Recent Progress with BOXES

Claude Sammut

School of Computer Science and Engineering
University of New South Wales
Sydney, Australia

1 Introduction

The BOXES algorithm of Michie and Chambers (1968) has proved to be
an effective and flexible method for learning to control dynamic systems.
The algorithm, in its original form has been used a benchmark for many
experiments in control tasks such as pole balancing. Recent work in our
laboratory has shown that the BOXES algorithm can be improved to yield
very good learning rates. We describe experiments on a variety of up-
date functions and discuss their robustness. We also develop the notion of
freezing of BOXES, suggested by Michie and implemented by Bain (1990).

We have also been concerned with synthesising a readable account of
the control strategy employed by a set of boxes. Some preliminary work
has begun in combining decision tree learning algorithms with BOXES.
Using this method, we regard BOXES as the acquirer of sub-cognitive
skills and the decision tree induction as a means of introspecting on the
learned strategy to generate understandable control rules.

2 Pole Balancing

The BOXES algorithm addresses the problem of learning to control a pole
and cart system by trial and error. The physical plant consists of a cart
which can run on a track of fixed length. A pole is hinged to the cart such
that it can only swing in one dimension. As usually stated, the task only
allows bang-bang control. That is, only a force of fixed magnitude can be
applied to push the cart to the left or right. The task of the learner is to
construct a control strategy that will keep the pole from falling over and
the cart from hitting the ends of the track. It is important to note that the
problem is to avoid failure rather than to reach a specified target value. A
pole and cart system is depicted in Figure 1.

The state of the pole and cart system can be fully determined by the
variables: x (the position of the cart), & (the velocity of the cart), 6 (the
angle of the pole), 6 (the angular velocity of the pole). That is, the system
can be represented by a four dimensional state space.

2 Recent Progress with BOXES

F1Gc. 1.1. The Pole and Cart

The most significant problem to be overcome in designing a learning
algorithm for this task is that of credit assignment. The control system
may make an incorrect choice as to whether to push the cart left or right.
However, the consequences of that incorrect choice may not be noticed for
some time, when the system finally fails. Many actions may have been
taken between the incorrect choice and failure. So how can the learner
decide which of those actions was truly incorrect? This is the main task of
the BOXES algorithm.

3 BOXES

The algorithm derives its name from the way in which it partitions the state
space. The state space is partitioned into regions (boxes) by dividing the
range of each dimension into intervals. Thus, the entire space is tessellated
by four dimensional boxes. The state of the system determines a box. Each
box contains an action setting indicating that when the system enters the
box, the action to be performed is given by the setting of the box.

We regard each box as an independent learning element. The task of
a box is to learn which action setting is appropriate for that region of the
state space. In order to accomplish learning, each box contains statistics
on its performance. These are:

e How many times each action has been performed (the action’s usage).

e The sum of the lengths of time the system has survived after taking
a particular action (the action’s lifetime).

Each sum is weighted by a number less than one which places a discount
on earlier experience. This will be represented by, DK, in the algorithms
described below.

The BOXES algorithm proceeds by making an initial random selection
of setting for the boxes. A trial is performed by using the current box
settings to control the system. If the controller fails, then the actions
settings in each box are reviewed and possibly changed. These new settings

Claude Sammut 3

are then used for a new trial. This process repeats until the system can be
kept under control for a predetermined time which signifies success. Clearly,
the critical operation in the algorithm is the choice of action setting.

3.1 Deciding which action to take

After a failure, a decision is made in each box, whether to set the action
of that box to be ‘push right’ or ‘push left’. This decision must trade
off exploration versus exploitation. That is, should the setting be chosen
such that the most successful action, so far, is chosen or should the learner
switch actions if the other action has not been tried very frequently and
thus there is little information about its likelihood of success?

To make the choice between actions, BOXES determines the relative
merits of pushing left or right and then applies the following rule.

if valuer, > valuer then
choose left

if valuer, < valuer then
choose right

if valuer, = valuegr then
make random choice

The calculation of the value of an action must include the trade-off
described above. In the following subsections we will describe a succession
of formulas that have been used in this calculation. We begin with the
original Michie and Chambers formula and then proceed to describe, in
historical order, improvements that have yielded faster learning rates.

