
Controlling a Steel Mill with BOXES

Michael McGarity, Claude Sammut and David Clements

The University of New South Wales

Abstract

We describe an application of the BOXES learning algorithm of
Michie and Chambers (1968) to a large-scale, real-world problem,
namely, learning to control a steel mill. By applying BOXES to
a model of a skinpass mill (a type of steel mill), we find that the
BOXES algorithm can be made to produce a robust controller rela-
tively quickly. Various aspects of the BOXES algorithm are adapted
for the to higher dimensionality and noise present in the skinpass
mill. These changes are critically examined to find those which give
a better controller.

1 Introduction

Boxes began as an exploration into the possibility that many small tasks
may be easier for a computer to learn than one large one. That is, it
was thought that by breaking up a complex problem, difficult to solve as it
stood, into many smaller and more tractable problems, the original problem
could be solved with greater speed or ease. Although some information is
always lost by splitting the problem into sub-problems, it was hoped that
the advantages gained with the improvements in complexity would offset
this. The heart of the BOXES algorithm is that a simple, decision-array
control strategy is altered by an incremental process based on the success
or failure of the controller on the last trial.

The BOXES algorithm has traditionally been applied to unstable, lin-
earisable, low noise, single input plants such as the pole and cart (Michie
and Chambers 1968). We might therefore ask what changes we might have
to make to adapt the algorithm to be suitable for a larger class of tasks.
Some of the issues to be considered are as follows.

• A much larger action space due to multiple inputs will make it harder
to learn to choose a good action within a reasonable time.

• Most viable controllers for physical systems need to minimise the
number of switches sent to the actuators, as this behaviour carries
with it high running and maintenance costs.

• Typical industrial plants are designed to be stable and therefore, the
plant will not present examples of marginal failure to the controller

1

2 Controlling a Steel Mill with BOXES

during learning. The large amount of noise usually present may offset
this effect.

To explore these problems, we apply BOXES to a model of a working
steel mill. The skinpass mill is a plant designed to flatten a strip of steel. It
does this by passing the strip between two rollers which are forced together.
The aim of this process is to improve certain physical properties of the strip,
such as uniform stretchability. This means that much of the deformation
due to the rollers occurs in the surface (or skin) of the strip, giving a highly
non-linear relationship between force and elongation. The skinpass mill is
therefore a non-linear plant with multiple inputs and outputs, with all of
the inputs and outputs linked. The skinpass mill is designed to be relatively
stable.

2 The Skinpass Mill

The reduction of the steel strip applied by the skinpass mill is very small,
(usually less than 5%), and needs to be controlled to within fine limits.
The result of this small reduction is to improve the yield point properties
of the thin strip product. In terms of yield point flattening, a temper
rolling mill is different to a hot rolling mill, which may perform reductions
of 50% on very thick steel ingots or plate, with the aim of reducing the
thickness of the strip, plate or ingot. Thus the skinpass mill is one of the
final stages in the rolling of the steel strip and has different requirements to
the earlier processes. In addition to this, the physical processes involved in
skinpass rolling are not as well understood as either hot or cold rolling is,
which makes the mathematical model needed for control purposes harder
to find (Roberts 1972). Naturally, the mill stand is only a small part of
the mill, but as this is the object of most of the control design, we will
concentrate our attention on it. The primary aim of the control task is to
keep the elongation as close as possible to the setpoint, or desired level of
elongation, while keeping the other parameters (roll tilt and strip shape)
within acceptable bounds.

The skinpass mill has three inputs and outputs. The outputs are elon-
gation (related to the average of the main roll force), Roll Tilt (related to
the difference in the roll forces) and the roll bending, (related to special
roll bending actuators) as shown in Figure 1.1. The relationships between
these three main systems is complex, and is difficult to describe analyti-
cally. Therefore, we modelled the mill using a static non-linear block in
series with a simple linear second order dynamic system. The non-linear
element was found using steady-state empirical data. The three sub- sys-
tems, elongation, crown and roll tilt were treated as separately as possible.

Michael McGarity, Claude Sammut and David Clements 3

Reaction Forces

Backup
Rolls

Work
Rolls

F3 F3

F1 F2

Fig. 1.1. Inputs and outputs of the mill

2.1 Actuators

The actuators apply pressure to the cylinders which, in turn, transfer force
to the strip. The effect of the actuators to alter the strip shape is effectively
instantaneous.

2.2 Measurements

Thinning the strip of steel results in elongation of the strip. Distortion in
the strip can cause roll tilt, which will result in buckle. Heating of the strip
as a result of rolling causes expansion and more thinning in the middle.
This is called negative crown.

2.3 Noise

The noise is mainly due to roll eccentricities and strip irregularities and so
the bandwidth of the noise is very closely linked to the strip speed.

Some mill dynamics are fast, with an open loop step disturbance last-
ing about 5ms. These are mostly hydraulic resonances (damped by gas
cylinders) and are ignored in the current implementation. This is because
we cannot control them without a dedicated controller and because they
die out in between step inputs from the BOXES controller. Note also that
in the commercial version of this mill controller, a dedicated controller
implementing a PID controller is used to control fast valve and hydraulic
dynamics.

