
Proofs and refutations for probabilistic systems

AK McIver1?, CC Morgan2 ?, and C Gonzalia1 ?

1 Dept. Computer Science, Macquarie University, NSW 2109 Australia
2 School of Comp. Sci. and Eng., Univ. New South Wales, NSW 2052 Australia

Abstract. We consider the issue of finding and presenting counterexam-
ples to a claim “this spec is implemented by that imp”, that is spec v imp
(refinement), in the context of probabilistic systems: using a geometric
interpretation of the probabilistic/demonic semantic domain we are able
to encode both refinement success and refinement failure as linear satis-
faction problems, which can then be analysed automatically by an SMT
solver. This allows the automatic discovery, and then presentation, of
counterexamples in independently and efficiently checkable form.
In many cases the counterexamples can subsequently be converted into
“source level” hints for the verifier.
Keywords: Probabilistic systems, counterexamples, quantitative pro-
gram logic, refinement, constraint solving.

1 Introduction

One of the strengths of standard model checking is its ability to produce coun-
terexamples as concrete evidence that an implementation or model of a system
fails to meet its specification. Moreover in some cases the counterexample can
aid debugging by pointing to possible causes of the problem [2].

Unfortunately, with probabilistic model checking there is not yet an accepted
definition for what a counterexample should be, nor is there a tradition for
using counterexamples for debugging. In particular, a single computation path
or trace is not normally sufficient counterevidence: it is more likely to be a
cumulative trend over many traces that leads to suspect behaviour [8], suggesting
a probabilistic computation tree as a candidate for a counterexample. A tree
however cannot easily be presented as a cogent summary of the possible faults,
nor does it indicate how to correct them.

The theme of this paper is a novel approach to presenting counterexamples
in the context of probabilistic systems, and how it can be used in practice. Our
proposal is guided by the following principles which, we believe, are qualities any
good counterexample should possess:

P1 A counterexample should produce a certificate of failure that is easy to check,
independently of the tool that found it; moreover,

P2 As far as possible the certificate should relate directly to the program text
or system model; and finally,

? We acknowledge the support of the Australian Research Council Grant DP0558212.

P3 It should direct the verifier to the possible causes of the problem.

In system verification there is a great variety of behaviours. Whilst identify-
ing the “bad behaviours” amongst the complete set might be hard in the first
instance, once observed they should be immediately recognisable as such — in
this context that means the counterexample should be checkable with minimum
effort. This suggests P1 and P2. Principle P3 is included as it has the potential
to be extremely useful as a debugging tool.

The current proposals [7, 8] for counterexamples in probabilistic systems sat-
isfy none of these properties, largely because they are based on probabilistic
trace semantics — whilst (sets of) traces do provide evidence, they are neither
easily verifiable, nor can they be directly related to the original system model.

Our approach is based on the refinement style of specification exemplified
by the refinement calculus [14, 1] extended to include probability [15, 12]. In
this style a specification spec is a heavily abstracted system, which is so simple
as to be “obviously correct,” whereas an implementation imp is more detailed,
including distributed features or complicated program-code intended to realise
some optimisation. Once a set of observable behaviours is agreed on, one writes
spec v imp, that spec is refined by imp, to mean that all possible behaviours of
imp are included in those of spec.

Our main concern in this paper is when such a hypothesised refinement fails
in the probabilistic case. We consider the problems of what constitutes good
evidence to refute a refinement, and how can it be used to help the verifier solve
the problem, possibly by changing one of spec or imp. (The former is changed
when the counterexample reveals that spec is too demanding, and the latter
when imp contains genuinely incorrect behaviours.)

Our specific contributions in this paper are thus as follows.

1. A description (Sec. 4.3) of how a counterexample to a proposed probabilistic
refinement may be encoded as the failure to satisfy a quantitative property;
it is a term in the quantitative program logic of Morgan and McIver [12];

2. An implemented procedure (Sec. 4) to compute the semantics of a small
probabilistic programming language pGCL, and an arithmetic solver, which
together compute a certificate in the case that refinement fails, showing
adherence to Principles P1 and P2 ;

3. A method (Sec. 4.4) to use the certificate to produce a suspect schedule, in
distributed systems for example, thus fulfilling Principle P3.

In Sec. 2 we provide a summary of the overall approach, with later sections
elaborating the details of the ideas introduced there.

We assume a (finite) state space S; we write DX for the set of (discrete)
distributions over X, namely the set of 1-summing functions X→[0, 1]; given a
set K we write PK for its power set. Given two distributions d, d′ and scalar
0 ≤ p ≤ 1, we write dp⊕d′ for the distribution p×d+(1−p)×d′. We use an explicit
dot for left-associating function application; thus (f(x))(y) becomes f.x.y .

2 On refinement, and checking for it: an introduction

Our basic model for operational-style denotations of sequential demonic pro-
grams without probability is S ↔ (S ∪ {⊥}) or equivalently S → PS⊥, in which
(in the latter form) some initial state s ∈ S is taken by (program denotation)
r ∈ S → PS⊥ to any one of the final states s′ ∈ r.s. A common convention is
that if ⊥ ∈ r.s then so also are all s′ ∈ r.s — nontermination (final state the
“improper” ⊥) is catastrophic.

