
The Probabilistic Steam Boiler:

a Case Study in Probabilistic Data Refinement

Annabelle McIver, Carroll Morgan⋆ and Elena Troubitsyna⋆⋆

Programming Research Group, Oxford University
and Turku Centre for Computer Science (TUCS), Åbo Akademi.

Abstract. Probabilistic choice and demonic nondeterminism have been
combined in a model for sequential programs [11, 8] in which program
refinement is defined by removing demonic nondeterminism. Here we
study the more general topic of data refinement in the probabilistic set-
ting, extending standard techniques to probabilistic programs. We use
the method to obtain a quantitative assessment of the safety of a (prob-
abilistic) version of the steam boiler [1].
Keywords: Probabilistic semantics, verification, refinement, data refine-
ment, imperative programming, safety assessment, system safety.

1 Introduction

One datatype is said to be refined by another if the second can replace
the first in any program without detection. Techniques for proving refine-
ments are well established [10, 4] and involve setting up a correspondence
between the (abstract) states in the specification datatype and the (con-
crete) states in the implementation datatype. The standard techniques
however are inadequate when the datatypes (and the programs that use
them) contain probabilistic choice — for that we need a correspondence
between probability distributions over abstract states and probability dis-

tributions over concrete states, rather than between individual state-to-
state relations.

In this paper we show how the standard methods can be extended
in that way, to allow for probabilistic data refinements. Probability is
of particular relevance when a quantified analysis of safety is required
— thus we treat the ‘steam boiler’ as our illustrative example, which is
widely known [1] as a test case for formal system specification.

In Sec. 2 we set out the standard definitions for program refinement
and data refinement in the probabilistic context. Sec. 3 contains our first

⋆ McIver and Morgan are members of the Programming Research Group:
{anabel,carroll}@comlab.ox.ac.uk ; McIver is supported by the EPSRC.

⋆⋆ Troubitsyna is a graduate student at the Turku Centre for Computer Science
(TUCS): etroubit@ra.abo.fi.



2

main technical contribution — a completely worked example of a prob-
abilistic datatype consisting of a single operation which chooses proba-
bilistically either to skip or to abort. It is of the kind lying strictly outside
the domain of standard programming, and its behavioural simplicity be-
lies the subtleties of the calculations required to prove data refinement.
That then sets the scene for Sec. 4 in which we look at the steam boiler
proper, and though much simplified it serves our purpose well, which is
to demonstrate how probabilistic datatypes (such as the one studied in
Sec. 3) are relevant in a realistic setting. Throughout we assume only
minimal knowledge of probabilistic program semantics, and where neces-
sary the details are carefully explained with full definitions cited in other
sources.

In general, such refinements can be viewed in two ways. One way is to
accept the probabilistic behaviour of the components and then to deter-
mine by calculation what is the best specification that can be achieved of
a system built from them; the other way is to deduce from a specification
the minimum acceptable behaviour of the components from which it is to
be built. In this study we treat refinement as an exercise of the former.

2 Data Refinement and Simulations

Data refinement is a generalised form of program refinement — an ‘ab-
stract datatype’ is replaced by a more ‘concrete datatype’ in a program
while preserving its algorithmic structure, the difference being that the
two datatypes operate over different (local) state spaces and thus cannot
be related directly using ordinary program refinement. In this context we
refer to a datatype (as do Gardiner and Morgan [5]) as a triple (I,OP , F )
where I and F are programs (respectively the initialisation and the final-
isation) and OP is an indexed set of programs — the operations of the
datatype.

Typically I initialises the local variables, possibly but not necessarily
referring to global variables in doing so; operations in OP may refer to
and change both local and global variables; and F simply ‘discards’ the
final values of the local variables, projecting the state (local,global) back
onto its purely global component.

In the activity of data refinement the programs I, F and those in OP

are replaced by corresponding concrete programs, perhaps changing the
local state space in the process. The effect of replacement on a program
using the datatype is proper program refinement between that using the
abstract type and that using the concrete, provided the local state cannot



3

be observed directly — an assumption that is vital for the discussion of
data refinement.

