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Abstract. We report on an extension of Haskell with type(-level) func-
tions and equality constraints. We illustrate their usefulness in the con-
text of phantom types, GADTs and type classes. Problems in the context
of type checking are identified and we sketch our solution: a decidable
type checking algorithm for a restricted class of type functions. More-
over, functional dependencies are now obsolete: we show how they can
be encoded as type functions.

1 Introduction

Experimental languages such as ATS [6], Cayenne [1], Chameleon [25], Epi-
gram [15] and Omega [21] equip the programmer with various forms of “type
functions” to write entire programs on the level of types. In the context of
Haskell, there are two distinct languages extensions that that support such type-
level computation: functional dependencies which are well established [12], and
associated types which are a more recent experiment [5]. In this paper, we make
the following contributions:

– We generalise the so-called “associated type synonyms” [5] by decoupling
them from class declarations, thereby allowing us to define stand-alone
type functions (Section 2). We give examples which show the usefulness of
stand-alone type functions in combination with GADTs and phantom types.

– It turns out that pure type inference for our extended language is very easy.
However, in the presence of user-supplied type signatures (which are ubiq-
uitous in Haskell) and GADTs, the type checking problem becomes unex-
pectedly hard. We identify the problem and sketch our solution (Section 3).
This is the main technical contribution of the paper.

– We show that type functions are enough to express all programs involving
functional dependencies, although the reverse is problematic (Section 4).
Other related work is discussed in Section 5.
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For space reasons, and because it reports work in progress, this paper is
entirely informal. We have much formal material in an accompanying draft tech-
nical report [20].

2 Informal overview

We begin informally, by giving several examples that motivate type functions,
and show what can be done with them. Notably, we have found three uses of
type functions: in combination with type classes, in combination with GADTs
and even in the basic Hindley/Milner type system.

2.1 Type classes and type functions

The original paper on functional dependencies [12] presented the following class
of collections:

class Collects c e | c -> e where
empty :: c
insert :: e -> c -> c
toList :: c -> [e]

instance Collects BitSet Char where ...
instance Eq e => Collects c [c] where ...

The notation “| c -> e” means “the collection type c determines the element
type e”. The two instance declarations explain that the collection of type BitSet
has elements of Char elements; and a collection of type [e] has elements of type
e. The “...” parts give the implementations of the methods empty, insert, etc.

Using our proposed type-function extension we would re-express the example
as follows:

type family Elem c
class Collects c where
empty :: c
insert :: Elem c -> c -> c
toList :: c -> [Elem c]

type instance Elem BitSet = Char
instance Collects BitSet where ...

type instance Elem [e] = e
instance Eq e => Collects c [c] where ...

The type class now has only one parameter, c. A new type family Elem is defined,
using a type family declaration. We think of Elem as a function from the
collection type to the element type, and indeed often refer to it as a “type
function”, although the term “function” is so heavily used that we use “type



family” when we want to be precise. The types of the class methods should now
be self-explanatory; indeed, they are more perspicuous than before.

Each instance declaration now has two related parts. First, we add an equa-
tion to the definition of Elem, using a type instance declaration. Second, we
have a perfectly ordinary Haskell instance declaration.

One might wonder whether functional dependencies are more expressive than
type functions, or vice versa, and we discuss that in Section 4.

2.2 Plain type functions

The main benefit of decoupling the type functions from type classes is that the
former can now be used independently. (We still offer the syntax for associated
type synonyms proposed in [5], but it is purely syntactic sugar.) For example,
here is how we might write a library that manipulates lengths, areas, volumes,
and so on:

data Z -- Peano numbers
data S a -- at the level of types

newtype Val u = V Float

type Scalar = Val Z
type Length = Val (S Z)
type Area = Val (S (S Z))
type Volume = Val (S (S (S Z)))

addVal :: Val u -> Val u -> Val u
addVal (V v1) (V v2) = V (v1+v2)

mulVal :: Val u1 -> Val u2 -> Val (Sum u1 u2)
mulVal (V v1) (V v2) = V (v1*v2)

The phantom-type parameter u keeps track (statically) of the units of the value
[11]. The idea is that u will be instantiated by a Peano-number representation
of the dimension of the number, as suggested by the (ordinary, Haskell) type
synonym declarations of Scalar etc. The signature of addVal specifies that it
can only add two values of the same units.