The reason for that last, so-called “fluffing-up” convention (aside from its
being generated automatically by the Smyth power-domain over the flat order
on S⊥) is that it makes the refinement relation between programs very simple:
it is subset, lifted pointwise. Thus we say that r1 v r2, i.e. Program r1 is refined
by Program r2, just when for all states s we have r1.s ⊇ r2.s. The fluffing-up
means that the same ⊇-convention that refines by reducing nondeterminism also
refines by converting improper ⊥ (nontermination) into proper behaviour.

Except for nontermination, result sets given by r.s are fairly small when the
program r is almost deterministic. In that case, from a fixed initial state s◦ the
question of whether r1 v r2 can feasibly be established by examining every final
state s′ ∈ r2.s◦ and checking that also s′ ∈ r1.s◦.

Once probability is added, at first things look grim (details in Def. 1 below):
there can be non-denumerably many output distributions for non-looping pro-
grams over a finite, even small, state space: this is because of the “convexity”
convention (analogous to fluffing-up) that pure demonic choice u can be refined
by any probabilistic choice p⊕ whatever, i.e. for any 0 ≤ p ≤ 1. The reason
for convexity is to allow, again, refinement via ⊇ in all cases; but its effect is
that even the simple program s := A u B has as result set all distributions
{A p⊕ B | 0 ≤ p ≤ 1}, where in the comprehension we write A,B for the point
distributions at A,B.3 Thus if r2 is being compared for refinement against some
r1, it seems there are uncountably many final distributions to consider.

Luckily the actual situation is not grim at all: those result sets, big though
they might be, are convex closures of a finite number of distributions, provided
S is finite — and even if the program contains loops. (A set D of distributions
is convex closed if whenever d, d′ ∈ D then so is d p⊕ d′ for any 0 ≤ p ≤ 1.)
Writing d·e for this closure we are saying that in fact r.s ∈ PDS⊥ is equal to
dDe for some finite set of distributions D (depending on r and s). And so by
elementary properties of convexity, to check r1 v r2 for such programs we need
only examine for each s◦ the (small) sets D1,2 of distributions from which r1,2.s◦

are generated.
This amounts to taking each result distribution d′ ∈ D2 and checking whether

that d′ is a convex combination of the finitely many distributions in D1, which
–crucially– can be formulated as a linear-constraint problem; and it is not so
much worse than in the non-probabilistic case. Even better, however, is that if
in fact d′ 6∈ dD1e, then it is possible to find a certificate for that: because of
the Separating Hyperplane Lemma, there must be some plane in the Euclidean

3 Point distributions have probability one at some state and (hence) zero at all others.

space4 containing D1,2 with dD1e strictly on one side of it and the inconvenient
d′ ∈ dD2e (non-strictly) on the other. Finding that plane’s normal (a tuple of
reals that describes the plane’s orientation) is also a linear-constraint problem,
and can be done with the same engine that attempted to show d′ ∈ dD1e (but
in fact found the opposite).

Thus the overall strategy –and the theme of this paper– is to calculate D1,2

for some initial state s◦ and probabilistic nondeterministic programs given as
r1,2 ∈ S → PDS⊥, and then for each d′ ∈ D2 to attempt to establish d′ ∈ dD1e.
If that succeeds for all such d′’s, declare r1 v r2 at s◦; but if it fails at some d′,
then produce a certificate (hyperplane normal) for that failure.

As we will see, that certificate can then be used to identify, in a sense “high-
light,” the key “decision points” through the program r2 that together caused
the refinement failure — and there is our probabilistic counterexample that can
be presented to the public and checked –by them independently– using the cer-
tificate from the hyperplane.

3 Probabilistic refinement in detail

3.1 Definition of refinement

The transition-style semantics now widely accepted for probabilistic sequential
systems models a probabilistic program as a function from initial state to (ap-
propriately structured) sets of distributions over (final) states: each distribution
describes the frequency aspects of a probabilistic choice, and a set of them (if
not singleton) represents demonic nondeterminism.

Starting with a flat domain S⊥ =̂ S ∪ {⊥}, with ⊥ @ s for all proper states
s, we construct DS⊥, the discrete distributions over S⊥ and give it an (flat-
induced) order so that for d, d′ ∈ DS⊥ we have d v d′ just when d.s ≤ d′.s for
all proper s. (Note that d.⊥ > d′.⊥ might occur to compensate.)

Then a set D ⊆ DS⊥ is said to be up-closed if whenever d ∈ D and d v d′

then also d′ ∈ D; it is convex if whenever d, d′ ∈ D, so too is d p⊕ d′ for any
0 ≤ p ≤ 1; and finally it is Cauchy closed if it contains all its limit points with
respect to the Euclidean metric. 4 again

Definition 1. [15, 9] The space of (denotations of) probabilistic programs is
given by (CS,v) where CS is the set of functions from S to PDS⊥, restricted to
subsets which are convex, up- and Cauchy closed. The order between programs
is induced pointwise (again) so that r v r′ iff (∀s : S · r.s ⊇ r′.s) .