The dynamics that are of interest to us concern the shape and elongation
of the steel strip and are much slower. The strip runs through the mill
at speeds between 30 metres/min and 400 metres/min. At the fastest
speed (1.2 mm strip) undulations in strip thickness are caused by elliptical
flattening of the rolls. The work rolls are smaller and so contribute a higher

4 Controlling a Steel Mill with BOXES

frequency (although a lower amplitude). In the experiments described in
this paper, a strip thickness of 4 mm is always used, with a corresponding
strip speed of 150 metres/min. The work rolls have a diameter of roughly
400 mm (circumference of 1250 mm) which corresponds to a disturbance
bandwidth of approximately 2HZ. The total disturbances introduced by
the irregularities in original strip thickness are limited to about 2-3HZ. A
sample time of 100ms is 4-5 times as fast as the fastest plant dynamics,
and is therefore reasonable for most cases. The experiments are therefore
conducted with a sample time of 0.1 seconds.

3 Boxes and the Skinpass Mill

This section deals with the performance of the BOXES algorithm while
learning to control the skinpass mill and the changes that have been made
to cope with the increased number of dimensions and noise. Our main aim
with these modifications is to improve the robustness of both the controller
and the learning agent.

There are three critical elements of a BOXES style algorithm:

• It succeeds by avoiding failure.

• BOXES avoids global failure by changing local variables

• Each local variable is changed independently from every other local
variable

The BOXES algorithm relies on a state space representation, in which
each input (including dynamic information such as derivatives and inte-
grals) is divided into several partitions. Thus, a given input parameter
might be divided into three categories, for example, large negative, near
zero, and large positive. Each input may be divided into a different num-
ber of divisions. In this way, the divisions of the total space form ‘boxes’
within which all of components of the state space vector stay inside their
respective boundaries.

When applied to the skinpass mill, there are four inputs to BOXES
(i.e. outputs from the plant), these are the elongation (and its integral of
error), roll tilt, and crown. Each of these four inputs is partitioned, giving
5 × 3 × 3 × 3 boxes.

The output of the control system is similarly quantised. Each box
contains an output, and this output does not change during a control run.
The action only changes when the whole system fails. The skinpass mill has
three independent actuators: operator side pressure, drive side pressure,
and bending pressure. Each of this is quantised into large negative, small
negative, zero, small positive and large positive. Thus there is a total of
125 different combinations of actions. This represents a large increase in
complexity over the pole and cart which only has two actions.

Michael McGarity, Claude Sammut and David Clements 5

Time is quantised as well. The current action is treated as a constant
output for the duration of each time step, so the model for the plant to
be controlled needs to be step invariant. Adjustment of the sample or step
time is not part of the learning procedure. During the control run, then,
the BOXES algorithm is simply a lookup table.

The goal of learning is to coerce the performance of the closed loop
into a heuristically defined specification or boundary of acceptable perfor-
mance. The way this is done is very simple to describe, but it is difficult
to guarantee convergence.

The algorithm performs a local search within a global failure definition.
The underlying assumption behind this learning algorithm is that an action
output by the boxes has a causal relationship with the success or failure of
the global system. However, this relationship is usually not directly causal,
instead, it is a probabilistic link. The strength of the link between a box
and the outcome depends on the behaviour of the boxes around it and
in the case of failure, the time between the activation of the box and the
eventual failure. Since the behaviour of the surrounding boxes is difficult
to predict and may be seen as somewhere between a random action and the
‘correct’ action, they must be treated stochastically. Thus the causal link
between a given action and the ensuing success and failure would probably
depend on the relative certainty with which the box holds its action, and
so would change over the course of the learning process.

Sammut and Cribb (1990) claimed that a trade-off exists between speed
of learning and the generality of the learned controller. The controller
produced by BOXES is not guaranteed to be robust in the sense that it
can control the same plant from different starting conditions. This is also
true of other reinforcement learning algorithms.

In order to test the robustness of our algorithms, we run each of the
modifications, with various noise levels, on two different plants: the skin-
pass mill and the pole and cart as described by Anderson (1987). When
running the algorithms, we continued for 10,000 trials before resetting the
learning algorithm. In order to show the performance over this time, we
recorded the highest number of successes in a row that has been achieved.
By ‘success’ we mean that the system has been kept stable for 10,000 time
steps.

subsectionBackground After each trial when the system fails, the al-
gorithm collects the time indices at which each box is entered. They are
collected into one number which indicates the proportion of the failure that
is due to the action of currently set in the box. This number, termed Life,
is a function of the elapsed time between use and failure of the box.

Life =

n
∑

i=0

(Tfinal − Ti)

6 Controlling a Steel Mill with BOXES

The lifetime, which gives some indication of the proportion of blame for
failure, is an discounted accumulation of the past lifetimes for a particular
action. This is done using a sliding average. The number of times that a
box is entered during a trial is similarly accumulated.

