A MULTISTRATEGY APPROACH TO LEARNING
CONTROL FROM HUMAN SKILLS

Claude Sammut

School of Computer Science and Engineering
University of New South Wales

SYDNEY AUSTRALIA 2052

claude @cse.unsw.edu.au
http://www.cse.unsw.edu.au/~claude

Abstract: Behavioural cloning seeks to build models of human skill by using observations of the
performance of a task as input to a machine learning program. Experiments in this area have
met with some degree of success, but the methods employed to date have their limitations,
including brittleness and opaqueness of the control rules. Some of these limitations are due to
the simple situation-action model of control generally used and some or due to restrictions
imposed by the language used to represent the rules. Rather than using a situation-action model
of control, it is often more useful to have a goal-oriented model in which a set of rules is used to
establish goals and the control rules instigate actions to achieve those goals. Furthermore, the
learning systems presently used are not capable of representing high-level concepts that would

allow controllers to be simpler and more robust.

Keywords: Artificial Intelligence, Flight Control, Knowledge Acquisition, Knowledge-based

Control, Machine Learning, Real-time Al

1. MOTIVATION

Behavioural cloning seeks to build models of human
skill by using observations of the performance of a
task as input to a machine learning program.
Experiments in this area have met with some degree
of success. Michie et al (1990) first demonstrated the
method by recording the traces of human operators of
a pole balancing simulation. The traces were input to
a machine learning program which produced rules
capable of controlling the pole and cart. A
demonstration on a larger scale was achieved by
Sammut et al (1992) who built a control system for
an aircraft in a flight simulator by recording the
actions of pilots during flight. The automatic

controller was capable of take-off, climbing, turning
and landing. Urbanci¢ and Bratko (1994) used a
similar approach to build controllers for the highly
non-linear container crane problem. However, the
methods employed to date have their limitations,
including brittleness and opaqueness of the control
rules (Urbancic et al, 1996). Some of these limitations
are due to the simple situation-action model of control
generally used and some or due to restrictions
imposed by the language used to represent the rules.

To establish the framework for the following
discussion, the flight control problem is first
presented. A simple flight simulator, as can be easily
found on a workstation, is instrumented so that it
records the state of the simulation every time the
“pilot” performs an action such as moving the joy



stick, increasing or decreasing the throttle or flaps,
etc. The action is treated as a label, or class value, for
each record. Thus, the records may be used as
examples of what action to perform in a given
situation.

Decision tree induction programs such as Quinlan’s
C4.5 (Quinlan, 1993) can process the examples to
produce rules capable of controlling the aircraft.
These are “situatioin-action” rules since they simply
react to the current state of the aircraft by responding
with the action that, according the data, was most
typical for that state.

More than one decision tree is needed to control a
complex system such as an aircraft. In Sammut et al’s
experiments, each control action (elevators, ailerons,
throttle, flaps) were controlled by seperate decision
trees. Each was induced by distinguishing one action
as the dependent variable and repeating the process
for each action. Furthermore, the flight was divided
into stages, so that different sets of decision trees
were constructed for take-off, turning, approaching
the runway, and landing.

Decision trees are classed as propositional learning
systems because the language used to represent the
learned concepts is equivalent to propositional logic.
Most behavioural cloning work, to date, has been
limited to the use of propositional learning tools or
neural nets. The problem with these methods is that
the language of the control rules is limited to
describing simple conditions on the raw attributes
output by the plant being controlled. However,
control rules may be better expressed using high-level
attributes. For example, in piloting an aircraft, it is
more illuminating to talk about the plane following a
particular trajectory rather than to simply give its
coordinates, orientation and velocities at a particular
point in time.

The situation-action model of control is also
simplistic. A human pilot would normally only resort
to this kind of control for low-level tasks such as
routine adjustments or during emergencies where
there is insufficient time to think. A more robust
controller would incorporate the goal-oriented nature
of most control tasks. One model of goal-oriented
behaviour is one a set of rules is used to establish
goals and another set of control rules instigates
actions to achieve those goals.

The following section, describes current research in
the use of richer languages for describing control
strategies. Section 3 elaborates on the architecture of a
goal-oriented control system and section 4 concludes
with a discussion of future research directions.