3.1.1 The Michie and Chambers Algorithm

The original method for calculating an actions merit in a box is as follows.
To find the value for ‘push left’ we use the left action’s lifetime (LL) and
usage (LU) statistics.

LL+ K X target

valuer, =

LL+ LU
where
target = Cy + C1 X merit
and
" GL
merit = ——
GU

K, C0 and C1 are experimentally determined parameters. GL is the
global life time (the sum of the lengths of time the system has survived
after taking any action) and GU is the global usage (the number of actions

4 Recent Progress with BOXES

taken). Like the local lifetimes and usages, the global statistics are also
subject to decay.

This formula was devised to provide for trade-off between exploration
and exploitation. The target was introduced to tie the level of exploration
to the overall performance of the system. The learner becomes more conser-
vative in its exploration as the overall performance improves. The Michie
and Chambers algorithms was a milestone in learning to control dynamic
systems. However, the number of trials required to learn to control the pole
and cart is quite high. A number of variations of the original algorithm
have lead to improved learning rates. We described these variations and
follow these with comparisons of performance.

3.1.2 Cribb’s local merit

James Cribb (Cribb, 1989) introduced a variation in which each box used
a local merit function. Cribb argued that the level of exploration within
a box should be tied to the performance of the box rather than the whole
system. Thus, he devised the following local merit, replacing the global
merit in the Michie and Chambers formula: The local merit is the larger of
% and R . Local merit was found to halve the number of trials to learn

to control the pole and cart.

3.1.3 Variations on local merit

Cribb’s version of BOXES can be simplified further by making the trade-
off between exploration and exploitation explicit in the control structure of
the algorithm rather than hiding it inside the update formula.

if an action has not been tested
choose that action
else 1f T > 5o
%U < Oo + C x %
choose left
else
choose right
else
if RU < Cy+Cq X LL
choose right
else
choose left

Cy and C are experimentally determine parameters.

In this variation of the BOXES algorithm, running averages of the life-
times of actions are compared. Assuming that the left average is greater
than the right, the default action is to push left. However, before taking

Claude Sammut 5

that action, we ensure that ratio of usages
value.

, RU, does not exceed a target

The intuition behind this formula is that the trade-off of exploration
and exploitation is related to the ratio of usages of the actions. If the ratio
favours the left action this suggests that the left action has been used in
preference to the right. If the merit of the box is not sufficiently large, then
the program should with the right action.

This variation learns more quickly than Cribbs version as well as being
easier to understand.

3.1.4 Laws Algorithm

Law (1991) replaced the test 2% < Co + Cy x £& by

If the ratio of average lifetimes exceeds the ratio of usages then the
action represented by the numerator in the ratios should be favoured. Thus
the selection algorithm in BOXES can be simplified to:

if an action has not been tested
choose that action

RL
else if L LU2 > 2z

choose left

RL
else if L LU2 < gz

choose right

else
choose an action at random

3.1.5 Variation on Law’s algorithm

The exponent in Laws variation can be seen as an exploration factor. Let
us rewrite the algorithm above as:

if an action has not been tested
choose that action

RL
else if LUk > woF

choose left

L RL
else if 7% < Rk

choose right

else
choose an action at random

As K approaches one, the level of exploration falls to zero. The higher
the value of K, the greater the level of exploration. This variation is the
most successful version of BOXES to date. The following section describes
comparisons between some of the variations.

Recent Progress with BOXES

Table 1.1 Comparison of number trials for variations on BOXES

Law & Cribb & Michie &

Sammut Sammut Chambers

79 152 115
120 80 60
94 131 140
69 171 158
45 90 211
89 209 747
80 224 285
73 105 279
68 116 2207
81 166 2586
81 230 484
90 138 455
43 130 387
43 143 873
103 85 189
48 146 505
81 61 249
89 112 228
68 122 392
65 61 581
75 134 557 Average

0.29 0.38 0.92 Std. Dev.of log

Claude Sammut 7

F1G. 1.2. Determining the value of K

4 Comparison

Three variations of BOXES are compared: Law & Sammut, Cribb & Sam-
mut and the original Michie and Chambers algorithm. Learning experi-
ments were repeated 20 times for each variant. The system is started in
random states for each trial. Table 1 shows the number of trials required
to learn to control the system for each of the 20 experiments. The average
number of trials is shown at the bottom of the table. To study the consis-
tency of the results, logs were calculated. The standard deviations of the
logs are also shown at the bottom of the table.

