
Error Tolerant Learning Systems

Claude Sammut1

The Turing Institute
36 North Hanover Street

Glasgow G1 2AD
Scotland

ABSTRACT

We consider the task of a robot learning in a reactive environment
by performing experiments. A reactive environment is one where
changes occur in response to actions. Actors other than the learner
may be present in the world. The robot performs experiments by
modifying the environment and observing the outcome. These
observations lead to a collection of concepts that constitute a theory
of the behaviour of the environment, also called a world model. An
experiment may either increase confidence in a theory or refute a
theory, but it can never prove a theory. Therefore, it is possible that
the robot will develop an inaccurate model of its world. This paper
discusses a number of issues involved in finding and repairing faults
in a world model. It also describes some preliminary results obtained
from a learning program called CAP.

1. Introduction

Learning systems can be divided into two categories: single-concept learners and
incremental learners. AQ (Michalski, 1983) and ID3 (Quinlan (1983) are examples
of single-concept learning systems. They produce one set of rules from one set of
data and have no memory that permits them to add to a knowledge base by further
learning. Incremental learning systems remember the concepts which they have
learned and can use them for further learning and problem solving. Some examples
are, CONFUCIUS (Cohen, 1977) and Marvin (Sammut, 1981). These programs
build a model of their task environment through successive learning experiences
that require interaction with the environment.

The task that we consider in this paper involves a program learning to control
an agent in a reactive environment. This is an environment where changes occur in
response to actions. Agents other than the learner may be present. As an agent

1 On leave from the Department of Computer Science, University of New South Wales, Sydney, Australia.

accumulates experience, it constructs a world model or theory of behaviour that can
be used to predict the outcome of events and to determine what actions may be
necessary to solve problems. In our discussion, a theory is a collection of concepts,
where a concept is a description of a class of objects or events.

The concepts which an agent can learn are determined by the events
experienced by that agent, so any concepts created on the basis of only a small
amount of experience are likely be less accurate than concepts developed on the
basis of more extensive data. This is so because a small number of instances of a
concept may not contain sufficient information to properly characterise the concept.
Because of this, it may seem wise to postpone concept formation until sufficient
data is available. This may be not possible for a number of reasons:
• The agent may be required to perform some task even before it has acquired

enough experience to build an accurate model of its world. For example, the
system may be responsible for controlling the attitude of a satellite and learning
to compensate for changes in atmospheric drag, changes in mass, etc.

• Unless the program builds a world model, it has no means of assessing the
usefulness of the information it gains. Thus it is impossible to determine when
"sufficient information" for concept formation has been accumulated. The
program is also unable to employ a directed search for further data since there
are no criteria for evaluating the usefulness of information.

A learning system that postpones theory formation can acquire data either by
passively observing the environment and other actors, or it may perform its own,
unguided actions. With passive observation, there is no guarantee that the
observations will be representative of the world unless an agent is acting as a
teacher and showing the learner "interesting" things. Thus it may be necessary to
wait a very long time before sufficient data for theory formation has been
accumulated.

Active learning requires the agent to perform experiments, that is perform
actions and note the changes in the world. A random choice of an action is as good
as any when there is no theory to guide the learner. Unfortunately, random actions
in a complex domain may produce instances of many concepts, giving the learner a
confusion of data. One of the promises of constructing a partial theory while
accumulating data is that the partial theory will suggest what kind of data to look
for. If part of the theory can be identified as deficient then a strategy may be
devised to seek information necessary to repair the theory.

For incremental learning systems that operate in reactive environments, the
biggest problem is maintaining consistency in a knowledge base which is
constantly changing. Observation of the world can cause new concepts to be
hypothesised or existing ones to be revised. Thus the world model, which is stored
in the knowledge base, evolves over time. In the remainder of this paper we discuss
a number of aspects of knowledge base maintenance, including determining that an
error in the world model exists, finding the error and repairing it. We also discuss
some work in this area including, Hume's CAP program (Sammut and Hume,
1987), and related work.