In this paper we consider datatypes whose operations may have prob-
abilistic choices, and thus our model for programs is a relational-style
structure augmented with probabilities [11, 8]. As in standard relational
models, a program is represented by a relation between (initial) states and
possibly many (final) states. But in our model we include the probabilis-
tic structure underlying our programs’ behaviours by taking the ‘final
states’ in fact to be probability distributions over the underlying state
space. Denoting that underlying space by S we define S to be the set of
discrete probability distributions over S, thus

S : = {F :S → [0, 1] |
∑

s:S

F.s ≤ 1} .

Probabilistic programs now form a subset of the space of functions
S → PS.1 The multiplicity of the result set means that programs gen-
eralise Markov processes (which are of type S → S from elementary
probability theory [6]), and as such produce ranges of probability distri-
butions — that, as we shall see, provides a convenient way to specify
‘safety boundaries’.

Program refinement (⊑) works as expected by reducing those ranges:
if for programs P,Q we have P ⊑ Q, then any distribution (over final
states) that Q can produce must also potentially be a result distribution
of P — also, the probability that Q terminates (does not abort) must be
least as great as the probability that P does.

We define data refinement with respect to program refinement.

Definition 2.1. We say (I,OP , F ) is data refined by (I ′,OP ′, F ′) if and
only if for all program schemes P over the operations OP of the datatype
we have

I;P(OP);F ⊑ I ′;P(OP ′);F ′ ,

where ‘;’ denotes sequential composition . 2

Note that the effect of prepending and appending respectively the ini-
tialisation and the finalisation make a composite that refers only to global
variables — the local variables are hidden in the sequential compositions
of Def. 2.1. Hence the refinement relation shown is ordinary program
refinement between programs over the globally observed state space.

1 For a full motivation, definition and discussion of the probabilistic model for sequen-
tial programs refer to Morgan et al. [11].



4

The scheme P is formed from the programming language constructs
(and takes arguments from the appropriate datatypes) — we use the lan-
guage of guarded commands [3] extended [11, 8] by a binary probabilistic
choice operator p⊕, where p ∈ [0, 1].2 Thus for example the probabilistic
assignment

i: = i + 1 p⊕ i: = 0 , (1)

means that the standard assignments i: = i + 1 and i: = 0 are selected
with probability p and 1−p respectively. The effect of the statement (1)
thus depends on the initial value of the variable i, and for each one there
is only a single result distribution — namely that which is weighted p or
1−p between the (final) values i0 + 1 or 0 respectively (where i0 denotes
the initial state of i).

We introduce other program constructs as we need them.

Rather than using the cumbersome Def. 2.1 directly — for which we
would need to check refinement for all functions P — to verify data
refinements we use instead the standard technique of simulations [9].

Definition 2.2. We say that (I ′,OP ′, F ′) simulates (I,OP , F ) if there
is a program rep:S → PS satisfying:

I; rep ⊑ I ′

opa ; rep ⊑ rep; opc
F ⊑ rep;F ′ ,

where the second refinement holds for all corresponding pairs (opa , opc)
in OP × OP ′. 2

It is well known [4] that a simulation of datatypes implies data refine-
ment Def. 2.1; the same holds in the probabilistic model, provided rep is
suitably defined.3

In the next section we use the simulation technique in a worked ex-
ample.

2 In general p can be a function of the state; but in this presentation we will need only
constants.

3 For rep to be a simulation that implies data refinement between datatypes it must
satisfy two conditions. The first is continuity (as a function over the program do-
main); and the second is that it must not affect the global state space. The proof
then of the soundness of the simulation technique follows exactly that explained by
Gardiner [4] for standard programs, save for distribution of rep through external
demonic nondeterminism. However distribution through even that operator can be
established provided the locality of variables is modelled explicitly [7].