One of the points of comparison is that the Michie & Chambers al-
gorithm can vary considerably in learning rates, whereas the other two
variants are more consistent. The Law & Sammut variant has a learning
rate comparable to Selfridge, Sutton and Barto (1985).

5 Properties of the Law and Sammut Algorithm

The problem of most learning system for this domain is that their properties
are not well understood. In particular, the values of parameters can only be
determined experimentally. This section describes some of the properties
of the Law & Sammut variant, determined by experiment.

Figure 2 shows a plot of the average number of trials against K values
for a series of learning experiments. The average was obtained over five
learning runs. The graph shows that the algorithm is stable over the range
1.4 to 1.8. For the standard pole balancing problem, 1.7 was found to be
the best.

8 Recent Progress with BOXES

F1G. 1.3. Determining the value of DK

The DK value in the previous experiments was set at 0.98. While
exhaustive experiments have not been completed, Figure 3 shows the results
of experiments to determine an appropriate value for DK.

Once workable values for parameters have been found, it is reasonable
to ask what are these settings sensitive to. One possibility is that the
value of K depends on the number of boxes in the state space partition.
Throughout these experiments we have used the standard pole and cart
simulation of Anderson (1987). This uses 162 boxes. The original Michie
and Chambers set up used 225 boxes. Determination of K was redone using
225 boxes. The results are shown in Figure 4. AS can be seen, the different
number of boxes had little effect. While this is not conclusive evidence, it
suggests that K does not depend heavily on the number of boxes used in
the state space partition.

The final property tested was that of sensitivity to the problem. Often,
the parameters in reinforcement learning algorithms are dependent on the
learning task. To find out if this was the case with the Law & Sammut
algorithm, the problem was varied as follows. Rather than using an equal
force to push left and right, asymmetric pushing was used. That is, only
half the force was used in a right push as in a left push. This makes
the system less easily controlled. Therefore, we expect the learning times
to increase. We wish to observe how the learning rate degrades and if
parameters must be changed to find the best learning rate. Figure 5 shows
the determination of K for the asymmetric pushing task. As can be seen,
the best value for K still lies within roughly the same range. However, the
best value is 1.4. Thus, K is slightly sensitive to the problem.

Table 2 shows a comparison of the three variants from Table 1 for the
asymmetric pushing problem. We also show the Law & Sammut algorithm

Claude Sammut

F1G. 1.4. Sensitivity to the number of boxes

Fia. 1.5. Sensitivity to the problem

10

Recent Progress with BOXES

Table 1.2 Comparison on asymmetric pushing

Law Law Cribb & Michie &
(K=1.4) (K=1.7) Sammut Chambers
134 545 43 1382
562 445 168 487
120 911 314 1360
224 123 917 1195
132 383 2789 3145
394 101 780 431
413 1977 253 1768
83 125 1726 1916
273 1044 376 709
821 735 236 816
249 1155 607 297
262 611 319 2008
611 661 214 833
150 308 265 1643
278 1179 94 565
547 227 1125 565
73 439 157 574
305 107 97 6493
669 284 493 5657
532 517 360 712
342 594 567 1628 Average

Claude Sammut 11

F1Gc. 1.6. State transitions in BOXES

for K = 1.4 and K = 1.7. It is interesting to note that, proportionally,
the Cribb & Sammut variant does not degrade as much with constant
parameter setting as the Law & Sammut variant.

6 Reliable Controllers

Sammut and Cribb (1990) noted that a program that learns to control the
pole and cart in a single learning run does not necessarily learn how to
control the pole and cart in general. That is, the program has not learned
how to control the system, no matter what the starting state is. Instead,
it has learned to control the system from one particular start state. Figure
6 illustrates why this may be so.