Error Tolerant Learning Systems 3

2. Problems in Incremental Learning

Let us now try to be more specific about the nature of the errors that can be made
by an incremental learning algorithm. First, because the system is incremental and
therefore responsible for building its own background knowledge, we assume that
all concepts to be learned must be describable in terms of concepts previously
acquired. This assumption leads to two possible errors:
• The system may observe an event for which there is no prior knowledge that

will allow the system to make generalisations and thus, learn.
• The system may observe an event for which there is prior knowledge. However,

the known concepts are too general to describe the concept of which this event
is an instance.

Thus, an inadequate knowledge base can result in either too specific or too general
a concept being learned. Interestingly, Shapiro (1981) notes that analogous errors
can occur in pure logic programs (as well as non-termination). Later we will show
how some of the techniques proposed for debugging Prolog programs can be used
to "debug" the knowledge base of a learning system where concepts are represented
by horn clauses in first order logic.

An example of an error introduced into the knowledge base by over-
generalisation follows. Suppose the system is learning the preconditions for pouring
liquids into containers. First it must learn what a suitable container is. This can be
done by attempting to pour water onto a number of different objects. The following
sequence of actions illustrates some of the pitfalls of learning by experimentation:
1. Water is poured over a closed box. This fails because the water ends up on the

floor rather than in the box.
2. Water is poured over a cup and succeeds.
3. Water is poured over an open cylinder and this also succeeds.
What can explain these successes and failures? Any explanation that the learning
system attempts must be in terms of what it already knows. If it knows about
objects which have circular cross-sections, it may hypothesise that the precondition
for pouring a liquid into an object is that the object must have a circular cross-
section, as do the cup and open cylinder. Of course, this theory will fail if the robot
tries to pour water into a closed cylinder.

A more useful concept for learning about pouring is that of convex shapes.
However, the robot may not have learned this concept before trying to learn about
pouring. Therefore, it makes an over generalisation. Why should the robot attempt
to learn something when it is not prepared for it? An observation of the world may
have brought its attention to this task. For example, one mechanism that children
use to explore the world is to imitate adults, adding some variations of their own.
Observing what are assumed to be rational actors provides a good focus of attention
for learning, unfortunately, the actors may be observed doing something more
complicated than the child can understand. That is, it has not yet learned all the
background concepts necessary to adequately describe what is seen. This is exactly
the situation in the case of the robot learning about containers into which it can
pour liquids.

Error Tolerant Learning Systems 4

2.1 Recognising that an error exists
A world model is intended to predict the outcome of events in the world. A theory
is clearly incorrect if an unexpected outcome occurs. When the robot pours water
over a closed cylinder, it has a theory that predicts that the water will remain in the
cylinder. When the water ends up on the floor, there is obviously something wrong.
However, recognising that an error exists and knowing what it is are not the same
thing. For example, it is easy to see that a computer program has a bug, but locating
the bug is much more difficult.

2.2 Locating Errors in a Theory
A theory can be thought of as a network of interconnected concepts. The shaded
node, E, in Figure 1 may represent the concept of an object which can contain
liquid. This is needed to establish the preconditions for retaining liquids in some
container. This concept may in turn be necessary for knowing how to make a cup of
tea, etc. What happens if, in the process of making a cup of tea, the tea is spilt on
the table. Which part of the world model was responsible for the mishap?

R

S T

P

Q

E

Figure 1: A theory is a network of concepts

One way of locating the problem is to trace through the execution of the plan that
lead to the unexpected result, testing each concept that contributed to the plan. That
is, we debug the plan. In logic programming languages, declarative descriptions can
be executed as programs, thus the distinction between a concept and a plan is
blurred. This is very helpful for our purpose since, by adopting a horn clause
representation of concepts, we can profit from experience gained in writing
intelligent debuggers for Prolog. Sussman (1973) developed a debugger for
procedural programs. However, his program, called HACKER, used an ad hoc
approach that required a library of possible fixes to common programming errors.
We wish to minimise the number of assumptions necessary to locate errors in a
theory. Horn clause logic gives a uniformity of representation that allows us to
break errors into only three types.

