-
ple if X is a state space and d a distribution over it, and (say) for some variables
a, b the predicate a > b denotes a subset of X ′ of X , then we write freely a > b
where X ′ might be expected — whence d.[a>b] is the probability that a > b
holds in distribution d over X .

2 Performance-Style Properties in pGCL

When systems operate within random contexts their properties can no longer be
guaranteed absolutely, but only up to some probability. The program fragment

x : = 0 1/4⊕ x : = 1 , (1)

for example, does not guarantee to set variable x to 0 under any (initial) condi-
tion — the probabilistic choice operator “1/4⊕” describes the flip of a (1/4, 3/4)-
biased coin, so that operationally either 0 or 1 will be observed, but it is im-
possible to predict which. The only guarantee is probabilistic, in this case that
“with probability 1/4, x will be set to 0 if the program fragment is executed”.
What this means in practice is that over a large number of experiments, the
ratio of recorded 1’s and 0’s will be approximately 3, up to statistical confidence
measures [16].

A formal description of that behaviour —the operational semantics— takes
the form of a transition-system model of programs combined with probabil-
ity. The model characterises program execution as causing the state to change,
though for probabilistic programs the precise state change can be decided by a
coin flip. Thus an operational model for a probabilistic program is a function
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which maps an (initial) state to a (set of) probability distributions over final
states. For example the program at (1) above maps any initial state s to a single
result distribution d where d.s0 = 1/4 and d.s1 = 3/4. (Here s0 and s1 are states
in which “x = 0” and “x = 1” respectively, but otherwise agree with s.) Given
the details of the model we can, for example, determine the probability with
which the above property “x is set to 0 finally” is established when the program
executes: all we need do is evaluate d.[x = 0], where d is the distribution of final
states of the program, since from standard probability theory it is the probabil-
ity that the predicate “x = 0” holds with respect to d. In this case the answer
is 1/4.

Although the operational semantics is indeed a faithful model of program
behaviour, in practice —from a prover’s perspective— it is too complicated to
use as the basis for deriving properties of any intricacy. This becomes apparent
when general program features are included in the the programming language,
such as Boolean choice, nondeterminism, sequential composition and iteration.
Better is to use the dual semantics —the so-called expectation transformers—
which focusses directly on program properties, rather than on the details of the
probabilistic transitions which imply them.

We use the expectations as a generalisation of predicates; they are defined to
be the set of real-valued functions ES from the state space S to the reals R, and
they are ordered by lifting ≤ so that we say A � A′ if, for all s ∈ S, we have
A.s ≤ A′.s. They generalise Boolean predicates if the latter are considered as
characteristic functions S → {0, 1} with false being zero and true one, in which
case � generalises ⇒ as well.

To appreciate the duality we rationalise the above calculation, this time con-
centrating on properties rather than transitions. First of all, we use expectations
to express properties rather than predicates. This immediately allows us to re-
gard programs as transforming expectations consistent with their operational
semantics. We write wp.(x : = 0 1/4⊕ x : = 1) for the expectation transformer as-
sociated with (1), which must now be defined in such a way that it transforms
the post-expectation [x = 0] to the pre-expectation 1/4; more precisely we say
that

1/4 ≡ wp.(x : = 0 1/4⊕ x : = 1).[x = 0] .2

In general, if Prog is a program, PostE a post-expectation, and s an initial state,
then wp.Prog.PostE.s is defined to be the “greatest guaranteed expected value of
PostE with respect to the result distributions of program Prog if executed from
initial state s”. We often make use of the familiar Hoare-triple format to say the
same thing for all initial states at once; thus we would write equivalently

{PreE} Prog {PostE} . (2)

We say that Prog has been correctly annotated with a pre-expectation PreE and
post-expectation PostE just when PreE � wp.Prog.PostE.