2. MULTISTRATEGY LEARNING AND
INDUCTIVE LOGIC PROGRAMMING

Srinivasan and Camacho (in press) describe a method
of learning high-level features for control. Their task
is to learn the relationship between the roll angle and
turn radius when turning an aircraft in a flight
simulator. They collected data from a number of turns
performed by a human “pilot”. These data were input
to an inductive logic programming system, Prolog
(Muggleton, 1995). Inductive logic programming
(ILP) systems are able to take advantage of
background knowledge provided prior to learning. In
this case, the background knowledge includes
concepts describing geometric objects such as circles
and a regression program that is able to estimate
parameters in linear relationships. Thus, Srinivasan
and Camacho show that it is possible to recognise the
data from a turn as following a roughly circular
trajectory and the regression program finds the
coefficients of the linear equation which approximates
the relationship between the roll angle and the radius
of the turn.

In our work, we employ a new inductive logic
programming system, called iProlog, which
generalises the approach taken by Srinivasan in his
extension to Progol. iProlog is an interpreter for the
programming language, Prolog, that has been
extended by the addition of a variety of machine
learning tools, including decision trees, regression
trees, back propagation and other algorithms whose
output is equivalent to propositional logic. Like other
ILP systems, iProlog also provides tools for learning
first-order representations that are equivalent to
Prolog programs.

ILP systems encode background knowledge as Prolog
programs. Thus, if a human experts understands that
certain raw attributes measured from a plant can be
combined into a more useful higher-level feature, this
combination can be expressed in Prolog and the ILP
system uses the program to “pre-process” the data so
that the learner can incorporate the high-level features
into its concept description. Since the ILP system also
generates Prolog programs, the learned concepts can
become background knowledge for future learning.

Of all the learning paradigms presently in use, ILP
provides the most effective means of making use of
background knowledge. The first-order language also
allows the learner to represent concepts that are much
more complex than anything that can be learned by a
propositional system. However, these advantages
come at a price. A richer language almost always
implies a more expensive search for the target
concept. ILP systems are also excellent for learning



concepts that can be learned symbolically, but are not
so capable when the concepts are numeric in nature.

To overcome these limitations, iProlog incorporates
other the other kinds of learning, mentioned
previously. Although, these algorithms only generate
propositional representations, they can also be
expressed as clauses in a Prolog program. Thus, if it is
decided that a neural net, or regression, is best suited
for processing the numerical data, these can be
provided as background knowledge for the ILP
system.

Srinivasan augmented Progol’s background
knowledge with a regression algorithm and
geometrical descriptions of trajectories. The result
was a concept such as:

roll_angle(Radius, Angle) :-
pos(P1, T1), pos(P2, T2), pos(P3, T3),
before(T1, T2), before (T2, T3),
circle(P1, P2, P3, _, _, Radius),
linear(Angle, Radius, 0.043, -19.442).

where P/ is the position of the aircraft at time T/ and
so on. The circle predicate recognises that P/, P2 and
P3 fit a circle of radius, Radius and regression finds a
linear approximation for the relationship between
Radius and Angle which is:

Angle = 0.043 x Radius —19.442

The ‘_’ arguments for circle are “don’t cares” which
indicate that, for this problem, the centre of the circle
is irrelevant.

Thus, ILP provides a framework for linking different
types of data fitting algorithms to achieve results that,
individually, none are capable of. iProlog is a
generalisation of Srinivasan’s approach that facilitates
the addition of complex background knowledge,
including other kinds of learning algorithms
(Sammut, in press).

The use of high-level features is particularly
important in control systems. It is clear that pilots do
not simply react, instantaneously, to a situation. They
have concepts such as climbs, turns, glide-slopes, etc.
None of these concepts can be adequately captured by
learning systems that do not take advantage of
background knowledge. High-level features may be
pre-programmed, but flexible use of background
knowledge allows the learning system to search for
the most appropriate features.

High-level features permit structuring of a problem in
a way that is conducive to a better solution. Another
form of structuring is to move away from a simple
situation-action model of control to a goal-oriented
one. We have already noted that the flight control
problem was decomposed into different stages and

within each stage, actions had their own controllers. A
further decomposition is to separate the learning of
goals from the learning of actions to achieve those
goals.

3. GOAL-ORIENTED BEHAVIOURAL
CLONING

Behavioural clones often lack robustness because they
adopt a situation-action model of control. The
problem is that if the state space is very large then a
large number of control rules may be required to
cover the space. This problem is compounded if the
representation language is also limited, as described
in the previous section. Bain and Sammut (in press)
describe a goal-oriented approach to building control
rules.