The refinement relation defines when two programs exhibit the same or similar
overall behaviour — from Def. 1 we see that a program is more refined by another
whenever the extent of nondeterminism is reduced.

We use a small language pGCL that generalises Dijkstra’s guarded-command
language [5] by adding probabilistic choice (and retaining demonic choice); in

4 See Sec. 3.6.

identity [[skip]].s =̂ {s}
assignment [[x := a]].s =̂ {s[x 7→ a]}

composition [[P ; P ′]].s =̂ {
P

s′ : S d.s′ × f ′.s′ | d ∈ [[P]].s; [[P ′]] v f ′}
where f ′ ∈ S → DS⊥ and in general r′ v f ′ means r′.s 3 f ′.s for all s.

choice [[if B then P else P ′ fi]].s =̂ if B.s then [[P]].s else [[P ′]].s
probability [[P p⊕ P ′]].s =̂ {d p⊕ d′ | d ∈ [[P]].s; d′ ∈ [[P ′]].s}

nondeterminism [[P u P ′]].s =̂ d [[P]].s ∪ [[P ′]].s e ,
where in general dDe is the up-, convex- and Cauchy closure of D.

Iteration is defined via a least fixed-point; but we do not use iteration in this paper.

Fig. 1. Relational-style semantics of probabilistic programs [12].

Fig. 1 we set out how its semantics in the style of Def. 1. Programs without
probability behave as usual; programs with probability, but no nondeterminism,
abide by classical probability theory; but programs containing both probability
and nondeterminism can exhibit highly skewed –and confusing– probabilistic
behaviour.

Fig. 2. Picture of
Prog0’s results

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨

Each point in a triangle defines a
discrete distribution over its ver-
tices, here {A, B, C}, their unique
linear combination that gives that
point. Since Prog0’s (set of) points
is a strict subset of Prog1’s points,
we have Prog1 @ Prog0 and hence
also Prog0 6v Prog1.

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨

Fig. 3. Picture of
Prog1’s results

Figs. 2 and 3: Distribution triangles depict convex result-sets.

3.2 Example; and difficulty with counterexamples

To illustrate probabilistic refinement, and the difficulties with counterexamples,
we consider the two programs below [12, App. A]. Checking Prog0’s text suggests
that it establishes s=A and s=B with equal probabilities; and those probabilities
could be as high as 0.5 each (if the outer u resolves always to the left) or as low
as zero (if the u resolves always to the right). Probabilities in-between (but still
equal to each other) result from intermediate behaviours of the u.

Checking Prog1 however suggests more general behaviour. For example, con-
sider the “thought experiment” where we execute Prog0 many times, and keep a
record of the results: we expect to see a strong correlation between the number
of A’s and B’s. However with Prog1 we cannot rely on an A,B-correlation, as
instead it might correlate B,C while ignoring A altogether.5

Prog0 =̂ (s := A 0.5⊕ s := B) u s := C (1)
Prog1 =̂ (s := A u s := C) 0.5⊕ (s := B u s := C) (2)

Figures 2,3 depict the relation between Prog0 and Prog1 according to the
semantics at Def. 1, in particular that they seem to be different. But it is not easy
to see this experimentally via counterexample: what concrete property can we
use to observe the difference? Indeed even if we tabulate, for the two programs,
both the maximum and minimum probabilities of all 6 non-trivial result-sets, we
get in Fig. 4 the same results for both programs.

Allowed final value(s) of s A B C A, B B, C C, A

Maximum possible probability 1/2 1/2 1 1 1 1

Minimum possible probability 0 0 0 0 1/2 1/2

The table illustrates the maximum and minimum probabilities for Prog0 and Prog1

with respect to all non-trivial choices of allowed outcome: the programs are not distin-
guishable this way. But in a larger context, they are: the composite programs

Prog0; if s=C then (s := A 0.5⊕ s := B) fi
and Prog1; if s=C then (s := A 0.5⊕ s := B) fi

are distinguished by the test s = A.
This is a failure of compositionality for such (limited) tests [12, App. A.1].

Fig. 4. Maximum and minimum probabilities.

The fallback position, that perhaps Prog0 and Prog1 are “observably” equal
at this level of abstraction, is not tenable either — for we can define a context
in which such simple tabulations do reveal the difference. Define the program
Prog2 to be the conditional if s=C then (s := A 0.5⊕ s := B) fi , and compare
Prog0; Prog2 with Prog1; Prog2. The former establishes s=A with probability 1/2;
the latter however can produce s=A with a probability as low as 1/4.5 again

5 If the 0.5⊕ goes left, take the u right — and vice versa.

identity wp.skip.expt =̂ expt
assignment wp.(x := E).expt =̂ expt[x := E]
composition wp.(P ; P ′).expt =̂ wp.P.(wp.P ′.expt)
choice wp.(if B then P else P ′ fi).expt.s

=̂ wp.P.expt.s if B.s else wp.P ′.expt.s
probability wp.(P p⊕ P ′).expt =̂ p× wp.P.expt + (1−p)× wp.P ′.expt
nondeterminism wp.(P u P ′).expt =̂ wp.P.expt min wp.P ′.expt

The expression expt is of non-negative real type over the program variables. As earlier,
iteration is given in the usual way via fixed point; but we do not treat iteration here.