Shapiro (1981) describes a program, MIS, for detecting logic errors in pure
Prolog programs. He claims that three categories are sufficient to characterise
errors in pure logic programs:

Error Tolerant Learning Systems 5

• the program fails to terminate,
• the program returns an incorrect solution,
• the program fails to return any solution.
In the case of an faulty theory, return of an incorrect solution corresponds to an
overgeneralisation in the theory since a concept has been used to describe an event
which it should not be able recognise. Failure to return an answer corresponds to a
theory that is too specialised since it has failed to recognise an event it should have.
non-termination of a theory can occur when recursive concepts are involved. We
will not dwell on the latter, but concentrate instead theories that are too general or
too specific. Note that some concepts in a theory may be too general while others
are too specific.

To locate an error when an incorrect solution has been given (i.e. the theory
contains an over-generalisation) Shapiro's debugging algorithm uses a method
called backtracing to work backwards through the failed proof of a goal, searching
for the procedure that caused the failure. In Figure 1, backtracing would begin with
the last goal satisfied, that is, T. The debugger begins stepping back through the
proof, i.e. down the dark path to node Q, then P if necessary, asking an oracle if the
partial solution at each point is correct. If this is not true, then an erroneous clause
has been found. Note that the algorithm assumes the existence of an infallible
oracle. In a reactive environment, the learning program can do without an oracle
since the program is able to perform experiments to test a concept. Thus, a failure
suggests that the initial set of experiments that resulted in the formation of the
concepts along the solution path was not extensive enough for at least one of the
concepts. In the case of making a cup of tea, experimentation may identify the
concept that describes preconditions for pouring liquids as faulty.

A concept that is too specific may prevent the program from being able to form
a plan to achieve some goal. That is, the logic program that is supposed to satisfy
the goal does not cover the initial conditions of the task. An attempt at debugging
the theory can only be made when a correct solution has been seen, otherwise the
learner has no indication that the task really is possible. A correct solution may be
found, either by "mutating" the current theory in the hope that the goal can be
satisfied by the mutant or the learner nay observe another agent in the world
performing the task. Shapiro's debugging method for programs that fail to produce
an answer is equivalent to the second alternative, that is, the oracle supplies the
correct solution. The debugger again tries to work backwards seeking clauses in
the program which could have produced the given solution. Once such a clause is
found, its body provides further goals that should be satisfied in order to arrive at
the solution. The debugger considers each of these intermediate goals to see if they
can also be produced by other clauses. Any goal that cannot be achieved indicates
where the program or theory is deficient.

It should be noted that more intelligent search methods can be used to reduce
the number of nodes tested. However, while a method such as Shapiro's is very
useful, it assumes that the learning system is able to suspend its current activities
while it seeks the error in its theory. However, we noted earlier that there are
applications where this is an unaffordable luxury. If the current theory works well
in most cases and has failed relatively infrequently, it may be better to defer a
thorough attempt at debugging in favour of persisting with the existing theory,
while collecting information that will eventually point out the incorrect concept.

Error Tolerant Learning Systems 6

For example, if over a period of time, all the concepts R, S and T are noted to have
errors then the system may conjecture that all the failures have a common cause
and there are only two concepts which could be that cause. Thus, the search for the
error in the theory has been reduced at the cost of tolerating more failures. A
difficult problem is to decide whether it most more costly to stop and debug or
continue with some failures.

2.3 Correcting Errors
After an erroneous concept has been detected what should be done to repair it? In
his MIS program, Shapiro reasoned as follows: when a program has failed to
produce an answer, the program is too specific, so to repair it, the debugger should
generalise the program in order to cover the goals which cannot be satisfied. On the
other hand, if a program produces an incorrect answer, i.e. it satisfies a goal it
shouldn't then it is too general and therefore the debugger should make the program
more specific so that it excludes the goals that were incorrectly satisfied. In order to
perform these generalisation and specialisation operations, the program must have a
refinement operator, which, given a term will produce a set of terms which are
minimally more specific than the original one. Thus, by recursive application, the
refinement operator defines a language that is a subset of horn clause logic. If MIS
is to be able to successfully create a correct program, the refinement operator must
be capable of generating the clauses necessary for the correct program. If the
refinement operator defines too large a language, then the search time for the
required clauses will be prohibitive. If the language is too small, then it may not be
possible to generate the required clauses.