The signature of mulVal is more interesting, because the dimension of the
result is the sum of the dimensions of its argument — for example, multiplying
a Length by an Area gives a Volume. So we need a type-level computation,
expressed using the type function Sum:

type family Sum n m
type instance Sum Zero x = x
type instance Sum (Succ x) y = Succ (Sum x y)

Notice that no type classes are involved here. The same program can be written
using functional dependencies, but only by bringing in a type class (with no
methods), and only by using a more relational notation:



mulVal :: Sum u1 u2 r => Val u1 -> Val u2 -> Val r

The example can readily be extended to handle multiple units (e.g. time as well
as length).

This encoding does not express the fact that Val should only be applied to
compositions of S and Z. It would be better to express this idea in the kinds
thus:

datakind Nat = Z | S Nat

newtype Val (u::Nat) = V Float

Not only is this more explicit, but it also allows us to check that we have provided
all the equations for Sum, and permits induction over Nat. In effect, Sum is a closed
type function whereas Elem was an open one. In this paper we concentrate on
open functions, and leave the exploitation of closed-ness for future work.

2.3 GADTs and type functions

Generalised Algebraic Data Types (GADTs) are extremely useful for expressing
rich data structure invariants at the type level. A well-known example is that of
length-indexed lists, or vectors for short:

data Vector el len where
Nil :: Vector el Z
Cons :: el -> Vector el len -> Vector el (S len)

where we use the type encoding of the natural numbers from the previous section.
With vectors we can easily avoid some of the pitfalls of ordinary lists. Con-

sider the well-known Haskell function zip :: [a] -> [b] -> [(a,b)] for pair-
ing up the corresponding elements in two lists. It has an annoying corner case:
when the lengths of the two lists are not matched, then the trailing elements of
the longer list are simply and silently discarded. With vectors we can easily rule
out this corner case at compile time. Consider the definition of vzip, a zip for
vectors:

vzip :: Vector a len -> Vector b len -> Vector (a,b) len
vzip Nil Nil = Nil
vzip (Cons x xs) (Cons y ys) = Cons (x,y) (vzip xs ys)

Observe that the length type parameter of both input lists is identical. This
means that the type checker verifies for every call vzip as bs whether the vec-
tors as and bs have the same length. If not, the program is rejected.

For length-indexing to be useful, we should be able to express the impact
of list transformations on the length. Unfortunately, without resorting to overly
complicated5 type classes with functional dependencies, Haskell’s type system
does not allow us to express even the most basic of transformations.
5 and rather ill-understood



Concatenation of vectors is a good example. While this implementation is
easy enough to write:

vconcat Nil l = l
vconcat (Cons x xs) ys = Cons x (vconcat xs ys)

and, like mulVal, its signature involves a type-level computation;

vconcat :: Vector e n -> e Vector e m -> Vector e (Sum n m)

This function Sum is a type-level function, defined in the previous section.

2.4 Equality constraints

Suppose that we want to write a function merge that adds all the elements of
one collection to another collection. It cannot have type

merge :: (Collects c1,Collects c2) => c1 -> c2 -> c2

because not all collections have the same element types. On the the other hand,
it is over-restrictive to write

merge :: (Collects c) => c -> c -> c

because it is perfectly OK to merge collections of different types provided their
element types are the same. For example one could merge a BitSet with a [Char]
because they both have element type Char.

The way to achieve this is to use an equality constraint:

merge :: (Collects c1,Collects c2,Elem c1∼ Elem c2) =>
c1 -> c2 -> c2

where constraint “Elem c1 ∼ Elem c2” says that c1 and c2 must only be in-
stantiated to types for which Elem c1 and Elem c2 are equal. These equality
constraints are, in fact, quite familiar from GADTs. Recall the definition of
Vector from the previous section:

data Vector el len where
Nil :: Vector el Z
Cons :: el -> Vector el len -> Vector el (S len)

One way to think of Cons is that it has type

Cons :: (slen∼ S len) => el -> Vector el len -> Vector el slen

Our new design allows arbitrary type equalities to be specified in a type signa-
ture, with GADTs as a useful special case. In [5] a number of restrictions are
imposed on the form of equality constraints. We do not impose any restrictions;
even constraints that do not involve any type functions are allowed, e.g. Int ∼
Bool.