Fig. 5. Structural definitions of wp [15, 12].

Fig. 6. Position the “distribution trian-
gle” in 3-space, on the base of the non-
negative A+B+C ≤ 1 tetrahedron. . .

Fig. 7. . . . approach from below, with a hy-
perplane of normal (2,0,1), until a point in
some result set is “touched.”

The distribution-triangle of Figs. 2,3 becomes the base A+B +C = 1 of a tetrahedron
in the upwards octant of Euclidean 3-space; a distribution over {A, B, C} is now simply
a point with the discrete probabilities as its A, B, C co-ordinates.
The random variable defined (A, B, C) 7→(2, 0, 1) is represented by an e-indexed family
of hyperplanes 2A+C = e all having the same normal (2, 0, 1). The minimum expected
value of that random variable over any set of distributions is the least e for which the
representing hyperplane touches the set. For Prog1’s distributions in particular, that
value is 1/2 (the plane shown in Fig. 7); for Prog0 the e would be 1 (touching in fact
at all the points in Prog0’s line, that plane not shown).
The fact that the e’s for Prog0 and Prog1 are different, for some normal, is what
distinguishes the two programs; and, given any normal, the program logic of Fig. 5 can
deliver the corresponding e directly from the source text of the program.
The “only” problem is to find that distinguishing normal.

Figs. 6 and 7: Distributions in 3-space, and touching hyperplanes.

3.3 Expected values of random variables certify counterexamples

We are rescued from the difficulties of Fig. 4 by the fact that Prog0 and Prog1

can after all be distinguished statically (rather than via lengthy simulations
and statistical tests, as suggested by the above “thought experiment”) provided
we base our analysis on random variables rather than pure probabilities, i.e.
functions over final states (to reals) rather than simple sets of final states.6

Rather than ask “What is the minimum guaranteed probability of achieving
a given postcondition on the final states?” (precisely what was shown above to be
non-compositional), we ask “What is the minimum guaranteed expected value
of a given random variable over the final states?”

In our example above, a distinguishing random variable is e.g. the function
(A,B,C) 7→(2, 0, 1), giving minimum (in fact guaranteed) expected value 1 for
Prog0 but only 1/2 for Prog1 (from all initial states, for these programs).

3.4 A logic of expectation transformers

The minimum expected values, explained informally in Sec. 3.3, can be found
at the source level using a quantitative programming logic that generalises Di-
jkstra’s predicate-transformer semantics [5].7 We call it a logic of expectation
transformers.

Definition 2. Random variables (functions of type ES =̂ S → R≥0) are written
in the logic as non-negative real-valued expressions over the program variables.
They are ordered by pointwise ≥. The expectation-transformer denotation of the
logic is then (T S,v), where T S =̂ ES → ES, and t v t′ iff (∀e : ES · t.e ≤ t′.e) .

With this apparatus we present in Fig. 5 the expectation-transformer logic
for pGCL; it corresponds to our earlier “set-of distribution” semantics of Fig. 1 in
the same way as classical predicate transformers correspond to classical relational
semantics.

3.5 Equivalence of relational- and transformer semantics

Our two definitions Def. 1 and Def. 2 give complementary views of programs’
meaning; crucial for our work here is that those views are equivalent in the
following sense:

Theorem 1. [12, 15] Here (and briefly in Sec. 3.6), distinguish the two refine-
ment orders by writing vR for the refinement order given in Def. 1; similarly
write vT for the refinement order given in Def. 2. Then for any two pGCL
programs P, P ′ we have [[P]] vR [[P ′]] iff wp.P vT wp.P ′ .

With Thm. 1 we can use just v for refinement between pGCL programs, in either
semantics, which is why we do not usually distinguish them (thus dropping the
subscripts R, T).

Next we see how a third, geometric view supports this equivalence.
6 This startling innovation is due to Kozen [11]; but he did not treat demonic choice,

and so our (non-)compositionality example was not accessible to him.
7 This is again due to Kozen, again only in the deterministic case [11].

3.6 Distributions and random variables in Euclidean space

Fig. 6 shows how discrete distributions in DS⊥ can be embedded in |S|-dimensional
Euclidean space: distribution d becomes a point whose s-coordinate is just d.s.
(Representing d.⊥ is unnecessary, as it is determined by 1-summing.) Arithmeti-
cally convex sets of distributions become geometrically convex sets of points in
this space.

Fig. 7 shows how a random variable in ES can be embedded in the same
space: random variable f becomes a (family of) hyperplanes with a collective
normal whose s-coordinate is just f.s. 8

The crucial connection is that if the point representing d lies on a plane in
the family f then the constant term of that particular plane is the expected
value over the distribution d of the random variable that f ’s normal represents.

Def. 1 -style refinement remains the inclusion of one set of points (imp) wholly
within another (spec), just as in our earlier Figs. 2,3.