5

3 Probabilistic Datatypes: a Worked Example

The example we consider in this section is set out in Fig. 1. The ab-
stract — or specification — datatype has a single operation which either
skips with probability a or aborts with probability 1−a (written a). The
concrete (implementation) datatype has a local variable i; the operation
opcN first checks whether the variable i exceeds N−1, aborting if it does
so and skipping otherwise, which behaviour is achieved by the assertion
statement {i < N}. After that it either increments i (probability cN ) or
sets it to 0 (probability cN ). Thus in the concrete datatype abortion is
possible only after the left branch has been selected N times in succession.

inita skip

opa skip a⊕ abort

fina skip

initc i: = 0
opcN {i < N}; (i: = i + 1 cN

⊕ i: = 0)
finc skip

Fig. 1. A faulty N-skipper

The qualitative external behaviour of the two datatypes is identical —
each provides a single operation which acts either like skip or like abort.
Our task however is quantitative — to determine the relation between a
and cN which ensures that opcN is no more likely to abort than opa is.

The object of this section is carefully to work through the calculation
of probabilities required to establish a simulation between the datatypes,
and since our aim is merely to illustrate the technique we treat the sim-
plest interesting case — when N = 2 — as is set out in Fig. 2. We return
to the general case at the end of the section.

For the simple 2-skipper, according to Def. 2.2, we need a program
rep satisfying the refinements4

inita; rep ⊑ initc

opa ; rep ⊑ rep; opcN

fina ⊑ rep;finc

(2)

4 In fact we shall concentrate only on the first two, for the refinement fina ⊑ rep;finc
is trivially satisfied provided the program rep terminates — and ours does.



6

The program rep can be thought of as calculating concrete states for the
corresponding abstract states.

inita skip

opa skip a⊕ abort

fina skip

initc i: = 0
opc {i < 2}; (i: = i + 1 c⊕ i: = 0)
finc skip

Fig. 2. A faulty 2-skipper

We note first that a successful execution of opa must correspond to
a successful execution of opc, which means i initially takes the values
0 or 1 — the initial assertion {i < 2} in opc ensures that — and thus
0, 1 or 2 finally in some distribution. Bearing in mind that rep ‘converts’
abstract states into concrete states, we might imagine that it sets i to
some distribution of those outcomes. Thus we suppose that rep has the
form5

∣

∣

∣

∣

∣

∣

i: = 0 @ p
i: = 1 @ q
i: = 2 @ r ,

for some 1-summing p, q, r to be determined. Next we substitute into the
simulation equations (2) above to get

skip a⊕ abort;
∣

∣

∣

∣

∣

∣

i: = 0 @ p
i: = 1 @ q
i: = 2 @ r

⊑

∣

∣

∣

∣

∣

∣

i: = 0 @ p
i: = 1 @ q
i: = 2 @ r;
{i < 2}; i: = i + 1 c⊕ i: = 0

(3)

Then we simplify by computing the various sequential compositions along
the probabilistic branches, multiplying probabilities as we go (a list of
algebraic laws we use is presented in the appendix); on the left the result

5 For convenience we write such extended probabilistic choices with the components’
individual probabilities given explicitly on the right, rather than as a nesting of
binary p⊕ operators.



7

is
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

skip; i: = 0 @ ap
abort; i: = 0 @ ap
skip; i: = 1 @ aq
abort; i: = 1 @ aq
skip; i: = 2 @ ar
abort; i: = 2 @ ar .

Simplifying the program fragments, and (as a result) collapsing the
three aborting cases, gives

∣

∣

∣

∣

∣

∣

i: = 0 @ ap
i: = 1 @ aq
i: = 2 @ ar ,

where for further brevity we have adopted the convention that when the
probabilities sum to less than 1 the deficit represents aborting behaviour.
Similar calculations on the right show us that (3) is equivalent to