2.5 Summary

In general, a type function is introduced by a top-level type family declaration.
An optional kind signature may be used for both the argument types and the
result type; for example:

type family MonadRef (monad :: * -> *) :: (* -> *)

Otherwise, these kinds are assumed to be *.
Like a regular Haskell 98 type synonym, a type function has an arity, given by

the number of named arguments to the left of the “::”. For example MonadRef
has arity 1, even though it has kind “*->*->*”. Like regular type synonyms,
type-function applications must be saturated : they must be supplied with at
least as many type as prescribed by their arity. Again like type synonyms, over-
application is of course allowed, e.g. MonadRef IO Int.

Unlike regular type synonyms, however, type functions are open functions,
whose definition is extended by type instance declarations; for example:

type instance F [a] k = (a,k)

The part to the left of the “=” is called the definition head and the part to the
right the definition body. The head must have exactly as many type parameters
as the arity of the type function.

In order to ensure modularity, consistency of the type function definition and
termination of type inference, a number of conditions must be imposed on the
instances:

1. Instance heads must not overlap.
2. Type function applications in the body must be smaller than the head.
3. Type function applications in the body must not occur inside other type

function applications.

We return in more detail on these conditions when we discuss type checking.
Just as Haskell has data types as well as type synonyms, we also support

data type families as well as type functions. For example:

data family GMap k v
data instance GMap Int v = GI (Map.Map Int v)
data instance GMap (a, b) v = GP (GMap a (GMap b v))

Like a type instance, there may be many data instance declarations for each
data family, each having a different type pattern to the left of the “=”. The rest
of the declaration is just like a regular Haskell data type declaration: it defines
one or more constructors. (They can even be GADTs!)

Data type families are really only useful in association with type classes; we
refer the reader to [4] for details. In contrast to type functions, it is extremely
straightforward to add data type families to the type inference engine, and we
do not discuss them further here.



3 Technical challenges

To add type functions to Haskell we must explain how to adapt the type inference
engine to accommodate them. Parts of this turned out to be very easy but,
somewhat to our surprise, other parts were much harder than we anticipated.
One of the main contributions of this paper is to identify just what is hard,
although we have space only to sketch our solution.

3.1 The easy part: type inference

Consider the problem of doing pure type inference (i.e. with no types declared
by the programmer) in the presence of type functions.

This is an easy problem. Recall that the type instance declarations are
restricted (Section 2.5) so that they can be regarded as a left-to-right rewrite
system that is (a) confluent and (b) terminating. Type inference is conventionally
done using unification (see [18] for a tutorial). When type functions are added,
we modify the unifier so that when it tries to unify two types, it first normalises
them using the rewrite rules.

If performed too early, this normalisation may get “stuck”. For example,
consider inferring the type for

\c -> (insert ’x’ c, length c)

where insert was defined in Section 2.1, and length has its usual type:

insert :: Collects c => Elem c -> c -> c
length :: [a] -> Int

Initially, type inference assigns an unknown type α to c. The insert call requires
us to unify Char (the type of ’x’) with Elem α (the argument type of insert).
Since we do not know what α is, normalisation gets stuck. But all is well, because
“later”, the call length c forces α to be unified with [β]; and now the stuck
normalisation can proceed, rewriting Elem [β] to β.

So all we need is a way to suspend stuck unifications, and try them again
later. That is, we must gather as-yet-unsatisfied equality constraints from the
term, and attempt to solve them later. Happily, Haskell already requires us to
gather type-class constraints from the term, so all the plumbing is already in
place.

All that remains is to consider generalisation. Consider the definition

f = \c -> insert ’x’ c

When we come to generalise f, the stuck unification is still stuck! But that
is easy: just as we abstract over type class constraints in this situation, so we
abstract over equality constraints, to give the type

f :: ∀a.(Collects a, Elem a ∼ Char) =⇒ a→ a



3.2 The hard part: type checking

Alas, we cannot live with type inference alone. Type checking is necessary as
well, for a number of reasons:

– Programmers want to write signatures, as a form of specification or docu-
mentation of their program.

