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Abstract
Image understanding often requires extensive background knowledge. For example, to
the lay person, an x-ray image of the human cerebral vasculature can be almost
meaningless. However, a trained radiologist, with a knowledge of anatomy and years of
experience, can usually quickly detect anomalies in the blood vessels in the x-ray image.
The problem addressed in this paper is how the background knowledge for a complex
image processing task can be acquired. We discuss how relational machine learning
methods can be used to automatically build rules for classifying abnormalities and we
speculate on how interactive knowledge acquisition tools, such as ripple-down rules, may
be used to refine to the knowledge.
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1 Introduction
Image understanding often requires extensive background knowledge. For example, to
the lay person, an x-ray image of the human cerebral vasculature can be almost
meaningless. However, a trained radiologist, with a knowledge of anatomy and years of
experience, can usually quickly detect anomalies in the blood vessels in the x-ray image.
The problem addressed in this paper is how the background knowledge for a complex
image processing task can be acquired.
Everyone is different and there is considerable variation in the anatomy of different
patients. However, the main structures of, say, the blood vessels in the brain must be
present. Therefore, general text-book knowledge of anatomy and atlases of the brain can
serve as a starting point to construct a framework for the knowledge needed to interpret
x-ray angiograms1 of the brain. But how can variations in individuals be accounted for?
There are text books on variations of human anatomy. These are large volumes that
contain descriptions of cases encountered by physicians over many years. In addition,
individual radiologists will accumulate their own “case book” over many years of
examining patients. Thus, the ability to interpret x-ray images requires a substantial
amount of experience beyond simply learning “normal” anatomy. Furthermore, a
radiologist’s expertise usually includes “procedural knowledge” which guides the
interpretation process.
In many meetings with radiologists, they were asked to perform an image interpretation
while providing a verbal commentary. We found that the radiologists use different kinds
of knowledge which gives them various clues during an investigation and interpretation
of images. Expert knowledge includes the following:
• symmetry (displacement of normal structures from the midline),
• deviation from normal patterns (anatomically correct but with some topological

variations),
• knowledge of the typical patterns associated with a particular disease,
• abnormal patterns which may not belong to a recognised category.
Radiologists can easily detect patterns in angiograms that show a particular disease. For
example, a narrowing of a blood vessel indicates a stenosis. A stroke is manifested by
blocked vessels. In an Arteriovenous Malformation (AVM), enlarged vessels and early
filling of some veins can be detected. In the case of a tumour a few patterns can be
observed: vessel displacement, vessels pushed away and the Sylvian point is depressed.
In the case of an AVM, radiologists also use signs for recognising a feeding vessel such
as: subtle enlargements, increased flow and changing contrast at the entrance or vessel
disappearing.
In all these cases, it was easier to ask a radiologist to demonstrate the problem in an
image and what to expect than to try to formalise their descriptions. Further, using
examples of cases, they communicated more knowledge than if they were asked to

                                               
1 Angiograms are obtained by injecting a dye into a blood vessel and tracing the path of the dye

through successive x-ray images.
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provide general information. Thus, it is only possible to acquire such domain specific
knowledge by learning from images which have been “processed” by experts.
In the following sections of this paper, we will describe a framework for representing
anatomical and procedural knowledge for interpreting x-ray angiograms of the human
cerebral vasculature. We will also discuss how relational machine learning methods can
be used to automatically build rules for classifying types of blood vessels and finally we
will speculate on how interactive knowledge acquisition tools, such as ripple-down rules,
may  be used to refine the knowledge.

2 Modelling the Human Cerebral Vasculature
Apart from the radiologist’s expertise, we have four main sources of information:
• a symbolic description of the human anatomy from textbooks (Nolte 1993);
• structural information of a human brain, depicted in the form of an atlas (Talairach

1988);
• a 3D volumetric representation of the blood vessels of the patient’s brain, from a set of