The dynamic behaviour of BOXES can be characterised by a graph in
which the nodes represent boxes and the edges represent transitions from
one box to another when a left or right push is performed. Strictly, the
edges should have labels corresponding to left and right transitions. It
should be noted that the transitions are non-deterministic since the same
action in the same box does not guarantee a transition along the same edge.
Thus the control of the pole and cart system can be viewed as a Markov
process.

The goal of the learning algorithm is to keep the system from entering
a fail state, indicated by the heavy circle. In other words, if the learning
algorithm can find a closed set (i.e. a set of nodes which the system never
leaves, indicated by the heavy arrows) then its task will be accomplished.
If the learning algorithm is able to find such a set quickly from a particular
starting state, then it may never explore many regions of the state space.
Thus, when the system is restarted in a state which has not be explored, the
learned control strategy may fail. Indeed, it is very likely to fail. Sammut
and Cribb (1990) described a solution to this problem where the system
was allowed to learn to control the pole and cart a number of times and

12 Recent Progress with BOXES

Fic. 1.7. First attempt at incremental freezing
the results of each of these runs were pooled into one control strategy.

6.1 Voting and Incremental Freezing

The results from different learning runs are pooled by a system of voting.
Corresponding box in successive learning runs contribute votes for the cor-
rect action in that box. A x? test is used to determine when a vote is
significant, so when a vote passes the x? test, the action for that box is
frozen. Sammut and Cribb report that when 20 to 30 learning runs are
collected and then voting is applied, the result is a reliable controller that
can control the pole and cart system from any recoverable random starting
position without requiring further learning.

Bain (1990) reports on a method called incremental freezing, suggested
by Donald Michie, where votes are collected as learning runs are completed
and freezing occurs as soon as the x? is passed. We conducted similar ex-
periments with previous versions of the BOXES algorithm which confirmed
the efficacy of this method. However, when incremental freezing was at-
tempted with the Law & Sammut variant the results were not encouraging.

Figure 7 shows a plot of the reliability of the controller obtained by
incremental freezing. The reliability of the controller is tested by running
it 20 times on new pole balancing tasks which all start in random states.
If the system successfully controls all 20 runs, then it is deemed reliable.
Despite some erratic behaviour, controllers produced beyond about 70 runs
are mostly reliable. When this experiment was repeated with a different
random number sequence the results were as shown in Figure 8. Thus, the
latest version of BOXES causes incremental freezing some problems. It is
not yet clear why this is the case.

Claude Sammut 13

F1G. 1.8. Second attempt at incremental freezing

7 Discovering Patterns in Boxes

Sammut and Cribb (1990) also reported in progress in making the results
of BOXES more understandable. The upper rectangle in Figure 9 shows
the settings of all the boxes after learning. A ‘0’ represents a‘push left’
action and a ‘1’ represents a ‘push right’. The set of boxes can be stored in
the computer as a four dimensional decision array and it this array that has
been reproduced in the figure. The display groups all boxes in the region
where the pole is leaning to the far left in the left hand side major column.
All boxes in the region where the cart is placed at the far left of the track
are grouped in the top major row.

It is very desirable that the output of a learning program should be
readable. In that way, humans can learn something as well as the program.
Unfortunately, the top display is not very informative. However, Sammut
and Cribb noted that there is noise in the display. That is, some boxes have
settings that are inconsistent with their neighbours. In quite a number of
cases, the setting of a box is not critical and can be either 0 or 1. There-
fore, Sammut and Cribb experimented with coercing boxes to conform to
a regular pattern. For example, the lower rectangle in Figure 9 shows a
cleaned up set of boxes which is reliable. More importantly, the regularity
in the boxes permits compression of this representation to the point where
the boxes can be read as a simple rule. This was first noted by Makarovic.
His rule is shown in below.