– Full type inference is infeasible for a number of type system features, notably
for GADTs [24].

Consider again the vconcat function:

vconcat :: Vector e n -> Vector e m -> Vector e (Sum n m)
vconcat Nil l = l
vconcat (Cons x xs) ys = Cons x (vconcat xs ys)

Let us focus on the first equation alone, the case for Nil. We know that l is of
type Vector e m. The program type checks if we can show that l is also of type
Vector e (Sum n m). If we drop the identical parts, this boils down to showing
that m equals Sum n m. How can we establish this equality? The pattern match
Nil makes available the (local) assumption n∼ Z. So we want to deduce that

n ∼ Z =⇒ m ∼ Sum n m

And this holds, of course, because we can make use of the top-level type-function
equations for Sum:

(∀ys.Sum Z ys ∼ ys),
(∀xs, ys.Sum (S xs) ys ∼ S (Sum xs ys)) |= n ∼ Z =⇒ m ∼ Sum n m

Similar reasoning applies to the Cons case.
In general, type checking is reduced to an entailment check among type equa-

tions with respect to an equational theory:

Et |= Eg =⇒ Ew

where

– Et (top-level equations) refers to the type function theory, i.e. the top-level
type function definitions. These equations may involve universal quantifica-
tion; e.g. ∀ys.Sum Z ys ∼ ys.

– Eg are the given equations arising from type annotations and GADT pattern
matchings, for example n∼ Z. These equations are over monotypes, with no
universal quantification.

– Ew are the wanted equations arising out of expressions, for example m ∼
Sum n m. Again, the equations are over monotypes.



3.3 The type checking strategy

The type inference strategy was to use the top-level equations Et to normalise
the wanted constraints Ew. But we cannot do this for type checking, because the
additional given constraints Eg do not necessarily form a terminating, confluent
rewrite system, particularly when combined with Et:

1. They are not properly oriented to ensure termination. E.g. the TRS formed
by top-level equation F Bool = Int and given equation Int ∼ F Bool is
clearly looping.

2. They may well be inconsistent (i.e. non-confluent) with respect to each other
or the top-level equations. E.g. the TRS formed by top-level equation F Bool
= Int and given equation F Bool∼ Char is not consistent.

The solution of these issues is to transform the given equations Eg into an
equivalent set of equations E′g that does satisfy all the necessary properties.
In TRS-terminology, the problem of finding an such an E′g is known as the
completion problem.

Unfortunately, there is no off-the-shelf completion algorithm that suits our
needs. Existing completion procedures are either undecidable [3] or restricted to
systems of ground equations [19]. What we require is a completion algorithm that
is (1) decidable and (2) takes into account the non-ground top-level equations. In
addition, we want to exploit the injectivity property of Haskell type constructors
(usually not considered in TRS). We have therefore devised a novel completion
algorithm that satisfies all our requirements; this algorithm is our main technical
contribution.

Our completion algorithm comprises the following steps:

– Top: Eg is normalised with respect to Et, e.g. Int ∼ F Bool is normalised
to Int∼ Char with respect to F Bool = Int, exposing the inconsistency.

– Trivial: Trivial equations are dropped, e.g. F a∼F a, avoiding trivial non-
termination.

– Decomp: Non-essential type constructors are dropped , e.g. (F a,F b) ∼
(Int,Bool) becomes F a∼ Int and F b∼ Bool.

– Swap: Equations are oriented properly, e.g. Int∼F Bool becomes F Bool∼
Int.

– Subst: of Eg are substituted in each other, exposing inconsistencies. E.g
F a∼ Int is substituted in F a∼ Char,resulting in Int∼ Char.

Moreover, our completion algorithm successfully deals with particularly diffi-
cult given equations like F Int∼ [G (F Int)]. From left-to-right, the equation
is non-terminating (the left-hand side occurs in the right-hand side), while the
Swap rule rejects the right-to-left orientation. Our solution is to break the equa-
tion into two new equations: F Int∼a and [G (F Int)]∼a where a is a skolem
constant. After further completion we end up with F Int∼a and [G a]∼a which
is a proper strongly-normalising TRS.