Def. 2 -style refinement is equivalent, but can be formulated in terms of
hyperplanes: take any (random-variable-representing-) hyperplane, and position
it strictly below the positive octant in the space. (The results sets lie entirely in
that octant.) Now move it up –along its normal– until it first touches a point
(i.e. distribution) in one of the result sets. The constant term then gives exactly
the wp for the program producing that first-touched distribution with respect
to the random variable, written as an expectation in the logic of Fig. 5.

Then one program refines another just when for all such planes the less-
refined program (spec) is always touched before the more-refined one (imp) is —
because that means the constant term for spec is always less that that for imp,
whence the wp’s are similarly ordered as they must be.

The two views justify Thm. 1 informally; we explain it in the contrapositive.
If spec 6vR imp then for some initial state s◦ we have a distribution d′ with
d′ ∈ [[imp]].s◦ but d′ 6∈ [[spec]].s◦. Because [[spec]].s◦ is convex, by the Separating
Hyperplane Lemma there must be a plane separating d′ from it in the sense that
d′ is in the plane but [[spec]].s◦ lies strictly on one side of it.9 Because our result
sets are up-closed, the normal of that plane can be chosen non-negative; and
thus if that plane approaches the positive octant from below, it will reach d′ in
[[imp]].s◦ strictly before reaching any of [[spec]].s◦, thus giving spec 6vT imp.

The reverse direction is trivial: if spec 6vT imp then some plane reaches
[[imp]].s◦ before it reaches [[spec]].s◦; hence we cannot have [[spec]].s◦ ⊇ [[imp]].s◦;
hence spec 6vR imp.

8 A hyperplane in N -space is a generalisation of a plane, in 3-space ax+by+cz = e.
The tuple (a, b, c) is its normal and e is its constant term.

9 The SHP Lemma states that any point not in a closed and bounded convex set can
be separated from the set by a plane that has the point on one side and the set
strictly on the other.

4 Proofs and refutations

With the above apparatus we address our main issue: given two pGCL programs
spec, imp over some finite state space S, what computational methods can we
use either to prove that spec v imp, or to find –and present convincingly– a
counterexample? We treat the two outcomes separately.

4.1 Calculating result sets

In order to prove refinement, i.e. spec v imp, we must –in effect– investigate
every possible outcome (distribution) of the implementation imp (element of its
result set) and see whether it is also a possible outcome of the specification spec
(is an element of that result set too). Because of the structure of these sets, that
they are convex closures of a finite number of “vertex” distribution points,10

it is enough to check each vertex of the implementation result set against the
collection of vertices of the specification result set.

These sets are calculated in the same way (for spec and for imp), simply by
“coding up” the relational semantics given in Fig. 1 in a suitable (functional)
programming language. The principal data-type is finite set of distributions, with
each distribution being in turn a suitably normalised real-valued function of the
finite state space (representable thus as a simple tuple of reals).

We discuss sequential composition S;T as an example. Components S and T
separately will have been analysed to give structures of type initial state to set
of final distributions; the composition is implemented by taking the generalised
Cartesian product of the T structure –converting it to a set of functions from
initial state to final distribution– and then linearly combining the outputs of
each of those functions, varying over its initial-state input, using the coefficients
given by the probabilities assigned to each state by the S structure in each of
its output distributions separately. That gives a set of output distributions for
each single output distribution of S; and the union is taken of all of those.

The number of result distributions generated by the program as a whole is
determined by the number of syntactic nondeterministic choices and the size of
the support of the probabilistic branching, and it is affected by the order in which
these occur. For example a D-way demonic branch each of whose components is a
P -way probabilistic branch will generate only D distributions (since each P -way
branch is a single distribution). However the opposite, i.e. a P -way branch each
of whose components is a D-way branch, will generate |D||P | output distributions
— because the effect of calculating those distributions for the whole program
is simply to convert it to (the representation of) a normal form in which all
nondeterministic branching occurs before any probabilistic branching.11

10 Sufficient mathematical conditions for this are that either the state space is finite
and “raw” nondeterminism u is finite, with loops allowed, or that the program is
finite, that is it has no loops. We do not know whether it holds for infinite state
spaces with loops, or finite state spaces with general (non-tail) recursion.

11 For example the program (x := ±1) 1/3⊕ (x := ±2) normalises to
(x := 1 1/3⊕ 2) u (x := 1 1/3⊕−2) u (x := −1 1/3⊕ 2) u (x := −1 1/3⊕−2) .

Suppose we have M sequentially composed components each one of which
is an at most D-way demonic choice between alternatives each of which has
at most P non-zero-probability alternatives. The computed results-set is deter-
mined by at most D 1+P+P 2+···+PM−1

vertices. Whilst this makes computing
result distributions theoretically infeasible, in practice it is rarely the case that
probabilistic and nondeterministic branching interleaves to produce this theo-
retical worst case.

4.2 Proving refinement

Now suppose our state-space is of finite size N ; then distributions can be rep-
resented as as points within Euclidean N -space. The procedure outlined above
will thus generate

– for spec some set S =̂ s1..K of N -vectors, and
– for imp some (other) set I =̂ i1..L of N -vectors.