What do generalisation and specialisation mean when objects and events are
represented by horn clauses? A clause such as:

X ← Α ∧ B ∧ C ∧ D ∧ E
states that an object satisfying Α ∧ B ∧ C ∧ D ∧ E belongs to class X. When a
clause describes an instance of a concept, all the literals in the clause are ground,
that is, they contain no variables. A clause is generalised by replacing constants by
variables and by replacing predicates such as A, B, C, etc, that describe some
property of the object by other predicates that have more relaxed restrictions on the
range of values which the property may assume. Specialising a clauses introduces
new restrictions on those range of values. MIS required that the predicates used in
generalisation and specialisation were generated by a predefined refinement
operator. To avoid having to know to much about the problem domain before
starting, it is desirable to allow new terms to be introduced as required by the data.
Suppose our learning system does not know a concept that will distinguish between
a cup and a bowl on one hand a and a closed cylinder on the other hand. However,
by experimentation it is clear that there is some difference because the first two
objects retain liquid poured over them while the closed cylinder does not. The
learning system ought to be able to propose a new concept for objects that retain
liquid. A method capable of this behaviour was first proposed by Sammut (1981).
More recent related work by Muggleton is described below.

Muggleton's DUCE (1987) relies on a set of operators to compact the
description of a set of examples to a simpler description. Each example is
represented by a propositional horn-clause. Some operators preserve the
equivalence of descriptions but reduce the number of symbols required while others

Error Tolerant Learning Systems 7

produce generalisations. There are six operators in all and they are the basis for a
method of anti-unification. Indeed, one of the goals of this work was to produce a
complete inverse of resolution. All six operators are necessary for the completeness
of the theory, but pairs of operators are sufficient for induction. We will describe
one such pair and refer the interested reader to Muggleton's paper (1987) for the
complete description. A first-order version of DUCE, called Cigol (logiC
backwards!), is under construction (Muggleton and Buntine, 1987).

Absorption. Given a set of clauses, the body of one of which is completely
contained in the bodies of the others, such as:

X ← Α ∧ B ∧ C ∧ D ∧ E
Y ← Α ∧ B ∧ C

we can hypothesise:
X ← Y ∧ D ∧ E
Y ← A ∧ B ∧ C

In fact, this is the generalisation rule used by Sammut (1981) in his program,
Marvin.

Intra-construction. This is the distributive law of Boolean equations. Intra-
construction takes a group of rules all having the same head, such as:

X ← B ∧ C ∧ D ∧ E
X ← A ∧ B ∧ D ∧ F

and replaces them with:
X ← B ∧ D ∧ Z
Z ← C ∧ E
Z ← A ∧ F

Note that intra-construction automatically creates a new term in its attempt to
simplify descriptions. At any time during induction, there may be a number of
applicable operators. The one chosen is the operator that will result in the greatest
compaction.

 As a robot performs experiments, its experiences may be stored as clauses
representing observations. As this collection of clauses grows, it can be compacted,
using the DUCE operators. This has the effect of no only reducing the storage cost
of the information, but also of detecting patterns and introducing new terms into the
knowledge base. For example, DUCE could easily detect the similarity of the cup
and bowl when liquid is poured over them. The intra-construction operator would
introduce a new concept, that is, a new set of clauses whose heads have the same
principal functor.

2.4 Maintaining Consistency
Detecting and repairing an error in a single concept is one thing, but repairing an
entire theory is another matter. Remember that in figure 1, we envisaged a world
model or domain theory as a network of interconnected concepts. Using a horn
clause representation, the head of a clause corresponds to a parent node and the
goals in the body correspond to the children. These goals match other clause heads

Error Tolerant Learning Systems 8

and form links to the rest of the network. Also in figure 1, we imagined that one
concept, represented by the shaded node, E, was in error. When the concept is
repaired, what effect will that have on the concepts which referred to the old
concept? Since P, Q, R, S and T refer, directly or indirectly, to the erroneous node
they must have been learned in the presence of the error. Are they, therefore also in
error or will correcting E alone correct them all?