slices of Magnetic Resonance Angiograms (MRA);
• several x-ray angiograms of the patient’s brain in a form of 2D projections.
Models to assist image processing must include not only knowledge of anatomy but also
how that anatomy should appear in x-ray images taken from different angles. Thus, a
representation of the information from the above sources will contain a symbolic
description of the anatomy and the structure and geometry of the vasculature of the brain.
It is also necessary to store information about spatial relationships among the vessels and
other brain features and how they appear from different views.
We have chosen a frame system to implement the model (Minsky 1975, Goldstein 1977,
Horn 1992). The central idea of frames is that knowledge can be stored in a library of
frames, which are packets of knowledge that provide descriptions of typical objects and
events. Objects are represented by a set of attributes (also called slots) and their
associated values. Generic frames describe the properties of an entire class of objects,
while instance frames describe individual objects. An isa slot indicates that an instance is
a member of a particular class. An ako (a kind of) slot indicates that a generic frame is a
subclass of another class. Thus, frame systems provide inheritance mechanisms common
to most object-oriented systems. Demons, are procedures attached to a slot. Specialised
demons are triggered automatically, depending on how the slot is accessed. For example,
when a new value is added to a slot, the “if added” demon is automatically invoked by
the frame system.
An example of the frame representation is shown in Figure 1. This contains a description
of the Common Carotid Artery. English expressions are used for purposes of illustration
but, in practice, we use the frame system that is incorporated into iProlog (Sammut,
1997). iProlog is a version of ISO Prolog that has extensions which provide a surface
syntax for frame representations. The frames themselves are stored in the usual Prolog
manner as relations in the database. This system combines the convenience of a frame
language with the pattern matching and deductive capabilities of Prolog. The frame
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representation was chosen in favour of Prolog’s native relational form because the
cerebral vasculature is naturally hierarchical structure and therefore maps easily onto
frames. We will see later that demons also allow us to conveniently encode the expert’s
procedural knowledge.
Three frame hierarchies are used to represent:
• brain structure (the lobes of the brain, etc, excluding the vasculature);
• the vasculature;
• the different views provided by the imaging systems.
Illustrated in Figure 2, each hierarchy contains links to the others, showing the
relationships between the different structures. For example, a frame representing a brain
structure will contain slots indicating which vessels supply and drain that structure. The
frames for those vessels have corresponding slots to indicate which structure they supply
or drain.

name: CCA (Comon Carotid Artery )
ako: artery
size: large
width: 5 mm
anterolaterally: crossed by

superior thyroid vein
middle thyroid vein
jugular vein

laterally: internal jugular vein
posterolaterally: vagus nerve
medially: larynx

pharynx
trachea
esophagus

important features: embedded in the carotid sheath
begining: from brachiocephalic  location, at the right

sternoclavicular joint
termination: at the upper border of the thyroid cartilage

below the angle of the mandible
branches: ICC ( internal common carotid)

ECC(external common carotid)

name: LCCA (Left Comon Carotid Artery)
ako: CCA
begining: from arch of the aorta

in the superior mediastinum

name: RCCA (Right Comon Carotid Artery)
ako: CCA
begining: from brachiocephalic  artery

behind the right sternoclavicular joint

Figure 1. The description above represents an idealised Common Carotid Artery which also inherits all
the properties of a generic artery. There are two Common Carotid Arteries in the cerebral vasculature,
these are represented by their own generic descriptions. They will inherit all the properties of the
Common Carotid Artery because their ako slots states that each is a kind of Common Carotid Artery.
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We will now describe these three frame types in further detail.

2.1 Vasculature Frames
The following slots are used to describe a blood vessel:
• the frame’s identifier and the long name of the blood vessel;
• topological information, such as average length, average width, possible variations;
• geometrical information in the form of 2D shapes and sets of 3D points;
• where the vessel begins;
• where it terminates;
• important features (i.e. landmarks for radiologists);
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• branches or tributaries;
• variations expressed as a percentage of cases;
• image features, such as as expected intensity, best x-ray view for the vessel;
• relations such as, anterior, lateral, anterolateral, posterolateral, posterior, medial,

proximal, dorsal, in-front, behind, left-of, right-of.
The geometrical information slot in the blood vessel frame is used for displaying the
vascular tree graphically. Automatic visualisation of the symbolic model enables visual
inspection of the results making communication with the physicians easier while the
model is being developed (Zrimec at al, 1995).

2.2 Brain Structure Frames
The relationship between brain features and the vasculature is established by the feeding
vessels since the vessels supply or drain a particular part of the brain. These are organised
as a hierarchy with the brain at the root with branches into large structures such as the left
and right hemispheres. The brain is divided into two hemispheres. Each hemisphere
branches into four main lobes continuing down to individual brain features. Each lobe is
further subdivided. This part of the model is constructed from a co-planar stereotactic
atlas of the human brain which is commonly used by radiologists and surgeons (Talairach
& Tournoux, 1988).
Each brain feature contains supply and drain slots which indicate the blood vessels which
supply and drain that feature. As we mentioned earlier, there are corresponding slots in
the frames representing those blood vessels so that it is easy to determine which features
they supply or drain.

2.3 View Frames
A symbolic representation of the slices, as depicted in the Talairach atlas, stores
knowledge about spatial organisation. This information is similar to the information
captured in MRI slices. Different sets of slices represent views from three different
angles. Slices in each set are grouped according to their approximate location, e.g. ‘front
or back’, ‘left or right’, etc. This segregation assists in matching slices with the structural
representation of the brain.
The links between view frames and other kinds of frames indicate on which slices we
would expect to find a particular brain feature or vessel and which vessel is expected in a
particular slice. The frames also indicate which features surround each vessel.