The full definition of wp, as a mapping from program texts to to expecta-
tion transformers, is set out at Fig. 1. We use the small programming language
2 The underline is an indication that choice is interpreted demonically.
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pGCL [11] an extension of GCL [3] with probabilistic choice. The definitions are
almost identical to the Dijkstra’s original predicate transformers, the difference
being that we use a domain of expectations based on the � order, rather than
predicates and implication. This means, conveniently, that the only apparent dif-
ferences are that the definitions use arithmetical- rather than Boolean operators.
Nondeterministic choice, for example, takes the minimum of its two arguments.
The new operator probabilistic choice is parametrised by a real 0 ≤ p ≤ 1 and
takes the p-weighted average of its arguments.

skip wp.skip.A =̂ A ,
abort wp.abort.A =̂ 0 ,
assignment wp.(x : =E).A =̂ A[E/x] ,
sequence wp.(r; r′).A =̂ wp.r.(wp.r′.A) ,

probability wp.(r p⊕ r′).A =̂
p ∗ wp.r.A + (1−p) ∗ wp.r′.A ,

nondeterminism wp.(r[]r′).A =̂ wp.r.A � wp.r′.A ,

Boolean choice wp.(if B then r else r′ fi).A =̂
[B] ∗ wp.r.A + [¬B] ∗ wp.r′.A ,

iteration wp.(do B → r od).A =̂
(μX · [B] ∗ wp.r.X + [¬B] ∗ A) .

A is an expectation, E is an expression in the program variables, and a term (μX ·f.X)
refers to the least fixed point of expectation-to-expectation function f with respect
to �. These definitions are dual to an operational model based on the state-to-
distribution semantics [12]. We define (demonic) program refinement so that wp-
properties are preserved.

r � r′ iff (∀A : ES | wp.r.A � wp.r′.A) .

Fig. 1. Structural definitions of wp for pGCL

Nondeterminism is distinguished fromprobabilility in the programmodel—un-
like probability it represents truly unquantifiable uncertainty present in the sys-
tem. This distinction leads to a logic of programs based on arithmetical properties
of transformers, in which the presence of nondeterminism can be characterised by
the failure to distribute addition. In Fig. 2 we set out the full transformer logic;
the rules play the part of the “healthiness conditions” used by Dijkstra in his origi-
nal presentation of the predicate transformers. Intuitively they characterise “legal
computations” — mathematically they define the common rules satisfied exactly
bywp−images of programs [12]. For practical purposes this kind of “completeness”
means that the prover is at liberty to appeal to any rule in Fig. 2 without disturbing
the integrity of his proof.
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subadditivity wp.Prog.(A + B) � wp.Prog.A + wp.Prog.B ,
scaling wp.Prog.(k ∗ A) ≡ k ∗ wp.Prog.A ,
constants wp.Prog.(A � k) � wp.Prog.A � k .

A, B are expectations, k is a non-negative real, and Prog is a program. The function
� is defined by

A � k =̂ (A − k) 	 0 .

Fig. 2. Axioms of the expectation transformer logic [12]

The decision to interpret nondeterministic choice as the minimum applies
when lower bounds on guarantees are sought: one typically proves that a program
establishes a postcondition with at least some probability. In standard logic
this is reduces to the usual total correctness, where the postcondition is to be
established with probability (at least) one.

For example the program

faultyFlip =̂ (x : = 0 1/3⊕ x : = 1) [] (x : = 0 2/3⊕ x : = 1) , (3)

represents the program that flips for the value of x with a probability that varies
between the specified bounds, so that x is set to 0 with probability anywhere
in the range [1/3, 2/3]. Thus we can regard faultyFlip as modelling a coin which
does not behave like one which can exhibit an exact distribution of 0’s and 1’s
(a feat which in any case is impossible to achieve in practice), but rather more
realistically one which can approximate a probability distribution within error
bounds. As suggested above, and from application of the definitions at Fig. 2,
we have that wp.faultyFlip.[x = 0] is 1/3, since all probabilistic transitions give
a probability that x is set to zero of at least 1/3 (even the right-most transition
at (3)).