An inconsistency discovered during completion, e.g. Int∼ Char, means that
no evidence can be provided to support the given equations. While not ill-typed,
the code under consideration is effectively unreachable.6

3.4 Restrictions on type function definitions

We already mentioned that a number of conditions must be imposed on the
top-level type function definitions for reasons of soundness and completeness of
our type checking strategy. The ground rules are these:

Modularity type instance declarations may be added one at a time, and
must be individually accepted or rejected. It is not acceptable to require a
global analysis of all the type instance, followed by a “yes” or “no” answer.

Arbitrary given constraints We may place restrictions on the type instance
definitions, but we should place no restrictions on the additional given con-
straints Eg, because pattern matching on a GADT can give rise to arbitrary
constraints.

Simplicity The simpler the rules, the better.

As an example of the need for arbitrary given constraints Eg consider the fol-
lowing program:

data Eq a b where
EQ :: EQ a a

f :: Eq (F a) (G a) -> Int
f EQ = ...

where F and G are type functions In the right hand side of f, we have the given
equation F a ∼ G a, and clearly we could have given rise to an arbitrary such
equation simply by choosing a different type signature for f.

Confluence The TRS-based type checking strategy requires that the top-level
equations are confluent. For terminating rewrite systems, confluence is a decid-
able property: the test is based on the normalisation of critical pairs [13]. For
reasons of modularity and simplicity7, we propose more restrictive properties:

1a. The heads of type function definitions do not contain (nested) type functions.
1b. The heads of type function definitions may not overlap.

The first of these is analogous to requiring that the patterns in an ordinary
function definition use only variables and constructors, but not functions.

The second ensures that only one equation can match, and hence their order
does not matter. Remember that, unlike Haskell function definitions, but like
instance declarations, the type instance declarations for a type function are
not required to occur all together, and hence are un-ordered. For example, the
rule excludes this non-confluent overlap:
6 Our implementation raises an error to alert the programmer.
7 from the points of view of programmers and compiler writers



type instance F Int = Bool
type instance F Int = Char

but also excludes this set of confluent definitions:

type instance F Int = G Bool
type instance F Int = G Char

type instance G Bool = ()
type instance G Char = ()

Termination Next to confluence, termination of the TRS is essential for the
completeness of our type checking strategy. The main principle for establishing
termination in rule-based languages (to which type definitions belong) is that
of decreasing calls [2]. A level-mapping assigns a value to all function calls; and
all rules must satisfy the property that the level mappings of all calls in the
right-hand side are smaller than the level-mapping of the rule-head. State-of-
the-art termination analysers, e.g. [10], are capable of automatically inferring
level-mappings in terms of various well-founded orders [7] .

For reasons of modularity and simplicity, we propose not implement a state-
of-the-art termination analysis, but rather to impose two simple conditions on
all individual type definition clauses:

2a. The number of symbols (type constructors and schema variables) in each
type function call in the body, is smaller than the number of the head.

2b. The number of occurrences of any schema variable in each type function call
in the body, is smaller than the number of the head.

Completion Perhaps surprisingly, confluence and termination of the top-level
equations is not enough. We must still account the completion of the given
equations. Let’s consider a single type instance that respects all the above
conditions:

type instance H [[a]] = H (G a)

and the single given equation G Int∼ [[Int]]. The completion algorithm pre-
serves this given equation, and yet the union of the two equations is not termi-
nating: H [[Int]]� H (G Int)� H [[Int]]� . . ..

It turns out that the problem is caused by the nested function call H (G a).
We have gained much insight by expressing our problem as a set of Constraint
Handling Rules (CHRs); in that setting, a nested function call corresponds to a
“non-range restricted simplification rule”, which is known to be symptomatic of
termination problems [22].

Our current solution is simple, if brutal; we add one further restriction:

3. No type function call may occur inside another type function call in a type
definition clause.



Sadly, this restriction renders illegal a class of useful (usually closed) functions,
e.g.:

type instance Mult Z m = Z
type instance Mult (S n) m = Sum (Mult n m) m

Perhaps a more relaxed rule would suffice, a question we leave for future work.