theta_dot = -inf..-0.87
push left

theta_dot = -0.87..0.87
theta = -0.2..-0.017

14 Recent Progress with BOXES

Fic. 1.9. Cleaning up BOXES

push left
theta = -0.017..0.017
x_dot = -inf..-0.5

push left
x_dot = -0.5..0.5
x=-2.4..0
push left
x=-2.4..0
push right
x_dot = 0.5..inf
push right
theta = 0.017..0.2
push right
theta_dot = 0.87..inf
push right

7.1 Combining induction and reinforcement learning

In recent experiments, we have tried to improve the method of discovering
patterns in boxes by using decision tree induction. The method used is as
follows.

e Each box contributes one example to an ID3-like algorithm.

e The description of a box gives the attributes and the left/right deci-
sions are the class values.

e After running the ID3 algorithm, the decision tree is pruned top-
down, breadth-first.

Claude Sammut 15

e Each non-leaf node in the tree is replaced by a leaf node whose class
value is the majority class of the unpruned node.

e If the boxes defined by the decision tree preserve 20/20 performance
then pruning of the node is made permanent.

e Otherwise, we try pruning a sub-tree.

20/20 performance refers to the reliability test described earlier. The
decision tree that results from this method is shown below.

theta_dot = -inf..-0.87
push left

theta_dot = -0.87..0.87
theta = -0.2..-0.017

push left
theta = -0.017..0
x=-2.4..-1
push left
x=-1..2.4
push right
theta = 0..0.017
x =-2.4..-1
push left
x=-1..1
x_dot = -inf..-0.5
push left
x_dot = -0.5..inf
push right
x=1..2.4
push right
theta = 0.017..0.2
push right
theta_dot = 0.87..inf
push right

This tree generates a set of boxes which is regular as can be seen in
Figure 10. The great advantage of readable control rules is that they can
instruct humans about the nature of control. Sammut and Michie (1991)
describe the way in which they were able to transpose knowledge of pole
balancing to controlling the attitude of an orbiting spacecraft.

8 Continuing Work

Work on improving the readability of BOXES output continues. We have
found that the order of pruning the decision tree influences the outcome.

16

Recent Progress with BOXES

F1Gg. 1.10. Pattern of decision tree

To avoid this problem, it may be necessary to re-learn the boxes when a
pruned decision tree imposes new patterns on the boxes. That is, the boxes
specified by the tree are fixed, but all other boxes are subject to further
training. It is also important that intervals can be re-defined, that is that
adjacent nodes in the tree can be merged. This may be easily achieved by
the adoption of more sophisticated decision tree induction programs.

Bibliography

1.

Anderson, C. W. (1987). Strategy Learning with Multilayer Connec-
tionist Representations. Technical Report No. TR87-509.3. GTE LAb-
oratories Incorporated, Waltham MA.

. Bain, M. (1990). Machine-learned rule-based control. In M. Grimble, S.

McGhee, & P. Mowforth (Eds.), Knowledge-base Systems in Industrial
Control. Peter Peregrinus.

. Cribb, J. (1989). Comparison and Analysis of Algorithms for Rein-

forcement Learning. Honours Thesis, Department of Computer Sci-
ence, University of New South Wales.

. Law, J. K. C. (1992). Adaptive Rule-based Control. Master of Cog-

nitive Science Thesis, School of Computer Science and Engineering,
University of New South Wales.

. Michie, D., & Chambers, R. A. (1968). Boxes: An Experiment in

Adaptive Control. In E. Dale. & D. Michie (Eds.), Machine Intelligence
2. Edinburgh: Oliver and Boyd.

. Selfridge, O. G., Sutton, R. S., & Barto, A. G. (1985). Training and

Tracking in Robotics. In Proceedings of the Ninth International Con-
ference on Artificial Intelligence (pp. 670-672). Los Altos: Morgan
Kaufmann.

. Sammut, C., & Cribb, J. (1990). Is Learning Rate a Good Performance

Criterion of Learning? In Proceedings of the Seventh International
Machine Learning Conference, Austin, Texas: Morgan Kaufmann.

. Sammut, C., & Michie, D. (1991). Controlling a ‘Black-Box’ Simula-

tion of a Spacecraft. AI Magazine, 12(1), 56-63.