When faced with the problem of ensuring the consistency of its knowledge
base, two strategies are available to the learning system.
1. After correcting E, the system may test each of the concepts that depend on E.

However revising all of the concepts dependent on one that just been modified
could involve a lot of work if the network of concepts is very extensive.

2. The system may wait to see if any further errors show up. In this case, each
concept will be debugged as necessary. Although more economical this method
requires a method for tolerating errors if the program has been assigned a task
which it must continue to perform.

It should also be noted that another source of errors in planning is noise. When a
learning system is connected to a real robot, it cannot rely on the accuracy of
measurements from vision systems, touch sensors, etc. Thus, a plan may fail
because the knowledge base does not accurately reflect the outside world. This
being the case, the learning system must not revise its domain theory prematurely
since there may not, in fact, be any errors. Therefore, the most prudent approach to
error recovery is to delay revision of a domain theory until sufficient evidence has
accumulated to suggest the appropriate changes.

Let us now give an outline of an error recovery strategy.
1. The robot learner is given a task that it is required to perform. However, its

domain theory may be incomplete or incorrect.
2. In the course of performing its task, the robot's plan fails.
3. If the robot is unable to proceed by adopting another plan then it must suspend

working on its given task while it debugs its domain theory.
4. If an alternative plan is possible (for example, by reordering goals) then the new

plan is attempted while storing the failed plan for future reference.
5. The robot cannot assume that the failed plan is incorrect since the cause of

failure may have been due to noise, therefore, as each plan is executed, a history
of its performance is maintained, this includes the performance of the individual
concepts which formed the plan.

6. The accumulation of histories is input for a DUCE style of learning system that
effectively summarises the performance of plans when it forms new concepts
by generalisation.

7. Since the learning program may generate alternative descriptions for the same
concept, we must be able to resolve potential conflicts so that the next time a
similar plan is to be created, the appropriate description is chosen.

In this final step, an assumption-based truth maintenance system (ATMS) becomes
useful (de Kleer, 1986). Alternative descriptions of the same concept represent
different assumptions about the behaviour of the world. An ATMS provides a
mechanism for carrying forward several lines of reasoning concurrently where each

Error Tolerant Learning Systems 9

chain of inference is based on different assumptions. When a contradiction is
encountered by one chain, it is knocked out and its assumptions invalidated. In our
case, different lines of reasoning are replaced by alternative domain theories based
on different concept descriptions. A failed experiment corresponds to a
contradiction.

When an experiment does fail, we must not invalidate the concepts used in
planning the experiment for, as mentioned earlier, the failure may be due to noise.
Instead, we note the circumstances of the failure and augment the failed concept
with a description of these circumstances. Several things could happen to the
concept when this is done:
• The description of the concept is modified to the extent that it becomes correct.

If an alternative, correct description already existed, then the alternative domain
theories of which these concepts were components, converge.

• After several failures, there is no generalisation which covers the circumstances
of failure. In this case, the failures may be either due attributed to noise or to
some phenomenon not yet known to the system. In either case, nothing can be
done.

An ATMS maintains the network of concepts which form a domain theory and
stores dependencies which, when errors are found will indicate where other
potential weaknesses in the theory lie. The ATMS also allows a learning program
to experiment with alternative domain theories.

3. CAP

Hume's Concept Acquisition Program (Hume, 1985; Sammut and Hume, 1987) is a
current example of a program working in a reactive environment. A reactive
environment is one that responds to the actions of the learning program. This can be
a real or simulated environment. In CAP's case, we have a simulated world that
contains two robots. One is under the control of the learning program that has little
initial knowledge of the world. This is referred to as the child robot. The second
robot already "knows" about the world and can perform a variety of tasks. This is
referred to as the parent. The child learns about the world by observing the parent
performing some task and then using the observation to guide it in exploring its
environment. Children often learn by trying to imitate the actions of adults. That is,
when a situation arises which is similar to one where the parent has previously
performed some action, the child may attempt the same action. Since the state of
the world is unlikely to be identical to the initial state when the parent began its
actions, imitation must also involve a degree of generalisation.