3.5 Type-directed compilation

In a type-directed compiler, the type checker’s task goes beyond providing a
simple yes (the program is well-typed) or no (it’s not). It must also generate the
necessary type information to enable the desugaring of the source language into
the strongly-typed intermediate language. Hence, we adapt our type checking
algorithm to generate type information for System FC [23]. This is an extension
of System F, which has been specifically designed as a practical compiler backed
for Haskell, and is in actual use in GHC.

Encoding System FC already has the essential ingredients, type functions and
equality coercions, which have already proven their usefulness for encoding GADTs
and associated type synonyms.

System FC ’s type functions and their definition are essentially identical to
those in the source language, but the equality coercions deserve a little expla-
nation. Thanks to its syntax-directedness, type checking in System FC is much
cheaper than in Haskell: declared and inferred types are checked for syntactic
equivalence, e.g. Int ≡ Int.

However, the inference of non-syntactical equivalence proofs, like F Int ∼
Bool, is problematic in System FC . The reason is that the set of equational
axioms in System FC may be inconsistent. In particular, the internally consistent
set of type function clauses may be at odds with the newtype axioms.

Example 1. The newtype X = Int is encoded in System FC as an axiom X∼Int,
which conflicts with the type function:

type instance F X = Char
type instance F Int = Bool

We can show that F X is both equal to Char and Bool, the former via the first
clause of F and the latter via the newtype axiom and the second clause.

Fortunately, it is not necessary to repeat a proof that was already made by
the Haskell type checker. The Haskell type checker can create a witness γ for
the proof. Now the System FC type checker can simply check the proof, based
on its witness, rather than to infer it anew. This avoids the unsoundness pitfall
and, as a bonus, checking a proof is also much cheaper than inferring it.

In System FC , evidence is represented by a coercion γ, a special form of types
whose kind is an equation, e.g. γ : F Int∼Bool means that γ is evidence for the



equation F Int∼Bool. Coercion constants are denoted C and coercion variables
co.

In System FC , a unique coercion constant is associated with every type func-
tion clause, e.g. C : type instance F Int = Bool. Similarly, a given equa-
tional constraint, translates to a coercion variable, e.g.

id :: forall a b . a ~ b => a -> b
id = \x -> x

is encoded in System FC as:

id :: forall a b . a∼ b => a -> b
id x = id = Λ(a:*).Λ(b:*).Λ(co:a∼ b).λ(x:a).(...)

In order to type check an expression x whose inferred and expected types are
a and b respectively, it has to be cast with the appropriate the evidence: e I γ
where γ has kind a∼ b. Because types are eventually erased, these casts do not
incur any runtime overhead.

Example 2. The full encoding of the above id function in System FC is:

id = Λ(a:*).Λ(b:*).Λ(co:a∼ b).λ(x:a).(x I co)

Complex coercions can be constructed from primitive coercions with coercion
constructors:

– sym γ has kind a∼ b if γ has kind a∼ b.
– γ1 ◦ γ2 has kind a∼ c if γ1 has kind a∼ b and γ2 has kind b∼ c.
– T γ has kind T a∼ T b if γ has kind a∼ b, where T is a type constructor.
– T γ has kind T a∼ T b if γ has kind a∼ b, where T is a type constructor.
– decompT,i γ has kind ai ∼ bi if γ has kind T ā ∼ T b̄, where T is a type

constructor.

Example 3. Using the previously defined type function F, the program:

main :: F Int
main = id True

is encoded in System FC as:

main :: F Int
main = id @ Bool @ (F Int) @ (sym C) True

where type applications are denoted by @.

Coercion generation Given the appropriate coercions, the System FC encoding
of a Haskell program is a pretty straightforward matter. The hard part is of
course the generation of these appropriate coercions, a task of the Haskell type
checker.