In each case the actual “implied” sets of result distributions are the convex
closures dSe and dIe and we are checking that dIe ⊆ dSe,

– equivalently that each il ∈ dSe,
– equivalently that each il = cl · S for some cl, where (·) is the matrix multi-

plication of the non-negative 1-summing row-vector cl of length K and the
K-row-by-N -column representation of the set S of distributions,

– equivalently for that l that this constraint set has a solution in scalars cl1..K :
• 0 ≤ clk for 1 ≤ k ≤ K and

∑
1≤k≤K c

l
k = 1;

• iln =
∑

1≤k≤K c
l
ks
k
n for 1 ≤ n ≤ N .

That last set of K+1+N (in)equations (for each l) can be dealt with by a
suitable satisfaction solver (Sec. 6). If they can be solved, then the refinement
holds at that point il; and if that happens for all 1 ≤ l ≤ L then the refinement
holds generally. If not, then we have found an “inconvenient” implementation
behaviour il, and the refinement fails.

We say that the certificate to support a proposed refinement is the K×L
matrix c of scalars that gives the appropriate K-wise interpolation of S for each
il ∈ I. It can be checked as such separately by elementary arithmetic.12

In our example, to find the certificate to check the refinement Prog1 v Prog0,
we need to solve two systems of linear equations, one for each vertex distribution
in Prog0’s relational semantics (Fig. 2). For i1 =̂ (1/2, 1/2, 0) the system is

– 0 ≤ c1k for 1 ≤ k ≤ 4;
– c11 + c12 + c13 + c14 = 1;
– c11(0, 0, 1) + c12(1/2, 0, 1/2) + c13(0, 1/2, 1/2) + c14(1/2, 1/2, 0) = (1/2, 1/2, 0).

The solution c1 = (0, 0, 0, 1) thus forms part of the certificate for verifying
refinement. The complete certificate would also need the vector c2 = (1, 0, 0, 0)
for Prog0’s other vertex point (0, 0, 1).
12 These certificates are the essential components of Principles P1,2 that make our

conclusions independent of the correctness of our tools.

4.3 Refuting refinement

In the case the refinement fails, that is for some 1 ≤ l ≤ L there is no cl (in the
sense of the previous section), we can do better than simply “the solver failed.”

We refer to Fig. 7 and its surrounding discussion, and see that if il 6∈ dSe
then there must be a hyperplane that separates il from dSe, i.e. a hyperplane
with il on one side and all of dSe strictly on the other: in Fig. 7 that is the plane
shown, having i3 =̂ (0, 1/2, 1/2) non-strictly on its lower side and all of Prog0’s
results strictly on the upper side.

Formulated in the expectation logic of Fig. 5, refinement failure spec 6v imp
at some initial state s◦ requires an expectation expt with the strict inequal-
ity wp.spec.expt.s◦ > wp.imp.expt.s◦. That expt is given by the normal (2, 0, 1)
of the separating plane in Fig. 7, and wp.imp.expt.s◦ is its constant term 1/2
when it touches Prog1 at i3. To touch Prog0 it would need to move higher, to
constant term 1, which is thus the value of wp.imp.expt.s◦ for that same expt
(A,B,C)7→(2, 0, 1).

To find such a hyperplane, we must solve for the N -vector h in the equations

– (
∑

1≤n≤N hns
k
n) > (

∑
1≤n≤N hni

l
n) for all 1 ≤ k ≤ K

and the inconvenient l in particular,

thus K inequations in this case.
Note well that if we have obtained il from a failure of refinement determined

as in Sec. 4.2, then the equations immediately above are guaranteed to have a
solution. That solution h together with initial state s◦ is the certificate refuting
the proposed refinement.12 again

In our example we saw that Sec. 4.2 failed for i3; to find our certificate for
that failure we therefore solve

h1/2 + h2/2 > h2/2 + h3/2 and h3 > h2/2 + h3/2 ,

for which one solution is of course the normal h =̂ (2, 0, 1) shown in Fig. 7.
We emphasise that simply the failure of Sec. 4.2 to show some inconvenient

d′ is not in a convex closure dSe is not above challenge: how do we know the
solver itself is not incorrect? The refutation certificate generated for d′ by this
section –given to us by the hyperplane duality– is independently verifiable, and
that is its importance.13

4.4 Source-level refutation

Finally in this section we consider how to turn the certificate for refuting refine-
ment into a hint presented at the source level.

For our example we imagine a distributed system comprising a number of
processors, each executing its local code. A scheduler coordinates the behaviour
of the entire system, by determining which of the processors is able to execute
13 Hyperplanes are used similarly in probabilistic process algebras to generate distin-

guishing contexts [4].

Resulting weakest pre-expectation ↓

s := A 0.5⊕ s := B 1
s := A 0.5⊕ s := C 1.5

least → s := C 0.5⊕ s := B 0.5
s := C 0.5⊕ s := C 1

The pre-expectation is calculated wrt.
(A, B, C) 7→(2, 0, 1) in each case.