∣

∣

∣

∣

∣

∣

i: = 0 @ ap
i: = 1 @ aq
i: = 2 @ ar

⊑

∣

∣

∣

∣

∣

∣

i: = 0 @ c(p + q)
i: = 1 @ cp
i: = 2 @ cq

from which we must extract a relation between a, p, q, r and c.
The refinement relation ⊑ applied between probabilistic programs re-

quires that any outcome guaranteed on the left with a certain probability
is guaranteed on the right with a probability at least as great. In this case
we have that when i assigned a particular value on the left-hand side the
associated probability must be at least as great as for the same assign-
ment on the right-hand side. So matching the cases i = 0, 1, 2 separately
we end up with the inequations

ap ≤ c(p + q)
aq ≤ cp
ar ≤ cq ,

which are the constraints we seek.
As mentioned in the introduction, there are now two approaches we

could take. In the ‘client-oriented’ approach the specification is fixed —
the client demands a certain reliability — and the supplier has to find
components that are themselves reliable enough to meet it; in our current
example we would fix a and calculate how high c would then have to be.

In the ‘supplier-oriented’ approach we imagine an implementor work-
ing with ‘off the shelf’ components and calculating the impact from the



8

client’s point of view. That is the view we take here: thus we fix c and
find the largest a for which the equations can be satisfied by some p, q, r.
With some algebra we see that the optimal value for a occurs when

a = c +
√

1 + 2c − 3c2/2 ,

attained at p = c/a, q = cp/a and r = 0. When c for example is 1/2,
the corresponding a for the above is (

√
5+1)/4, obtained by giving p the

value (
√

5 − 1)/2; thus we are using a rep defined as

i: = 0 (
√

5−1)/2⊕ i: = 1

to show the refinement of Fig. 3.

inita skip

opa skip (
√

5+1)/4⊕ abort ← (
√

5 + 1)/4 ≈ .81

fina skip

initc i: = 0
opc {i < 2}; i: = i + 1 0.5⊕ i: = 0
finc skip

Fig. 3. A faulty skipper

Finally, to deal with the initialisation we use the standard technique of
composing data refinements [2]: reducing the value of i will make abortion
less likely in the concrete datatype, and that is achieved with a second
representation function i:≤ i — that is, a (demonic) nondeterministic
assignment that cannot increase the value of i. Thus the final form for
rep is given by a sequential composition

rep : = (i: = 0 p⊕ i: = 1); i:≤ i ;

and from that rep it can be shown that all refinements in (2) hold.
But why is the abstract a not equal to 1−(.5)2 = .75, simply the

probability that the concrete datatype does not perform two increments
of i successively? Instead its calculated value of .81 shows the module to
be slightly more reliable than we had expected.

In general, the naive view would expect a to be c2. But by tabulating
the incremental probability of success (non-abortion) for both datatypes,



9

Fig. 4 shows that intuition is indeed pessimistic in this case: after two
calls to opa (opc), for example, we should compare c2 — the chance that
i < 2 — with a2, rather than with a. That illustrates the benefits of exact
calculation, aside from a proof of correctness.

sa sc

inita; opa a 1 initc; opc

inita; opa ; opa a2 c2 initc; opc; opc
inita; opa ; opa ; opa a3 c(1 + cc) initc; opc; opc; opc

...
...

...
...

The columns sa, sc give the cumulative success probability for the abstract, concrete
datatype — the probability that abort does not occur in the given sequence of oper-
ations. The resulting constraint on a is that in all rows the value in the left column
must not exceed the corresponding value in the right column.

Fig. 4. Tabulating the chance of success

Finally we generalise the above ideas to treat the N -skipper of Fig. 1.
Following the same reasoning as above we use

rep : = (|n : 0 ≤ n ≤ N : i: = n @ pn); i :≤ i , (4)

where p0, p1, · · · , pN are probabilities summing to 1. As before, when the
refinement equations are simplified we recover a set of constraints:

ap0 ≤ cN

apn+1 ≤ cNpn for 0 ≤ n < N .
(5)

Notice that this time the assignment to i is chosen from 0, ..., N since
if opcN does not abort, i must have one of these values finally. Once more
we maximise for a, the result of which is summarised in the following
lemma.