To demonstrate how CAP works, we return to the example of learning the
preconditions for pouring liquids from one container into another. Suppose the
world consists of a solid cylinder and two cups, one with some liquid in it, the other
empty. The parent robot's task is to pick up the full cup and pour the liquid contents
into the empty one. At the completion of this task, the liquid is no longer in the
original container, so it is not possible to exactly duplicate the same set of actions.
If a child robot wishes to imitate the parent then it must be satisfied with a partial
match of the starting conditions with some later state of the world. By partial match
we mean that two states can be considered similar if some simple transformation

Error Tolerant Learning Systems 10

can be applied to one state to turn it into the other.
Figure 2 shows the before and after states of the contents of cup, A, being

poured into cup B. Suppose the child wishes to imitate the action immediately after
the parent has finished. A no longer contains the liquid, however, by comparing the
descriptions of the original state and the final state we see that by substituting B for
A we can use B as the source of the liquid. Similarly, substituting A for B allows A
to be the destination.

Imitation based on a partial match is a useful way of learning. In this case,
because A and B can be used interchangeably, the child will have learned the
generalisation that liquid can be poured into objects which are cups. Imitation can
be viewed as an experiment whose purpose is to confirm or deny a generalisation.
For example, after swapping A and B it can be predicted that the result will be that
after pouring the liquid it remains in A. If the prediction is proved to be true then
the generalisation is confirmed. Let us now see how another experiment will fail to
produce a predicted result but still yield useful information.

A B C

A B C

cup(A)
cup(B)
cylinder(C)
contains-liquid(A)

cup(A)
cup(B)
cylinder(C)
contains-liquid(B)

Figure 2: Finding a partial match between states.

The partial match described above is obvious since one cup simply maps onto
the other. However, there are more subtle similarities present in the scene. Assume
that the concept:

circular-cross-section(X) ← cup(X).
circular-cross-section(X) ← cylinder(X).

is known to the system. That is, an object has a circular cross-section if it is a cup
or a cylinder. This tells us that A, B and C are all similar according to at least one
criterion. Therefore, another possible substitution would allow C to be the
destination of the pouring action. The previous experiment tested the effects of

Error Tolerant Learning Systems 11

pouring liquid into another cup, thus permitting the generalisation that any cup can
contain liquid. Another experiment, this time with the cylinder, tests the
generalisation that objects other than cups can also contain liquids. Of course, this
time the liquid does not stay in the cylinder. Thus, the generalisation is shown to be
incorrect.

The child observes and records changes in the world as a sequence of states,
where each state is represented by a description (in first order logic) of the
configuration of objects in the world. Suppose there is a sequence,

S0 ; S1 ; ... ; SN

and a current state, S. Although each Si is a conjunction of atomic predicates, it is
also useful to think of it as a set of predicates. Thus, a partial match can exist if
there is some state, Sm: 0 ≤ m ≤ N such that

S ∩ σSm ≠ ∅

That is, under some substitution σ states S and Sm share common terms in the state
description. For example, if Sm consists of a full cup and an empty one and S
consists of a full cup and a cylinder then a partial match exists with a substitution of
the cylinder for the empty cup. However, in order for this substitution to work, it
must have been recognised that cylinders and cups can be equated in some way.
Therefore, before looking for a match, the system must first elaborate on the state
description by using concepts, such as circular-cross-section. This is done by
treating the concept description as a set of forward chaining rules as described in
Sammut and Banerji (1986) and is similar to the method used by Muggleton in
DUCE.

The partial match permits CAP to propose the following task: Since cups and
cylinders are similar in at least one respect (they both have circular cross-sections)
they may also be similar in their ability to contain liquids. Therefore, it should be
possible to perform actions that will result in a liquid being poured into a cylinder,
just as had been done with the cup (for which the cylinder has been substituted).
This is prediction, namely, that it should be possible to create a sequence of states
in the world which corresponds to the sequence obtained through the matching
process. The attempt to achieve the sequence in the modelled world is an
experiment.