In some cases however we are interested in bounding the probabilistic proper-
ties from above, and for that we need to interpret the nondeterminism as maxi-
mum. Once we do that, refinement —corresponding to a reduction in the range
of nondeterminism— means that upper bounds decrease.3 The next definition
supplies the details.

Definition 1. The greatest possible expected value of A on execution of Prog
is given by wp.Prog.A, where wp interprets all nondeterminism angelically: def-
initions in Fig. 2 remain the same except for nondeterminism which becomes

wp.(r[]r′).A =̂ wp.r.A 	 wp.r′.A .

3 This raises the question of whether “flipping” of nondeterminism from minimum to
maximum should make us flip our fixed points from least- to greatest as well; we
can do either, depending on how we want to interpret the performance metric in
the case of non-termination. However when termination occurs with probability one
(actually a slightly stronger condition [10, Sec. 2.11.1]) the fixed-points are the same,
and that is the case here.
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Angelic refinement decreases wp-properties.

r � r′ iff (∀A : ES · wp.r.A � wp.r′.A) .

To see Def. 1 in action we can consider the upper bound on the probability
that faultyFlip can establish [x = 0].

wp.faultyFlip.[x = 0]
= (x : = 0 1/3⊕ x : = 1) [] (x : = 0 2/3⊕ x : = 1).[x = 0] (3)
= wp.(x : = 0 1/3⊕ x : = 1).[x = 0] 	 wp(x : = 0 2/3⊕ x : = 1).[x = 0] Def. 1
= 1/3 	 2/3
= 2/3 .

We write
{| PreE |} Prog {| PostE |} , (4)

to mean that PreE � wp.Prog.PostE, or “PreE is an upper bound on the greatest
possible expected value of PostE after executing Prog”.

As we shall see in the next section, for performance-style properties we are
more interested in upper bounds.

3 Estimating Performance-Style Properties

The use of probability in many distributed algorithms and protocols is only to
guarantee termination [5,14] — in these cases a proof of termination can often
boil down to the behaviour of a finite-state probabilistic process, and techniques
for proving termination with probability 1 are explored in detail elsewhere [10].
The idea is to combine the notion of a standard program variant with probability
theory, so that now a termination variant may either increase or decrease within
some finite range of values provided that there is always some fixed probability
with which it is guaranteed to decrease.

We summarise the main steps in a probabilistic proof rule [10, p.191]. Let V
be an integer-valued expression in the program variables. Suppose further that

1. there are some fixed integer constants L (low) and H (high) such that L ≤
V ≤ H is an invariant of the loop, and

2. for some fixed probability ε > 0, and for all integers N we have

ε[G ∧ (V = N)] � wp.body.[V < N ] .

Then termination is certain everywhere.
Next we study the expected time to termination, and how to reason about it

in a Hoare-style framework.
We begin with the simple case of faultyFlip inside a loop

faultyLoop =̂
do x = 1 → (x : = 0 1/3⊕ x : = 1) [] (x : = 0 2/3⊕ x : = 1) od ,
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and consider how to compute the expected number of times the loop body must
iterate until x is set to 0. Using our definitions we see that, if we add a fresh
variable n which is updated at the end of every iteration, so that

faultyLoopn =̂ do x = 1 →
(x : = 0 1/3⊕ x : = 1)[](x : = 0 2/3⊕ x : = 1);
n : = n + 1

od ,

we may compute the least expected number of iterations by evaluating

wp.(n : = 0; faultyLoopn).n .

Here n, as a postcondition, is simply the expectation which returns the value
of n in its current state. However, if we now imagine that faultyLoop is used to
guarantee termination in a distributed protocol, we would be more interested in
the greatest expected number of iterations.