Lemma 3.1. The program rep defined in (4) is a simulation between the
datatypes in Fig. 1 provided a ≤ a′, where a′ is the largest solution for x
in the interval [0, 1] of the equation

xN = c(xN−1 + cxN−2 + ... + cN−2x + cN−1) . (6)

Proof: A simulation holds between the datatypes provided the equa-
tions (5) are satisfied and maximising for a implies finding solutions of
the equation (6). It now follows that, since (5) hold for equality for a′,
they also hold (for inequality) for any smaller value of a. 2



10

In the general case there is always a unique solution of the equation
(6) lying in the interval [0, 1]. (We are interested in that interval since we
look for probabilities.) A careful analysis shows that it always allows us
to prove a data refinement with a somewhat larger than 1 − (cN )N , the
probability that i is incremented N times in a row.

4 An Application: a Probabilistic Steam Boiler

In this section we consider the problem of calculating the reliability of
a regulator for a steam boiler. An accurate model would be much more
complicated than the one presented here — but we concentrate on only a
small number of details, many of which we simplify later, for our primary
aim is to illustrate how the data refinement techniques developed in the
previous sections might apply to a realistic safety-analysis problem.

4.1 System Safety

The steam boiler consists of a reservoir of water supplied by pumps. Dur-
ing operation the water level continually fluctuates in reaction to steam
loss and varying pump and water pressure. If the water level becomes
either too low or too high the boiler could be seriously damaged, thus we
describe our system reliability in terms of the level’s remaining between a
low (L) and a high (H) boundary. We use the standard safety engineering
definition of unreliability [14] — it is the proportion of observed failures
in a given interval of time (reliability is the complement). Thus in this
application our unreliability measures appear as a probability of failure
per unit time; each unit is a single iteration of one of the programs given
below.

The steam boiler has a regulator, which we write as a datatype6 spec-
ifying the overall tolerance on system reliability, and which otherwise
has very simple behaviour — it abstracts from the sensors and the fault
tolerance mechanism which would appear in the more complicated imple-
mentation. By proving refinement between specification and implemen-
tation we aim to establish a link (as in standard safety analysis) between
high-level ‘system reliability’ and low-level component failure rate. We
concentrate on the two system components that together contribute to
unreliability by independently affecting the water level: they are the en-

vironment and the regulator, and we describe them next.

6 In fact we present only the operations of the datatypes — it is a routine exercise to
include the initialisation and finalisation.



11

4.2 The Environment

Our intended environment is a very general one, for it can influence the
water level in either direction. Disturbances in the ambient temperature,
for example, impact on the rate of steam production and can cancel the
effect of pump action. In Fig. 5 we illustrate the possible changes in water
level during a single unit of time.

steam pump simplified

effect δ
not outgoing off 0
not outgoing on +1

outgoing on 0
outgoing off −1

Fig. 5. Change in water level during a single unit of time

In a more elaborate system model we might abstract specific environ-
ment reactions by a nondeterministic choice over a range restricted only
by the physical constraints of pump and steam pressure. Here our aim is
more modest, and we simplify matters by assuming that the rate of water
movement δ is either constant or zero; normalisation then makes it −1, 0
or +1. With that abstraction the environment’s behaviour is very simple:
it is the nondeterministic choice (⊓) over the possibilities of water-level
movement δ in one time unit:

δ: = −1 ⊓ δ: = 0 ⊓ δ: = 1 .

4.3 Safety Specification for the Regulator

The behaviour of the steam boiler system is to alternate between the
environment action and the regulator reaction. A single step of such a
cycle is therefore given by

δ: = −1 ⊓ δ: = 0 ⊓ δ: = 1;
Regulator (w, δ);
{L ≤ w ≤ H} .

The task of the procedure Regulator (w, δ) is to keep the water level w
between the boundaries H and L, possibly counteracting the environment



12

(ignoring δ) to do so — because if it fails, the assertion statement {L ≤
w ≤ H} will cause the whole system to abort.