2.4 Using the Model
We now return to the original problem of using knowledge to guide the interpretation of
an x-ray image. Obviously, some kind of feature extraction is required to obtain
information about the contents of the image.
The feature extraction system, currently under development, uses low-level image
processing techniques to trace blood vessels. This generates line segments, organised as a
tree structure, where each line segment corresponds to a blood vessel segment.
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The order in which vessel segments are extracted is governed by the frame hierarchy. The
thick vessels are extracted and labelled before proceeding to the finer vessels. As feature
extraction progresses, instance frames, representing the vasculature of the patient, are
generated and compared with the frames of the model in order to recognise the object.
The model can also be used to correct errors in the low-level processing. The tracing
algorithm is far from perfect and may miss some blood vessels or add spurious line
segments. The reference model of the brain can be used to “fill in” the missing anatomy
of the patient’s model and filter out noise.

3 Learning and Refining Object Classes
In order to use a model for image processing, we have to have a model to begin with.
Previously, we saw that a substantial part of the model can be derived from text books.
However, these only describe idealised models of the vasculature or provide a catalogue
of known variations. Books provide insufficient information to be able to recognise the
many variations that a radiologist will encounter in practice. Therefore,  one possible
solution to building an adequate model of the cerebral vasculature is through some form
of automatic or semi-automatic learning.
Although thousands of x-ray angiograms are taken each year, they are not routinely
labelled and stored in a database for use by a machine learning program. Therefore two
possible solutions to acquiring a refined model suggest themselves. The first is that an
expert provides a small set of representative examples that have been carefully labelled.
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The second approach is to allow the image processing system to attempt to recognise
objects in the image and to be corrected by an expert when mistakes are made.

3.1 Learning
The task we address here is to label the blood vessels in the x-ray image. To build a
model through machine learning, we first use the low-level image processing routines to
produce a skeleton of the vasculature. The tracing algorithm then uses the skeleton to
navigate through the grey-scale image and extract blood vessel segments. Recognition is
normally done iteratively, first thresholding the image aggressively so that only the
largest blood vessels are visible. This results in a relatively simple skeleton. Once the
main blood vessels have been recognised, the image is thresholded again to allow slight
smaller vessels to become visible. This is repeated until all the vessels have been labelled.
This iteration is necessary since the skeleton of the complete image is very complex and
also very noisy. Progressive thresholding allows us to contain the complexity and this
also make it easier to eliminate noise.
A set of segments can be represented by a graph structure in which edges represent
segments of a blood vessel and the nodes represent branching and bifurcation points and
end points. Edges have associated information about the average diameter and average
intensity of the vessel segment. The orientation of segments are stored as Freeman codes
(i.e north, north-east, east, south-east, etc). An added difficulty is that since x-rays are
two dimensional projections of three dimensional structures, some cross-overs and
branches will appear as artifacts of the projection.
Although the surface representation of the knowledge in our system is in the form of
frames, the frames are stored as predicates in Prolog’s database. For many tasks,
including learning, it is more convenient to operate directly on the predicates. The frame
representation is more suitable for human readability. In the remainder of this section, we
will only consider the Prolog representation. The segment graph is represented in
Prolog’s database by a set of predicates:

segment(S, Vessel, Directions, AverageDiameter, AverageIntensity, [Successors]).

where S is a unique identifier for the segment and Vessel is the name of the blood vessel
to which the segment belongs. Successors is a list of segment identifiers for segments that
are connected to this segment.
The segment predicates described above are automatically generated by the tracing
algorithm. The expert must provide the following predicate:

blood_vessel(Vessel, InitialSegment, VesselType)

where Vessel uniquely identifies the blood vessel, InitialSegment is the identifier for the
first segment in the graph and …VesselType is the class label for the concept to be
learned.
Given these data, a relational learning system  is able to learn a generalised description of
a blood vessel from examples. iProlog incorporates a number of machine learning
algorithms, including a relational learning algorithm that extends Plotkin’s Relative Least
General Generalisation (Plotkin, 1971). Since the output of the learning algorithm is a
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Prolog program, it can be used as a recogniser for new blood vessel data. The program
can also be transformed into a frame which is more readable to experts.
We now give an example of learning a simple labelling program for the internal carotid
artery. Two typical training examples follow:

blood_vessel(v1, 1, ‘ICA’).
segment(1, v1, [n], 12, 22, [2, 4]).
segment(2, v1, [n, w, n], 11, 19, [3, 5]).
segment(3, v1, [ne], 10, 18, [6]).

blood_vessel(v2, 10, ‘ICA’).
segment(10, v2, [n], 15, 50, [20, 40]).
segment(20, v2, [w, n], 13, 25, [30, 50]).
segment(30, v2, [nw, ne, e], 9, 15, [60]).