Definition 2. The greatest expected time to termination of a loop with termi-
nating body

loop =̂ do B → Prog od ,

is given by
T (loop) =̂ lim

N≥1
(wp.loopN .n) ,

where

loopN =̂ do (B ∧ n < N) → Prog; n := n + 1 od .

In fact Def. 2 computes the longest expected execution path until termination.4

Combining the above results reveals a rule for proving upper bounds on worst-
case expected performance of programs.

Lemma 1. Let loop be defined by

loop =̂ do B → Prog od .

If E is an expectation such that

{| [B] × (E−1) |} Prog {| E |}, 5 (5)

then T (loop) is bounded above by E. We call such an expectation a bounding
variant.
4 The reason we take an explicit limit is to avoid arithmetic with ∞ in Fig. 1’s defi-

nition of loop semantics.
5 Often in proving properties of a loop body it’s convenient to assume truth of some

predicate whose invariance is proved separately via standard (i.e. non-probabilistic)
wp [10, Lem. 1.7.1]. That technique applies here also.
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Proof. We show that wp.loopN � E +n, and the result then follows from Def. 2
(where as before n is a fresh variable, so that E is independent of it). First we
show that [¬B ∨ n = N ] × n + [B ∧ n < N ] × wp.Prog.(E + n) � E + n, as
follows:

[¬B ∨ n = N ] × n + [B ∧ n < N ] × wp.Prog; (n : = n + 1).(E + n)
≡ [¬B ∨ n = N ] × n + [B ∧ n < N ] × wp.Prog.(E + n + 1)
� [¬B ∨ n = N ] × n + [B ∧ n < N ] × (E + n) (5), (4), arithmetic
� E + n . 0 � E

Appealing now to the least fixed point property, we see that wp.loopN � E + n,
as required.

To see Lem. 1 in action, we consider the expected number of iterations of fault-
yLoop above. We note that

{| 2[x = 1] |} faultyFlip {| 3[x = 1] |} , (6)

since

wp.faultyFlip.(3 ∗ [x = 1])
≡ 3 ∗ wp.faultyFlip.[x = 1] wp distributes scalars
≡ 3 ∗ 2/3
≡ 2 .

Thus we are able to deduce that, for any execution of the nondeterminism
in faultyLoop, it must terminate after performing on average no more than 3
iterations.

In this section we have illustrated some general results for deducing the
expected-performance-style properties of programs. Our approach is to anal-
yse an abstraction of the program, then using program refinement to associate
the results with a refinement.

Whether we use the program logic for demonic � or angelic � refinement de-
pends on whether we are concerned with correctness (demonic: postcondition
established with probability at least some p) or performance (angelic: expected
iterations is at most some N). In either case, since refinement preserves program
properties we see that if we prove termination with probability one of the ab-
straction, then any demonic refinement will also terminate with probability one.
Similarly any upper bound or worst case behaviour of the abstraction is also an
upper bound or worst case behaviour of any angelic refinement.

Note that “removing []” achieves both forms of refinement simultaneously, as
one would expect: our separation of the two is so that we do not have to calculate
both if in fact we’re interested in only one of them.

4 Case Study: Self-stabilisation Algorithms

We illustrate the above techniques on two case studies. The first is a leadership-
election protocol, in which the stable states are those where exactly one of N
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participants is the leader, allowed by convention then to take certain actions
on behalf of the group; an unstable state is one where there is no leader or
several (aspiring) leaders, perhaps due to hardware failure; and the stabilisation
algorithm is to bring about the exactly-one-leader situation again. We analyse
the expected time for the election to complete.

The second case study is a general network in which tokens circulate (an
abstraction of many distributed algorithms); unstable states are those in which
there are several tokens; stable states are those in which there is exactly one.

The difference between the two studies is that in the first, the communi-
cation pattern is regular (all-to-all) and the unstable state is presumed to be
detected somehow, leading to the initiation of the stabilisation protocol. In the
second, the network and communication patterns are so general that we can
only hope to establish termination (and not expected time to it), and the stabil-
isation algorithm is running continuously, without any need to detect unstable
states.