The specification of the regulator set out in Fig. 6 describes both cor-
rect and faulty behaviour, linked by probabilistic choice, and thus defines
the overall tolerance placed on the regulator’s (and hence the system’s)
reliability. We have used statements P ≥p⊕ Q which combine probability
and nondeterminism — P is chosen with some probability at least p, but
we don’t know which.7 For our use of it here, all we need to know is
that P ≥p⊕ Q ⊑ P p⊕ Q, that ‘at least p’ is satisfied by ‘exactly p’. The

if w = H → w: = w − 1 ≥e⊕ w: = w + δ
2 L < w < H → w: = w + δ ≥f⊕ fail

2 w = L → w: = w + 1 ≥e⊕ w: = w + δ
fi;
{L ≤ w ≤ H}

Fig. 6. Regulator specification (first attempt)

specification says therefore that when the water level is dangerously high
(w = H) the regulator will lower it (executing w: = w − 1, ignoring δ)
with probability at least e. When the water level lies strictly between the
boundaries, in the region safe from imminent catastrophe, the regulator
does not need to intervene: with probability at least f it updates the wa-
ter level as directed by the environment, and failure to do so is modelled
by the statement fail, which we explain below.

To begin our analysis, we move the boundary check {L ≤ w ≤ H} into
the branches of the alternation. In the worst case for w = H (assuming
pessimistically that δ could be 1) the result is the statement

w: = w − 1 ≥e⊕ abort .

(The w = L case is similar.)
Here we are reserving abort to model catastrophic failure: for us,

that is when w escapes the boundaries. The statement fail on the other

7 More precisely, we define P ≥p⊕Q to be

P p⊕ (P ⊓Q) ,

so that an implementor must choose P with probability p; for the remaining p he
may choose either P or Q.



13

hand is deemed a lesser failure — immediate catastrophe is not its conse-
quence.8 However an occurrence of fail would still require invocation of
some back-up procedure while necessary repairs were carried out; we call
that maintenance failure. The different levels of severity mean different
reliabilities: maintenance failure would be tolerated at a much higher rate
than catastrophic failure would be, and thus in general e (catastrophic
reliability) would be expected to be much higher than f (maintenance
reliability). In any case e should be considerably less than the failure rate
of the components (see below) — that, as we will see, can be achieved by
the design of the implementation.

Having distinguished between failure types, for simplicity we drop
that distinction — modelling both with abort in our formal treatment.
We do, however, preserve the brief association with the notion of ‘main-
tenance failure’ in that we allow f to be much less than e: we can tolerate
maintenance failures at a higher rate. With this final simplification the
regulator reduces to the program in Fig. 7.

RegSpec(w, δ) := if w ≥ H → w: = w − 1 e⊕ abort

2 L < w < H → w: = w + δ f⊕ abort

2 w ≤ L → w: = w + 1 e⊕ abort

fi

We replace ≥e⊕ etc. by the simpler e⊕ without loss of generality, since if an implemen-
tation satisfies the latter it will certainly satisfy the former.

Fig. 7. Regulator specification

4.4 The Regulator Implementation

In reality a regulator would not have direct access to the water level, but
rather would rely on the sensors to relay that information — it is the
sensors that cause the overall failure, and our task is to minimise that
risk. Thus the implementation set out in Fig. 8 does not contain w in its
guards, but rather uses variables g (for ‘guess’, the last successful sensor
reading of the water level) and i (the length of time that the sensor has
continuously failed). In each time unit, the sensor fails with probability s.

8 The fail occurs for example when the regulator ignores δ because an internal sensor
has failed for some time — its estimate of the water level is so inaccurate that it acts
as if the boundaries might be violated even when they cannot.



14

RegImp(w, δ) := if g + i ≥ H → w: = w − 1
2 L + i < g < H − i→ w: = w + δ
2 g − i ≤ L → w: = w + 1
fi;
i: = i + 1 s⊕ i, g: = 0, w

Fig. 8. Regulator implementation

If i = 0 the sensor is working and the water-level reading g coincides with
the actual water level w. If on the other hand i > 0, then g only holds the
last accurate reading — for g is not updated along with an increase in i
— so the regulator must ‘guess’, calculating bounds on the actual water
level using the (invariant) relation

g − i ≤ w ≤ g + i .