If an experiment has been concluded successfully, that is, the results match the
prediction, then the child has grounds to propose a generalisation. When the
attempt to pour a liquid into another cup succeeds then it may be proposed that
liquids can be poured into any cup. The pouring action, Ai, transforms a state Si into
another state Si+1, written as,

Ai : Si → Si+1

Thus, Si contains the preconditions for the action Ai. By generalising Si the
applicability of the action is broadened. The next experiment, trying to pour the
liquid into the cylinder, generalises Si even further. This generalisation is incorrect,
however, it can be recorded as an exception condition for action Ai. As other
exceptions are encountered for Ai they may be combined with previously recorded
cases. Thus, it is possible to build up knowledge about when an action can be used
and when it cannot.

Error Tolerant Learning Systems 12

Analysing why a particular substitution worked or did not work can lead to
further experiments. If a particular generalisation was successful, then it is worth
looking for other objects that are covered by that generalisation. If an attempt is
made to broaden the generalisation by substituting another object, and this fails, the
difference between the object causing the failure and the previously successful
objects helps to define the generalisation more precisely. This refinement of the
description can be achieved by trying to make the unsuccessful generalisation more
specific and performing another experiment.

An interesting side effect of this learning problem is that it provides a simple
criterion for clustering objects into new, unnamed concepts. Objects form a cluster
if they can be used in the same roles. Containers made of glass or plastic can both
hold water, a brick and a table can both be used to support other objects. As an
object is added to a cluster, a generalisation may be performed in order to arrive at
a concise description of the cluster. To perform this generalisation we again refer
back to DUCE's operators.

CAP's learning strategy can be summarised as follows:
1. The parent carries out a plan that results in a sequence of world states being

created.
2. The sequence is compressed and stored.
3. CAP attempts a partial match between the current state and a stored state. The

changes that resulted from the parent's actions are used as a focus for the search
for a partial match.

4. Since a stored state belongs to a sequence, the nearest partial match is used to
generalise the sequence starting from the matched state. The sequence thus
generated attempts to predict the result of the experiment to follow.

5. A plan of action is inferred from the prediction sequence.
6. This plan is executed.
7. If the result of the experiment was as predicated then the preconditions for the

actions in the plan are generalised otherwise, the exceptions conditions are
generalised.

8. As long as there is nothing else to do (i.e. the parent is not doing anything
which should be observed) the increasingly distant matches are used to create
generalisations and experiments.

During experiments with CAP it was noted that the program could get itself into a
state where further progress became impossible. If the water in all containers has
been spilled, then one of the basic ingredients of the experiments is missing. To
remedy this situation we "cheat ", but in an interesting way! Hume gave CAP the
ability to keep more than one learning task running concurrently, so when progress
is halted in one task, CAP can switch its attention to another. As well as the parent
demonstrating how to pour liquid from one container to another, it also showed
CAP how to create water by using a tap as a source of water. Once CAP has spilled
all of is water and is unable to try pouring from one container into another, it
switches its attention to learning about the use of taps. Of course, a side effect of
this experimentation will be the creation of water in a container. So, when the
program has finished playing with taps, it can return to pouring water out of cups.

Sometimes, providing alternative tasks is not enough to prevent CAP from

Error Tolerant Learning Systems 13

being blocked from further learning. Suppose, after experimenting with the tap, all
containers have been filled, but the program has still not completed learning about
pouring from one container to another. Even though its partial theory may tell CAP
that any pouring action will result in spilled water, it may still do it if there is
nothing more sensible that can be done. That is, if progress is impeded by a state
that does not match anything in the program's knowledge base, CAP will perform a
random and probably illegal action in order to bring about a hopefully useful new
state of the world. In a sense, we could say that the child throws a tantrum out of
frustration, thus obeying the maxim: "When in trouble or in doubt, run in circles,
scream and shout"!

4. Related Work

Carbonell and Gil (1987) describe work on the PRODIGY general-purpose planner.
Given an incomplete and possibly incorrect plan, they attempt to modify the plan
when failures are encountered. An example of learning the correct plan for crafting
the primary mirror of a reflecting telescope is given. In fact, the example has the
same characteristics as the classic blocks world planning problems, but a "telescope
world" sounds much more interesting! In common with our earlier discussion,
Carbonell and Gil point out that a plan that fails to meet expectations must contain
errors. When a failure occurs, the system plans experiments to try to repair the
domain theory. The theory should contain knowledge of the preconditions of each
operator, the consequences, or post-conditions after applying each operator and the
objects to which it appropriate to apply each operator. In this domain, the operators
include grinding, polishing, aluminising and cleaning objects.