The data from a flight are input to a learning program
whose task is to identify the effects of control actions
on the state variables. Another program is used to
learn to predict the desired values of the state
variables during different stages of a flight. To control
the aircraft, we employ simple goal regression where
we use the rules learned in the second stage to predict
the goal values of the state variables and then use the
rules from the first stage of learning to select the
actions that will achieve those goal values.

An example of an “effects” rule is shown below:

Elevators =-0.28 — ElevationSpeed =3

Elevators =-0.19 — ElevationSpeed = 1

Elevators = 0.0 — ElevationSpeed = 0

Elevators = 0.9 — ElevationSpeed = -1

This describes the effect of an elevator action on the
elevation speed of the aircraft. A “goal” rules may be
as follows:

Distance > -4007 — GoalElevation =0
Height > 1998 — GoalElevation = 20
Height > 1918 — GoalElevation = 40
Height > 67 — GoalElevation = 100
Distance <=-4153 — GoalElevation = 40
else — GoalElevation = 20

At present, the goals represented in this system are
still very simple. In this example, they indicate that at
some point in the flight, given by the altitude or
distance from the runway, the elevation of the aircraft
should be as shown.



The control algorithm uses “goal” rules to determine
the correct settings for the goal variables. If there is a
difference between the goal and the current value then
an effects rule is selected to achieve the desired goal
value. The selection is based in the direction and
magnitude of the desired change.

Presently, the choice of goal and effects variables is
done by hand. A goal of future research is to have this
selection done automatically. However, the present
method results in more robust and more transparent
control rules than those obtained following the
situation action-model.

4. CONCLUSION

Research in behavioural cloning has demonstrated
that it is possible to build control rules by applying
machine learning methods to the behavioural traces of
human operators. However, to become a practical tool
for control or for instruction, behavioural cloning
must address the issues of robustness and readability
of the control rules.

In this paper, it has been suggested that these
problems can be overcome by employing learning
methods that provide greater structuring over the
domain. Structure can be imposed by breaking the
learning task down to learning goals and learning
actions to achieve goals. Further structuring can be
achieved by constructing high-level features that
permit more compact representations.

Research in goal-directed learning and in ILP suggest
that these aims are achievable. However, there are
several problems that must be overcome. These are
mainly due to an over-dependence in human
assistance.

Presently, goal and effects variables must be provided
before hand. When these are known, then clearly, it is
sensible to take advantage of such knowledge.
However, when the distinction is not known, it is
important that the learning system be capable of
distinguishing these variables for itself.

ILP systems that provide the ability to use
background knowledge generally require the user to
impose some restriction on which background
knowledge should be tried. In principle, the ILP
system can search the space of possibilities for itself,
but this is very expensive without user provided
constraints. Again, if such constraints are known, then
they should be used, but if they are not, more
intelligent search is required to make the application
of background knowledge less onerous for the user.

REFERENCES

Bain, M., and Sammut, C. (in press). A framework for
behavioural cloning. In S. Muggleton, K.
Furakawa, & D. Michie (Eds.), Machine
Intelligence 15. Oxford University Press.

Michie, D., Bain, M., and Hayes-Michie, J. E. (1990).
Cognitive models from subcognitive skills. In M.
Grimble, S. McGhee, & P. Mowforth (Eds.),
Knowledge-base Systems in Industrial Control.
Peter Peregrinus.

Muggleton, S. (1995). Inverse Entailment and Progol.
New generation Computing, 13, 245-286.

Quinlan, J. R. (1993). C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

Sammut, C., Hurst, S., Kedzier, D., and Michie, D.
(1992). Learning to Fly. In D. Sleeman & P.
Edwards (Ed.), Proceedings of the Ninth
International Conference on Machine Learning,
Aberdeen: Morgan Kaufmann.

Sammut, C. (in press). Using background knowledge
to build multistrategy learners. Machine
Learning Journal.

Srinivasan, A and Camacho, R. Numerical Reasoning
in ILP. In S. Muggleton, K. Furukawa & D.
Michie (Ed.), Machine Intelligence 15. Oxford
University Press. Forthcoming.

Urbanci¢, T., and Bratko, I. (1994). Reconstructing
Human Skill with Machine Learning. In A. Cohn
(Ed.), Proceedings of the 1I1th European
Conference on Artificial Intelligence, John Wiley
& Sons.

Urbanci¢, T., Bratko, 1., and Sammut, C. (1996).
Learning models of control skills: phenomena,
results and problems. In 13th IFAC World
Congress, San Francisco.