The probabilistic assignment to i and g models a simple time-independent
failure, repair rate of 1−s and s respectively. And now the extent to
which the regulator can avert catastrophe by operating under the invari-
ant above is measured by the relationship between e and s (as below).

Before we discover formally what that relationship is, arguing infor-
mally we can see that provided g + i ≥ H and g − i ≤ L do not hold
simultaneously the regulator can safely push the water level away from
one boundary without running the risk of crossing the other. After some
time however (and in the worst case when i > (H−L)/2) that situation
is no longer tenable, and at that point the regulator can only assume that
the water level is both too low and too high, an impossibility that can be
resolved (in the specification at least) only by abortion. Thus we would
expect that e is roughly at least 1−s(H−L)/2, the probability that the
sensor fails (H−L)/2 times in a row. As discussed above we now discover
the precise quantitative relation between s, f and e by determining the
conditions under which RegSpec(w, δ) is data-refined by RegImp(w, δ).

4.5 Proof of Data Refinement

As in Sec. 3, we take a supplier-oriented view of the problem — fixing the
reliability 1−s of the sensor in the implementation, we wish to find the
greatest values for e and f which will allow a data refinement. Recall that
overall reliability of the regulator depends on the reliability of the sensors,
and establishing a data refinement is contingent on that dependency.



15

We prove the refinement in two stages: starting from the specification
in Fig. 7 we first add the variable i, to reach the intermediate program
set out in Fig. 9; only then do we introduce the variable g. We sketch the
details of the formal proofs here, as well as appealing freely to standard
data refinement results — for example that the relation of data refinement
is transitive, and indeed that ordinary program refinement is simply a
special case [2].

if w ≥ H → {i < (H−L)/2}; w: = w − 1
2 L < w < H → {i = 0}; w: = w + δ
2 w ≤ L → {i < (H−L)/2}; w: = w + 1
fi;
i: = i + 1 s⊕ i: = 0

Fig. 9. Intermediate refinement step

Lemma 4.1. RegSpec(w, δ) is data-refined by the datatype set out in
Fig. 9 provided that f is no greater than 1−s and that e is no greater
than the solution of (6), repeated here:

xN = c(xN−1 + cxN−2 + ... + cN−2x + cN−1) .

Proof: The lemma follows by noting first that each guarded statement,
together with the assignment to i that follows, is essentially an instance
of the faulty skipper in Fig. 1. To prove a data refinement, we use a
representation function

rep : = (|n : 0 ≤ n ≤ (H−L)/2 : i: = n @ pn); i:≤ i (7)

where the pn are defined by (5) of Sec. 3. The required data refinement
can now be proved via (7): rep distributes through the guards (they do
not involve i and rep does not mention w); moreover despite the pn being
solutions to the faulty N -skipper when N = (H−L)/2 (thus applicable
to the boundaries) we note that the nondeterministic decrease of i in
(7) gives us the refinements (2) for the intermediate L < w < H case
(corresponding to a faulty 2-skipper) as well. The details are routine and
are omitted. 2

Lemma 4.2. The datatype in Fig. 9 is data refined by the RegImp(w, δ)
of Fig. 8.



16

Proof: We add the variable g to the intermediate datatype in Fig. 9
using the standard technique of coupling invariants [2]. We observe first
that the real water level w is always maintained between the estimated
boundaries g − i and g + i, hence we define the coupling invariant

I : = g − i ≤ w ≤ g + i .

Using this, we can (routinely) replace the guards and augment the as-
signment; again we omit the details.

2

With Lem. 4.1 and Lem. 4.2 we can finally conclude that using a sensor
of reliability (1−s) guarantees overall system reliability of at least (and in
fact strictly greater than) 1−s(H−L)/2 — this of course is reliability with
respect to ultimate catastrophe.

5 Conclusion

In this paper we have made two contributions: we illustrated how data
refinements within a probabilistic domain may be proved using the tech-
nique of simulations; and secondly we argued that establishing proba-
bilistic data refinements provides a quantitative link between system and
component level reliabilities.