4.1 A Leadership-Election Protocol

Our first example is a leadership-election protocol [1, Sec. 8.5.4] for a totally
connected network of processes; we show that its expected number of rounds to
stabilisation is constant.6

We first give an informal description of the protocol.

Informal description and formalisation. A number N of processes are to elect
a single leader. On each round, each process chooses a number k for itself, uni-
formly from 1..N , and sends its choice to all other processes. Each process then
separately acts as follows:

– If no process chose 1, then it enters a new round.
– If some processes chose 1, but it did not, then it drops out.
– If it and possibly other processes chose 1, it enters a new round.

The election is finished when only one process remains. We formalise the protocol
in Fig. 3; more detailed descriptions would be angelic refinements of this one.

Rapid termination. We note first that the protocol of Fig. 3 terminates expo-
nentially fast, that is the chance of its taking more than some number of steps
M is exponentially small in M .

6 The earlier example of cricket can illustrate rounds, and expected time to termina-
tion. The normal protocol is not symmetric, because one team flips and the other
calls. But the time to termination is exactly one flip.

A truly symmetric protocol would employ three coins, and both teams and the
referee would flip all at once: the winning team would be the first to flip a face
different from the other two. This protocol has constant expected time to termination
of two rounds of three simultaneous flips each, assuming the coins are fair. (It still
works if the players’ coins are unfair —one never knows— but then it could take
longer.)
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1 n : =N
2 do n > 1 →

3 n′ :∈ {k : 0..n @
(

n
k

)

× (n−1)n−k/nn}

4 if n′ �= 0 then n : =n′ fi
od

1— Initially all N processes participate; subsequently n is the number (still) partici-
pating at any point, and n decreases over time as processes drop out.

2— Termination occurs when only one process remains, and it becomes the leader.
(Note that 1 ≤ n ≤ N is an invariant.)

3— Here with operator :∈ we choose n′ from a distribution, indicated by a set-like
comprehension (bound variable k) but containing an @ for “with probability”
(instead of a | for “such that”), in which the probability of there having been
being k processes that chose 1 (out of 1..n) is explicitly given.

4— If no processes chose 1, then they all go on to the next round (and n is not
changed); if at least one processor chose 1, then it and any others similarly go on
to the next round. (Note therefore that they all go ’round again in two cases: all
chose 1, or none did.)

Fig. 3. Leadership election protocol

Sufficient for that is a bounded-away-from-zero probability of termination on
any single iteration. That is trivial, by inspection, as the probability of setting
n′ to 1 is just

(
n
1

)

× (n−1)n−1/nn = (n−1/n)n−1

which, being anti-monotonic in n, is bounded below by (N−1/N)(N−1) no matter
what value n has as the loop continues to execute.

Expected iterations. We now show that the expected number of iterations is
constant. We assume that constant to be some E, and by a schematic proof find
suitable conditions for it. Since termination occurs in zero steps when n = 1, we
choose our bounding variant to be

E × [n > 1] ,

and from Lem. 1 we must show that n > 1 (the guard) implies

E × [n > 1] − 1 � wp . “3;4 in Fig. 3” . (E × [n > 1]) .
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Here is the calculation:

E × [n − 1]
· ≡ if n′ �= 0 then E × [n′ > 1] else E × [n > 1] fi applying wp.(4)

· ≡ (
∑

k : 1..n · E × [k > 1] ×
(

n
k

)

× (n−1)n−k/nn)

+ E × [n > 1] ×
(

n
0

)

× (n−1)n/nn

applying wp.(3)

≡ E × (
∑

k : 2..n ·
(

n
k

)

× (n−1)n−k/nn)

+ E ×
(

n
0

)