Fig. 8. The four resolutions of Prog1.
Fig. 9. u-Adversarial scheduling.

an (atomic) local execution step; the overall behaviour of the system can be
analysed via an interleaving-style semantics [3]. In the most general setting we
can represent the scheduler’s choice by nondeterminism; in the case that the
distributed protocol contains a vulnerability due to the scheduling (i.e. the events
can be ordered so as to break the specification) we shall show how the certificate
for failure can be used to find automatically the failing schedule.

As an illustration, consider the simple distributed system of Fig. 9 where ini-
tially Processor C is scheduled, then a probabilistic choice 1/2⊕ is taken whether
to continue clockwise or anti-clockwise; the adversarial scheduler can however
on the very next step decide whether to remain at C or to move in the direction
chosen. One might specify with Prog0 that next-in-line Processors A,B should
be fairly treated wrt. each other, whether the move occurs or not; but the imple-
mentation we suggested immediately above first chooses the direction to move
via (s := A) 1/2⊕ (s := B), and then demonically either confirms the move
(skip), or inhibits it (s := C). The effect is an equivalent but differently written
formulation of Prog1 (which we know does not refine Prog0):

choose schedule︷ ︸︸ ︷
(s := A) 1/2⊕ (s := B);

execute schedule, or inhibit︷ ︸︸ ︷
skip u (s := C) (3)

Because the witness expt =̂ (A,B,C)7→(2, 0, 1) to Prog0 6v Prog1 is based on
semantics, it applies to this form (3) of Prog1 too, even though it is now more
confusingly presented. In general, no matter how many statements are composed,
the bad-resolution -selecting process can be carried out on each component sepa-
rately, rear-to-front: the minimised pre-expectation for one component becomes
the post-expectation to be minimised for the one immediately before, and so on
to the beginning. That greatly reduces the complexity of finding the schedule.14

14 This trick is well known in game theory [16].

To see how this works, we take the certificate for failure of Prog0 v Prog1,
and refer to (3) and Fig. 5 to compute15

wp.(skip u (s := C)).〈2, 0, 1〉
= wp.skip.〈2, 0, 1〉 min wp.(s := C).〈2, 0, 1〉
= 〈2, 0, 1〉 min 〈1, 1, 1〉
= 〈1, 0, 1〉

Observe how the min in the calculation corresponds to the resolution of u in the
code, so that in computing the minimum we also select the bad schedule. In this
case, the last-line minimum is achieved from the previous line by taking pointwise
choices (A,B,C)7→〈right, left, don’t-care〉, which gives the failing schedule for the
second statement: at A take s := C (go right); at B take skip (go left); at C
take either. Thus the conditional if s=A then (s := C) else skip fi describes
concisely and at the source level a schedule that defeats the specification, i.e. if
A is suggested by the first statement (s := A) 1/2⊕ (s := B) then inhibit and
stay at C, otherwise accept the move to B.

Again we achieve independence from the correctness of our tools,12 yet again

since it is trivial syntactically that our selection is a resolution of imp; it is also
obvious what its single result distribution is and that spec cannot produce it.

This is a typical failure in such systems: the scheduler “exploits” a proba-
bilistic outcome that the specifier/developer did not realise was a vulnerability.

5 Finding adversarial schedules in distributed systems

More generally than Sec. 4.4 we fix a set of N processors, each executing “lo-
cal” code P1, . . . , PN respectively, and overall implementing some protocol. The
asynchronous execution of the protocol can be modelled by assuming that each
computation step is taken by one of the Pn’s, chosen arbitrarily by the adver-
sarial scheduler — in other words is the nondeterministic choice u1≤n≤N Pn,
where we have introduced notation for the generalised nondeterministic choice
over a finite set; we also write ProgK for K sequential compositions of the pro-
gram Prog. The analysis of protocols like these normally considers “runs” that
define the set of possible execution orders of the Pn’s, which execution orders
can be made on the basis of the current state. We describe these runs explicitly
as follows.

Definition 3. Given processors’s local code P1, . . . , PN , an execution schedule
is a map σ ∈ N→S→{1..N} so that σ.k.s defines the number of the processor that
would be selected in the k-th step of the protocol if the state at that point were
s. We write σK ∈ {0..K}→S→{1..N} for the K-bounded execution schedule,
namely the schedule σ restricted to the first K steps of the protocol.

In the following definition we allow P to be subscripted with a function
f ∈ S→{1..N} –rather than a constant– so that Pf from state s behaves as Pf.s
would; the application of a schedule can then be defined as follows.
15 We abbreviate the expectation using 〈· · · 〉.

Definition 4. Let σK be an K-bounded execution schedule; the resulting K-
bounded execution sequence is then written

(u0≤n≤N Pn)σK =̂ Pσ.0; · · · ;Pσ.K

We can now investigate the behaviour of bounded execution sequences of
the protocol, by considering parameterised specifications. For example, suppose
SpecK denotes a specification of the protocol up to K steps, and our aim is to
investigate whether such bounded properties hold of the program.

In such a distributed system, we say that a certificate to refute a proposed
specification SpecK v (u0≤n≤N Pn)K is a K-bounded schedule σK such that
(u0≤n≤N Pi)σK is not a refinement of SpecK . The next lemma shows how to
compute one.