The RLGG algorithm also requires negative examples to prevent over-generalisation. We
omit the full training set and present a clause, to be constructed by the algorithm, that
describes an internal carotid artery and its segments.

blood_vessel(V, S0, ‘ICA) :-
segment(S0, V, [n], Diameter1, Intensity1, [S1, S4]),
segment(S1, V, Dirn2, Diameter2, Intensity2, [S2, S5]),
segment(S2, V, Dirn3, Diameter3, Intensity3, [S6]),
Diameter1 > Diameter2, Diameter2 > Diameter3,
Intensity1 > Intensity2, Intensity2 > Intensity3,
append(_, [w, n], Dirn2),
member(ne, Dirn3).

This describes a blood vessel consisting of three segments in which the diameter and
intensity of the segments consistently decrease (i.e. the blood vessel narrows and
becomes less bright). The blood vessel always begins pointing north. The second segment
must end with a turn from west to north and the third segment must contain a part that
points north east. Note that the last condition should state that the third segment ends
pointing either east or north east, but more examples will needed to discover this.

3.2 Refining the Model
The problem with learning from examples is that the set of examples must be sufficient to
provide all the variations that the recogniser is likely to encounter. This is often difficult.
A complimentary method for refining a model which is partially correct is to repair it
when  errors are detected. Compton (Compton & Jansen, 1988) has been successful in
applying ripple-down rules to building knowledge bases incrementally under the
supervision of an expert. In the PIERS system (Srinivasan et al, 1991), an endocrinologist
supervised the performance of a program providing interpretations of laboratory assays.
Radiology provides a similar environment in which an expert is available to critique the
output of an expert system. It seems that the RDR methodology would be appropriate for
this task. In the remainder of this section we discuss the possibilities for RDRs.
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Since we already have a large body of text book knowledge that has been encoded into
the system, the task for learning can be set up to refine existing knowledge rather than
learning from scratch. RDRs were designed for refining knowledge.
The most significant obstacle for the use of RDRs is that, to date, they have only dealt
with propositional data, i.e. the examples do not contain relational information as
required in image understanding. This need not exclude RDRs from this domain. The
main operation required by RDRs is that cases can be compared and differences isolated
so that they can be used in exception rules. This is possible in first order representations.
In addition, it must be possible to variablise expressions in the rules. Plotkin’s  Least
General Generalisation may provide the mechanism for doing this.
Interaction with experts should be in the same medium that they normally use to process
data. In the case of radiologists, that medium is visual, i.e. the x-rays. The user interface
for an RDR system in this domain must be capable of displaying x-rays and allowing the
radiologist to point to errors and attach comments to the display.

3.3 Current Status
The frame-based system described in sections 2 and 3 has been implemented although
there is still considerable work to be done in improving low-level feature extraction.
Work on learning is still in progress. The skeleton tracing has recently been incorporated
into iProlog and coupling the output to the learning algorithm is proceeding.
iProlog currently implements a propositional version of ripple-down rules. These rules
can be inserted into the demons of a frame. However, we are yet to adapt RDRs to
labelling the blood vessel segments.

4 Conclusion
Medical image understanding requires diverse sources of knowledge to interpret visual
scenes. The knowledge is represented in the form of object models that generate
predictions during image analysis. The initial knowledge is too general and has to be
augmented with additional domain specific knowledge.
We use anatomical, as well as other knowledge, as background knowledge and we
acquire domain specific knowledge through learning. The model consists of symbolic,
structural and geometrical information represented by frames. The frame representation
provides a comprehensive description of the important cerebro-vascular forms and also
provides a link between the image data extracted from the images and the symbolic
knowledge. The frame representation is suitable for extending the existing structure and
for storing additional specialised knowledge.
The internal representation of the frames is as predicates in Prolog’s database. Since the
hierarchical structure of frames maps well onto the hierarchical structure of blood
vessels, frames have been found to be a natural medium for radiologists to express their
expertise. However, for learning, Horn clause logic is a much more convenient
representation. Thus, we use frames as a surface syntax for the user while performing
learning on the internal, logical representation.
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We use a relational learning system which, by generalising examples of labelled x-ray
angiograms builds a labelling program. We wish to pursue the use of ripple-down rules
which, by interaction with radiologists, will acquire specialised object descriptions. We
believe that the approach being followed here will enable a medical image understanding
system to gain experience in a specific domain and to improve object recognition with
time, just as experts do.
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