× (n−1)n/nn

arithmetic; assumption n > 1

≡ E × (1 − ((n−1)/n)n − ((n−1)/n)n−1

+ E × ((n−1)/n)n
arithmetic

≡ E × (1 − ((n−1)/n)n−1) arithmetic
� E × [n > 1] − 1 assume n > 1 and 1 ≤ E × ((n−1)/n)n−1

Our assumption, rearranged, is that for n ≥ 2 we have

(n−1/n)n−1 ≥ 1/E ,

a property that holds for the “real” e = 2.718 · · ·
Thus we have shown that the protocol terminates in expected constant time

no more than e, that is just under 3, rounds. If the rounds themselves cost time
N each (for the exchange of N messages), then the expected time complexity of
stabilisation is no more than 3N .
A more severe abstraction. There is however an alternative approach, in which
our initial description of the algorithm is “more severely abstracted” — we note
merely whether n = 1 or not. Letting Boolean b record that abstraction, our
algorithm is transformed into the one shown in Fig. 4.

Fig. 4. Leadership election protocol, more severely abstracted

We justify the abstraction by noting that the only command that sets n to 1
in the original (3; 4) does so with probability

(
n
k

)

× (n−1)n−k/nn =
(

n−1
n

)n−1

when k = 1,

1 b : = (N > 1)
2 do b →
3 b : = false

≥ (N−1
N

)N−1⊕ skip

od

1

1

(N−1
N

)N−1

1/e
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that we know n ≤ N , and that the expression shown is anti-monotonic in n
(tending to 1/e from above), so that the n = N case —as appears in the ab-
stracted algorithm— is indeed the most pessimistic value.

The expected number of rounds here is then no more than the inverse of that
probability, which tends to e from below as N increases without bound.

But is this easier, really? The work to prove the soundness of the abstraction
Fig. 4 is probably the same as required to do the earlier calculations anyway.

4.2 A Token-Graph Stabilisation Algorithm

As a second example we treat a more general situation whose exact behaviour is
quite complex but for which, nevertheless, proof of termination is still possible
using the techniques we have explained.

Informal description. There is a strongly connected directed graph with N
nodes; each node is either full (contains a token) or empty (doesn’t). An ad-
versarial scheduler (but fair — see below) repeatedly selects some single node to
take a step:

– If the node is empty, nothing happens.
– If the node is full then it chooses between keeping its token or passing it

one step along an outgoing edge. The choice is made probabilistically, with a
fixed non-zero lower bound applied to each alternative (including keeping).
(Note that if the lower bounds sum to less than one, the node can itself
act demonically — thus we have demonic choice potentially in both the
scheduling and in the nodes’ actions.)

Any node receiving a token becomes full (but never “over-full” — multiple
tokens reduce to one).

The adversarial scheduler. We allow the scheduler to choose nodes demonically,
except for the following fairness constraint. Say that a node’s priority is the
number of steps since it was last scheduled: we require that for some fixed con-
stant (trigger) T the scheduler must schedule nodes of priority at least T before
any of priority lower than T .

This is a realistic policy (could easily be implemented), and if T is large it
allows the scheduler a great deal of choice.

With suitable T ≥ N > 1 the policy maintains the invariant (I1 ) that all
priorities are no more than (a maximum) M = T+N , which in turn gives an
easy variant to show that no node is forever overlooked. To prove the invariant
we need a subsidiary invariant (I2 ), that

if there is a node with priority p satisfying T ≤ p ≤ M , then there are
at least p−T nodes with priority below p−N .

Truth of I1 is immediate from I2 and the fact that there are only N nodes:
assume for a contradiction that some “high” node has priority p more than M ;
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then from I2 there would be more than M − T = (T + N) − T = N nodes with
priority below p−N . Since there are only N nodes overall, that is a contradiction.

Preservation of I2 is argued as follows. Suppose a step has just been taken,
and consider all nodes in turn, just after a step has been taken: all nodes will have
“new” priority one more than their “old” priority, except for the one scheduled,
whose new priority will be 0.