Whenever the Haskell type checker constructs a wanted equation τ1∼ τ2, i.e.
to equate the inferred and expected types τ1 and τ2 of an expression e:



1. it creates a fresh unknown coercion γ of kind τ1 ∼ τ2,
2. it inserts a cast in the code: e I γ, and
3. it associates the coercion with the wanted equation, denoted γ : τ1 ∼ τ2.

Whenever the type checker discharges a wanted equation, it fills in the un-
known coercion, e.g. γ := γ′ where γ′ has the same kind as γ. This is the hard
part: how do we track the coercions of the top-level and given equations through
the rewriting process of our type checking algorithm?

Firstly, it’s not a simple matter of matching up some given equation with
a whole wanted equation. Our algorithm is based on rewriting individually the
left- and right-hand sides of a wanted equation, i.e. τ1 �∗ τ and τ2 �∗ τ , to
obtain a trivial equation of the form τ ∼ τ .

Hence, we must construct two coercions γ1 and γ2, one to justify each rewrit-
ing, i.e. γ1 : τ1∼τ and γ2 : τ2∼τ . From these two coercions we can then determine
the unknown coercion: γ := γ1 ◦ sym γ2.

Example 4. Given these two clauses:

C1 : type instance F Int = Bool
C2 : type instance F Char = Bool

the type checker rewrites the left- and right-hand sides of the wanted equation
γ : F Int ∼ F Char to Bool with coercions C1 and C2 respectively. Hence, the
unknown coercion γ is determined as C1 ◦ sym C2.

Secondly, we have to account for the completion phase. In the completion
phase, the given equations are transformed. Hence, it’s corresponding evidence
has to be transformed accordingly. For that purpose, all the steps in the com-
pletion algorithm of Section 3.3 have to be augmented with coercion transfor-
mations. For example:

– γ : Bool∼ F Int transformed with the Swap step, becomes sym γ : F Int∼
Bool,

– γ : (F a,F b)∼(Int,Bool) decomposed with Decomp, becomes decomp(,),1 γ :
F a∼ Int and decomp(,),2 γ : F b∼ Bool.

4 Type functions versus functional dependencies

One of the most hotly debated questions in the latest standardisation process of
the Haskell language (Haskell Prime [17]) is:

Should Haskell Prime adopt either functional dependencies or associated
type synonyms?

There is little sense in providing two features for expressing functional relations.
The above question now subsumed by a new one:

Should Haskell Prime adopt either functional dependencies or type func-
tions?



We see three possible reasons for preferring type functions:

1. Type functions are inherently more familiar to functional programmers: it is
a small step from functions at the value level to functions at the type level.

2. Type functions have their uses outside of type classes. Similar encodings
with functional dependencies are rather bloated.

3. While functional dependencies have been around for quite a while now, it
seems type checking for them is still rather ill-understood. In contrast, our
prototype implementation of type functions type checks has no problems
with GHC’s open bugs related to functional dependencies.

However, before we consider the question from the point of view of language
and compiler design (as the above arguments do), we first have to study a more
pressing matter:

Is either of functional dependencies or type functions more expressive
than the other?

While we do not yet have a formal result, we claim that both language features
are indeed equally expressive. In the remainder of this section we justify our claim
constructively and present translations both ways. Hence, language designers
and compiler writers can happily disagree: the first group gets to choose what
language feature to program in and the second group what language feature to
implement.

4.1 From functional dependencies to type functions

We claim that every program involving functional dependencies can be re-expressed
to one involving only type functions. This can often by done in an idiomatic
way; for example, consider the way in which we re-expressed the two-parameter
Collects class using a single-parameter class together with a type function
(Section 2.1). But it is less clear how to translate classes with multiple or bi-
directional functional dependencies, such as

class C a b | a -> b, b -> a where ..

Furthermore, if one starts with an existing program, the idiomatic translation
is somewhat invasive because every occurrence of Collects must be changed
to remove a type parameter, and new equality constraints must sometimes be
added. For example,

merge :: (Collects c1 e, Collects c2 e) => c1 -> c2 -> c2

must become that of Section 2.4:

merge :: (Collects c1, Collects c2, Elem c1∼ Elem c2) => c1 -> c2 -> c2

Thus motivated, we have developed an alternative, minimally invasive trans-
lation scheme from functional dependencies to type functions. The scheme is



minimally invasive because it only affects class and instance declarations,
and leaves all else untouched.