It is well known that representation programs (our rep) are not nec-
essarily unique, and one might conjecture that a non-probabilistic repre-
sentation might be found that would satisfy the refinements in (2) and
thus avoid the calculations presented here. That the probabilistic nature
of our example needs the extended techniques can be seen by considering
the 2-skipper — for we may assume a finite state space and thus only
finitely many possibilities (9 in all) for a non-probabilistic rep, none of
which satisfy the refinements in (2).

More generally we can explain the choice of rep by considering how
accurately an observer can guess the value of the local variable at ‘run-
time’ of a program using the 2-skipper. We assume that he knows the
implementation’s code, but not the actual run-time value of i (since he
cannot observe i directly). After several calls to opc at best he can only
infer a probability distribution for i; from this he can calculate the chance
that the 2-skipper will abort next time opc is called — it is the prob-
ability that the actual value of i is 2. Hence rep encodes the observer’s
most accurate knowledge of i’s value — if rep was non-probabilistic that
would correspond either to perfect knowledge (for a deterministic rep)



17

or to complete lack of knowledge (for a nondeterministic rep); in neither
case is this appropriate for the 2-skipper as the observer’s knowledge lies
somewhere in between and can only be described by a probability dis-
tribution. More details concerning the general treatment of probabilistic
assignments to local variables can be found elsewhere [7].

We hope to extend the use of the probabilistic model presented here
to the application of quantified analyses of safety critical systems in gen-
eral. For example our modelling all types of system failures as abort

is certainly unacceptable for a quantified assessment of risk for which
we would need to continue to distinguish between the possible identified
hazards (for risk measures the cost modified by likelihood of all the haz-
ards [14]). Building a sufficiently simple model where we can make such
distinctions is a topic for future research.

Acknowledgements

This paper reports work carried out at Oxford within a project supported
by the EPSRC, directed jointly by Jeff Sanders and Carroll Morgan; and
we are grateful for Sanders’ contribution to this topic.

References

1. J.-R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. C.C.Morgan. Auxiliary variables in data refinement. Information Processing Let-
ters, 29(6):293–296, December 1988. Reprinted in [12].

3. E.W. Dijkstra. A Discipline of Programming. Prentice Hall International, Engle-
wood Cliffs, N.J., 1976.

4. P. H. B. Gardiner and C. C. Morgan. Data refinement of predicate transformers.
Theoretical Computer Science, 87:143–162, 1991. Reprinted in [12].

5. Paul Gardiner and Carroll Morgan. A single complete rule for data refinement.
Formal Aspects of Computing, 5(4):367–382, 1993. Reprinted in [12].

6. G. Grimmett and D. Welsh. Probability: an Introduction. Oxford Science Publica-
tions, 1986.

7. Probabilistic Systems Group. A quantified measure of security 1: a relational
model. Available via http [13].

8. Jifeng He, K.Seidel, and A. K. McIver. Probabilistic models for the guarded
command language. Science of Computer Programming, 28(2,3):171–192, January
1997.

9. C.A.R Hoare, Jifeng He, and J.W. Sanders. Prespecification in data refinement.
Information Processing Letters, 25(2), May 1987.

10. C.B. Jones. Systematic Software Development using VDM. 2ed, Prentice-Hall,
1990.



18

11. C. C. Morgan, A. K. McIver, and K. Seidel. Probabilistic predicate transformers.
ACM Transactions on Programming Languages and Systems, 18(3):325–353, May
1996.

12. C. C. Morgan and T. N. Vickers, editors. On the Refinement Calculus. FACIT
Series in Computer Science. Springer-Verlag, Berlin, 1994.

13. PSG. Probabilistic Systems Group: Collected reports.
http://www.comlab.ox.ac.uk/oucl/groups/probs/bibliography.html.

14. N. Storey. Safety-critical computer systems. Addison-Wesley, 1996.

Appendix: Some algebraic laws of probabilistic programs

1. (P q⊕ Q);R = P ;R p⊕ Q;R
2. R; (P p⊕ Q) ⊑ R;P p⊕ R;Q

and if R is a deterministic and standard program,
3. R; (P p⊕ Q) = R;P p⊕ R;Q .