If a node’s new priority p satisfies p < T , then I2 is true trivially (false
antecedent); if it satisfies p = T then I2 is again trivial (there are at least zero
nodes satisfying anything).

In the remaining case where the new priority p satisfies T < p ≤ M then
—because p−T has increased by one— we must show there to be one more node
prioritised below p−N after the step than there were below (p−1) − N before
the step. Since all not-scheduled nodes below (p−1) − N before are (still) below
p−N now, and also the just-scheduled node is below p−N now with its new
priority 0 satisfying 0 < p−N (because p > T ≥ N), we need only show that
the just-scheduled node was not below (p−1) − N before.

Suppose the just-scheduled node had priority p′ before. Since T < p now,
we know that T ≤ p′, since otherwise by the policy p′ would not have been
scheduled instead of p. We reason

p′ �< (p−1) − N
iff p′ ≥ (p−1) − N
if T ≥ (p−1) − N p′ ≥ T

if T ≥ (M−1) − N p ≤ M

iff T ≥ (T+N−1) − N M = T+N

iff T ≥ T−1 ,

which concludes the argument for maintaining I2.

Formalisation of the protocol. Say that a full cover of the nodes is a directed
path in which all full nodes appear; its size is the number of nodes in it (including
of course any empty ones along the way). A minimal full cover (MFC ) is a full
cover of minimum size; and the minimum cover size (MCS ) is the size of a
minimal full cover.

We say that a node is a straggler if it is the trailing node of someMFC. The impor-
tance of stragglers is that, if scheduled, they will with non-zero probabilitydecrease
the MCS by choosing to move one edge along the MFC they are at the end of.

Let NId be a set of (unique) node identifiers, so that #NId = N . Function
pr : NId → N gives the priority of each node, zeroed whenever it is scheduled
and incremented otherwise.

The set sgs : PNId contains the NId ’s of the stragglers. Natural number mcs : N

is the minimum cover size; note that if mcs = 1 then there is only one full node,
and the algorithm should terminate.

In Fig. 5 is a program giving the behaviour of these variables; more detailed
descriptions would be demonic refinements of this one. It turns out, surprisingly,
that we do not have to keep track of which nodes are full: information about sgs
is enough.



302 C.C. Morgan and A.K. McIver

pr : = 0; // All nodes’ priorities initially zero.
do mcs > 1 →

// — Book-keeping of priorities; selection of token; fairness constraint. —
1 pr : = pr + 1; // Increment all priorities. . .

n :∈ NId; // . . . but then choose one node. . .
pr.n : = 0; // . . . and schedule it.
[pr ≤ M ]; // Require for fairness that no priority is too large.

// — Movement of selected token: straggler, or not? —
if n ∈ sgs → // If the scheduled node is a straggler. . .

2 (mcs :<1 mcs // . . . then it might decrease mcs. . .
≥p⊕ // . . . but if it moves the wrong way. . .

3 mcs :≤1 N ); // . . . then anything goes.
4 sgs :⊆1 NId // Either way, the stragglers can change.

[] n �∈ sgs → // If it’s not a straggler. . .
5 ( skip // . . . then it might stay where it is. . .

≥p⊕ // . . . but, if not, again. . .
mcs :≤1 N ; // . . . anything goes. . .
sgs :⊆1 NId ) // . . . and stragglers can change if it moved.

fi
od

Assignments and tests to pr as a whole operate pointwise: thus (pr + 1) increments all
priorities, and (pr ≤) bounds all priorities.

The “coercion” [pr≤M ] acts as a miracle (in theory causing backtracking) if its pred-
icate is false, having the effect thus of forcing earlier nondeterminism —if possible—
never to make it false. The nondeterminism in this case is the selection n:∈NId of the
node to schedule, and our earlier argument establishing I1 simply shows that there are
non-backtracking implementations of the nondeterminism which make the scheduling
feasible.