It works as follows. In the class declaration each functional dependency
ā→ b is replaced by: (1) a new (associated) type function F ā and (2) a context
constraint F ā ∼ b. In every instance the proper type function instance is
added.

Example 5. The transformed type class for collections is:

class Elem c∼ e => Collects c e where
type Elem c

instance Collects [e] e where
type Elem [e] = e

instance Collects BitSet Char where
type Elem BitSet = Char

4.2 From type functions to functional dependencies

At first sight, the second part of the question should be answered negatively: as
type functions do not have to be associated with type classes they are strictly
more expressive. However, we can of course consider a fresh type class with
functional dependencies (but no methods) to replace a stand-alone type family.

Example 6. The stand-alone type function Sum could be replaced by:

class Sum a b c | a b -> c

instance Sum Zero b b
instance Sum a b c => Sum (Succ a) b (Succ c)

In general, we can replace an n-ary type function with an (n + 1)-ary type
class, with a functional dependency from the n first arguments to the last one.
Every function instance becomes a class instance where the n arguments of the
LHS make up the n first arguments and the RHS becomes the (n+1)th argument.
Any function calls in the RHS have to be flattened into relational form in the
instance context.

Matters become more complicated when data types are involved. For exam-
ple, the following is perfectly legal in our system:

data T c = MkT [Elem c]

That is, a value of type T c is a MkT constructor wrapping a list of elements of
collection type c. Notice that no type-class constraints are involved here. It is
unclear how to translate this to functional dependencies. Certainly, we must add
a new type parameter to the data type T, but then we need a way to express the
connection between the two parameters. Something like this, perhaps?



data Collects c e => T c e = MkT [e]

But it is not clear that the Collects c e context on this declaration has the
“right” effect. Similar complications arise with type synonyms and newtypes;
see [8, Chapter 5]. A substantial advantage of our approach is that these com-
plications go away.

5 Related work

Existing languages with type functions differ on various accounts from Haskell
type functions. They only offer a fixed set of predefined functions (e.g. ATS
[6]), type checking is incomplete (e.g. Cayenne [1], Epigram [15], Omega [21])
or the programmer has to construct the proofs himself (e.g. LH [14]). Moreover,
all these languages assume that type functions are closed. More closely related
to our work is the Chameleon system described in [25]. Chameleon makes use
of the Constraint Handling Rules (CHR) [9] formalism for the specification of
type class and type improvement relations. CHR is a committed-choice language
consisting of constraint rewrite rules. We expect to model open type functions
via CHR rewrite rules which hopefully allows us to transfer some of the existing
CHR type inference results [22] to the type function setting. The hard part so
far has been modelling the treatment of evidence in CHR, which is reasonably
straightforward in our current TRS formalism.

Both Neubauer et al. [16] and Diatchki [8] propose a functional notation for
type classes with a functional dependencies. However, this notation is essentially
syntactical sugar for the conventional relational notation of type classes. So these
approaches gain the convenience of a functional notation, but miss the other
advantages of our approach, especially concerning the use of type functions in
the definition of data types.

6 Conclusion & future work

We have presented type functions, open functions at the type level. While they’re
equally expressive as functional dependencies when used with type classes, type
functions can also be put to good use with GADTs and phantom types. We
sketched a type checking strategy based on completion and term rewriting. Our
implementation of type functions is available in the GHC HEAD branch, and is
documented at http://haskell.org/haskellwiki/GHC/Type_families.

In future work we would like to extend the decidable class of type functions.
It seems that closed type functions would allow us to relax a number of cur-
rent modularity restrictions. Moreover, they should allow for additional proof
strength. For example, we cannot currently show that Sum a Zero∼ a because
Sum is an open function. Valid extensions of the function, like Sum Int Zero =
Bool, do not satisfy this property.

The further comparison of functional dependencies and type functions is of
great interest. We believe that type functions are a better choice, from the point
of view of both language design and type checking.



Finally, the performance of the our type checking algorithm deserves further
attention. In particular we should establish its worst and average time complex-
ities, and the impact on programs that do not involve type functions.
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