The kinds of faults in the domain theory that the PRODIGY work has centred on
are caused incomplete specification of pre and post conditions of operators and lack
of knowledge about operator interaction. Since the domain theory is represented in
first order logic, it is not surprising that the method for planning experiments
resembles Shapiro's program debugging in many ways. After a failure has forced
the system to perform some debugging, the program examines the current state of
the world and creates a new plan to achieve its original goal using the new domain
theory. A potential hazard that the authors note is that replanning can cause a glass
blank to be ground several times. If this is done too often, no glass will be left. This
is similar to the problem that CAP encounters when it runs out of water during its
pouring experiments.

5. Conclusion

We have discussed a number of problems related to incremental learning in a
reactive environment. In particular, a learning system must be able to detect that it
has an incorrect domain theory. It must be able to locate the error and correct it
while maintaining a consistent knowledge base. Some solutions to these problems
have been suggested and an implementation of the CAP incremental learning
program was described.

Error Tolerant Learning Systems 14

Acknowledgements

My thanks to Dave Hume, who designed and implemented CAP and to the
members of the Turing Institute who have provided a stimulating environment in
which to work during my leave from the University of New South Wales. To Jean
and Donald Michie, thank you for organising a successful and fascinating meeting
in Tallinn. My work at the Turing Institute has been supported by the Westinghouse
Corporation.

References

Carbonell, J.G. and Gil, Y. (1987). Learning by Experimentation, in Proceedings of
the Fourth International Machine Learning Workshop, ed. Pat Langley, pp.
256-266, Morgan Kaufmann, Los Altos.

Cohen, B.L. (1978). A Theory of Structural Concept Formation and Pattern
Recognition, Ph.D. thesis, Department of Computer Science, University of
New South Wales.

de Kleer, J. (1986a): An Assumption based TMS, Artificial Intelligence, 28 (1).
de Kleer, J. (1986b): Extending the ATMS, Artificial Intelligence, 28 (1).
de Kleer, J. (1986c): Problem Solving with ATMS, Artificial Intelligence, 28 (1).
Hume, D. (1985). Magrathea: A 3-D Robot World Simulation, Honours thesis,

Department of Computer Science, University of New South Wales, Sydney,
Australia.

Muggleton, S. (1987). Duce, An Oracle Based Approach to Constructive Induction,
in Proceedings of the International Joint Conference on Artificial
Intelligence, Milan.

Muggleton, S. and Buntine, W. (1987). Towards a Constructive Induction in First-
Order Predicate Calculus, Turing Institute working paper.

Quinlan, J.R. (1983). Learning Efficient Classification Procedures and Their
Application to Chess End Games, in Machine learning: An artificial
intelligence approach, ed. R.S. Michalski, T.M Mitchell and J.G. Carbonell,
Los Altos, CA, Morgan Kaufmann.

Sammut, C.A. (1981). Concept Learning by Experiment, in Proceedings of the
Seventh International Joint Conference on Artificial Intelligence, Vancouver.

Sammut, C.A. and Banerji, R.B. (1986). Learning Concepts by Asking Questions,
in Machine learning: An artificial intelligence approach (Vol. 2), ed. R.S.
Michalski, T.M Mitchell and J.G. Carbonell, Los Altos, CA, Morgan
Kaufmann.

Sammut, C.A. and Hume, D.V. (1987). Observation and Generalisation in a
Simulated Robot World, in Proceedings of the Fourth International Machine
Learning Workshop, ed. Pat Langley, pp. 267-273, Morgan Kaufmann, Los
Altos.

Shapiro, E.Y. (1981). Inductive Inference of Theories from Facts, Technical Report
192, Yale University.

Sussman, G.J. (1973). A Computational Model of Skill Acquisition, Ph.D. Thesis,
MIT Artificial Intelligence Laboratory.