The assignments :<1, :≤1and :⊆1 are nondeterministic choices according to the relation
given, but requiring that the result be at least 1, or non-empty, as appropriate.

Note that in the n ∈ sgs alternative the assignment to sgs occurs unconditionally; in
the n �∈ sgs alternative, it occurs only with probability < p.

Fig. 5. Stabilisation of token network: abstraction

Termination of the algorithm. Define V0 to be the maximum over all n ∈ sgs of
pr.n; this cannot exceed M . Define V1 to be mcs. Then the termination variant
overall is lexicographic, with V0 ascending and V1 descending:

V0 =̂ (� n : sgs · pr.n)
V1 =̂ mcs

V =̂ V1 × (M+1) − V0 .
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The mcs is just 2. One wrong move,
and the mcs is 7.

The directed network is connected as shown; note the uni-directional arc at bottom
right. Nodes in a minimal cover are shown double-bordered, and the cover’s arcs are
double-arrowed.

On the left, the mcs is just two, and the algorithm is “near” termination: both full
nodes are min-stragglers. We suppose the right-hand min-straggler is selected but —
unfortunately— the probabilistic choice ≥p⊕ goes against us, and Statement 3 is exe-
cuted for that node.

As a result the small minimal full cover is replaced by a very large one, and the variant
V has increased substantially, by approximately 5M (where M , recall, is the fairness
parameter for scheduling).

The virtue of the probabilistic variant is that these complex situations do not matter
for termination —they can be ignored— as long as their probability of occurrence is
bounded away from one.

Fig. 6. A straggler moves “the wrong way”

This variant is bounded below by zero because V1 is at least 1 (loop guard)
and V0 never exceeds M (invariant I1, enforced by the coercion).

Thus for termination with probability one it is sufficient to show that on each
iteration V strictly decreases with non-zero probability. Informally we argue that
there are two cases:

– A straggler is scheduled, in which case with probability at least p the sub-
variant V1 decreases by at least one (Statement 2). Sub-variant −V0 can
increase (Statement 4), but not by more than M . Hence overall V decreases
by at least 1.

– or a non-straggler is scheduled, in which case with probability at least p
sub-variant V1 is unchanged (Statement 5), but sub-variant −V0 has (al-
ready) decreased by 1 (Statement 1). Again, V must decrease with non-zero
probability.

Those two cases are sufficient to establish termination with probability one.
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Illustration of the complexity avoided. Once the termination variant is found, the
termination argument (as usual) is very straightforward. Recall however that
we are illustrating novel probabilistic variant techniques, and that the control
of complexity they provide was “designed in” by analogy with their standard
versions, and we are taking advantgage of it.

Consider for example the case where a straggler is scheduled but (with prob-
ability < p) it moves “the wrong way” (Statement 3) and does not act to reduce
the minimum cover size: this situation is illustrated in Fig. 6 for a simple directed
ring topology. Although the variant can increase enormously (by approximately
5M in the figure), the probabilistic-variant technique ensures that those situa-
tions need not be analysed if probability-one termination is all that is required.

5 Conclusions

We have illustrated how the expectation-transformer approach to verification
can be used to calculate both correctness and performance-style properties of
probabilistic programs by reasoning at the source-code level. The fact that re-
finement is an integral part of the expectation transformers means that we may
transfer proved properties of the abstraction to any refinement, a feature which
separates us from other approaches to program verification, such as model check-
ing [13,6,8]. This effectively allows us to use “lightweight” methods, leaving the
bulk of the formality to a proof of refinement, and techniques for expediting that
are addressed elsewhere [10], some of which have mechanised support [7].

In standard program semantics the use of a program variant is sufficient to
supply both an upper bound on performance (number of iteration of a loop) as
well as termination. In the probabilistic systems, it appears at first that the two
must be separated — but in fact the bounding variant is the more general [2],
although the termination variant is rather easier to use.

Other systems using refinement for performance include Hallerstede et al. [4]
and Sere et al. [15].
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