Lemma 1. Suppose that SpecK 6v (u1≤n≤N Pn)K , and that (expt, s◦) is an (ex-
pectation, (initial) state) counterexample pair for the whole failure, as at Sec. 4.3.
Define expectations exptK · · · expt0 by exptK =̂ expt, and exptk−1 =̂ wp.(u1≤n≤N
Pn).exptk, for 1 ≤ k < K. Now define the schedule σK to give a result σK .k =̂ fk,
where each fk ∈ S → {1..N} is crafted –as we did at the end of Sec. 4.4– so that
wp.Pfk

.exptk = wp.(u0≤i≤n Pi).exptk . Then the resulting σK is a counterex-
ample schedule.

Proof. (Sketch.) As in Sec. 4.4 the hyperplane-generated expectation can “prune”
nondeterministic choice from the (purported) implementation so that only the
failing behaviour is left: one simply considers all deterministic resolutions and
picks the one for which the pre-expectation wrt. the witness is minimised. The
formal proof appears elsewhere [13].

We illustrate Lem. 1 with a small example case study elsewhere [13].
Finally we note that once we have the overall certificate (expt, s◦), assuming

the complexity of computing wp.Pn.expt is constant for every expt and n, the
complexity of breaking it up into a finer-grained failing schedule σK is O(KN).

6 Implementing the search for certificates

In this section we describe how the search for certificates for failure can be
implemented using an SMT solver.

Given two pGCL programs spec and imp we first compute the vertices gen-
erating their result distributions, as described in Sec. 4.1; and we formulate the
satisfiability problem of Sec. 4.2 to attempt to prove refinement. It is exported
to a to a general SMT solver [6] which, if successful, provides a certificate c of
refinement.

If it fails, the dual problem (as Sec. 4.3) is formulated for that failure, with
the inconvenient distribution providing the coefficients iln and skn, and then we
solve for the hyperplane-normal coefficients hn. Success there is guaranteed, and
the normal h is the certificate of refutation.

An alternative approach is to attempt first to refute the refinement (Sec. 4.3)
for each implementation distribution. If refutation fails for all of them, then we
calculate a certificate of refinement (Sec. 4.2).

7 Conclusions and future work

We have shown how to generate automatically a witness to the failure of a
hypothesised refinement spec v imp. We have not yet specifically automated the
subsequent production of a source level certificate generator, although a small
change to the wp-generator implemented in the HOL system [10] will be a good
place to start.

This work differs significantly from other work using SMT-solvers [7] which
is unable to produce an efficiently checkable certificate in the form of an expec-
tation, nor a source-level counterexample.

References

1. R.-J.R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer, 1998.

2. E. Clarke, Y. Lu, O. Grumberg, S. Jha, and H. Veith. Counterexample-guided ab-
straction refinement for symbolic model checking. Journal of the ACM, 50(5):752–
794, 2003.

3. E. Cohen. Separation and reduction. In Mathematics of Program Construction,
5th International Conference, volume 1837 of LNCS, pages 45–59. Springer, July
2000.

4. Y. Deng, R. van Glabeek, C.C. Morgan, and C. Zhang. Scalar outcomes suffice
for finitary probabilistic testing. In De Nicola, editor, Proc ESOP ’07, LNCS.
Springer, 2007.

5. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
6. Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for

DPLL(T)*. In CAV 2006, volume 4144 of LNCS, pages 81–94. Springer, 2006.
7. C. Gonzalia and A.K. McIver. Automating refinement checking in probabilistic

system design. To appear in ICFEM ’07., 2007.
8. Tingting Han and Joost-Pieter Katoen. Counterexamples in probabilistic model

checking. Number 4420 in LNCS, 2007. Proceedings of TACAS 2007.
9. Jifeng He, Karen Seidel, and AK McIver. Probabilistic models for the guarded

command language. Science of Computer Programming, 28:171–92, 1997.
10. Joe Hurd, A.K. McIver, and C.C. Morgan. Probabilistic guarded commands mech-

anised in HOL. In A. Cerone and A. de Pierro, editors, Proc 4th QAPL, volume
112 of ENTCS. Elsevier, 2005.

11. D. Kozen. A probabilistic PDL. Jnl Comp Sys Sci, 30(2):162–78, 1985.
12. A.K. McIver and C.C. Morgan. Abstraction, Refinement and Proof for Probabilistic

Systems. Tech Mono Comp Sci. Springer, New York, 2005.
13. A.K. McIver, C.C. Morgan, and C. Gonzalia. Proofs and refutations for prob-

abilistic systems. Available at http://www.ics.mq.edu.au/∼anabel/FM08.pdf,
2007.

14. C.C. Morgan. Programming from Specifications. Prentice-Hall, second edition,
1994.
web.comlab.ox.ac.uk/oucl/publications/books/PfS/.

15. C.C. Morgan, A.K. McIver, and K. Seidel. Probabilistic predicate transformers.
ACM Trans Prog Lang Sys, 18(3):325–53, May 1996.
doi.acm.org/10.1145/229542.229547.

16. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, second edition, 1947.