Lifetime′ = DK × Lifetime + Life

Usage′ = DK × Usage + n

This second term is used as the divisor when working out the ‘life ex-
pectancy’ of a given action and as a measure of how much is known about
this action.

Average Lifetime =
Lifetime

Usage

The average lifetime can be seen as an estimate of the life expectancy
of the entire system if this particular box chooses this action. In order to
encourage exploration, this average lifetime is modified to bias the choice
of action towards those actions with which BOXES has little experience.
Thus, we define merit as:

merit =
Lifetime

Usagek
where k > 1

Several variations of this measure have been used for BOXES. The
one above was described by Sammut (1994). These merits are then used
to compare the various actions and the one which will most likely avoid
failure for the controller, in the long run, is chosen. This choice may simply
be taking the action with the highest score,

meritaction > meriti ∀i 6= action

or may be probabilistic.

Probability(action = i) ∝ meriti

The probabilistic strategy we use proceeds by choosing a particular
action with a probability proportional to it’s merit.

Deterministic action choices are based on the maximum score given
by the appropriate scoring technique. That is, the action chosen would
have the best balance, given the information known at the time, between
experience and chance of success. A probabilistic choice of action would
most often pick the same choice as the deterministic one, but would have
some chance of choosing a different one.

Michael McGarity, Claude Sammut and David Clements 7

4 Annealing

The deterministic method for choosing actions works well for the pole and
cart. This may be because the range of actions is very limited, so the
algorithm can obtain experience for the entire range of actions. However,
the mill has a large number of actions available, 3 independent actions
with 5 choices, giving 125 possible actions. Thus, there is ample scope
for a complex decision surface to include local minima. Additionally, it
is too large a surface to hope that the BOXES algorithm will gain global
knowledge before a local minimum is found. For these reasons, we tried to
use a probabilistic notion of action choice.

There are two ideas behind annealing. First, there is a need for constant
excitation. It is important, when modelling a process from dynamic data,
to excite all of the modes of the process so that the model includes these
modes. This is often done by using a white noise input to an unknown
plant after which the usual system identification procedures take place. In
our simulation, plant disturbances are modelled by pseudo-random noise.
However, annealing provides a second input of noise and can also be used
for this purpose.

The second reason for using annealing is to prevent the algorithm being
caught in local minima. As previously mentioned, each action available to
a box must have a corresponding lifetime that is indicative of the action’s
average time to failure. Thus, each action must have a chance to find out
what its time to failure is and with a large number of actions available, this
may not be possible. Instead, one or two relatively successful actions take
over, not allowing other actions a chance to obtain a statistically large num-
ber of example runs. Annealing is different from other ways of combating
this problem in that instead of boosting the score of inexperienced actions,
annealing simply chooses a random action. Each action has a probability
proportional to its score and from this sample space an action is chosen.
Thus, the higher scores are chosen more often, but any score can be chosen.

One variation that can be added is to provide a cut off level. Annealing
is noise, so it should produce a deterioration in the performance of the
plant. After annealing has done its job, namely, to give all of the actions
a chance to find their own average time to failure, it can be reduced. This
is done in the current simulation by only including those actions that have
a score above a certain cut-off level. This level can be fixed or it can be
raised as the learning procedure progresses, reducing the noise input by the
annealing procedure.

In order to test these ideas, the pole and cart and the skinpass mill were
tested with various annealing types and levels. In the three graphs shown,
The columns represent fixed annealing at a certain level. The level being
shown on the x-axis of Figures 1.2, 1.3 and 1.4. Two types of annealing
are shown, constant annealing and reducing annealing .

8 Controlling a Steel Mill with BOXES

Annealing for the Pole
(10 in a Row)

3621.4

2185.6

1561.4

1132

>10000 >10000 >10000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

R
ed

uc
in

g

0.2 0.6 1

Annealing level

Tr
ia

ls

0 0.4 0.8

Fig. 1.2. The effect of annealing on learning to control the Pole and Cart.
Note that the criterion for success is to balance the pole for 10,000 time
steps and repeat that 10 times in a row. The number of trials plotted
is the time taken to succeed for the first time.

Michael McGarity, Claude Sammut and David Clements 9

Annealing in the Mill
(20 in a row) >10000

0

100

200

300

400

500

600

700

800

900

1000

Reducing 0.2 0.6 1

Annealing Level

T
ri

al
s

0 0.4 0.8

Fig. 1.3. The effect of annealing on learning to control the skinpass mill.
The criterion for success is to balance the pole for 10,000 time steps
and repeat that 20 times in a row. The number of trials plotted is the
time taken to succeed for the first time.

10 Controlling a Steel Mill with BOXES

Annealing in the Mill
(60 in a row)

>10000

0

500

1000

1500

2000

2500

3000

R
ed

uc
in

g

0.2 0.6 1

Annealing level

Tr
ia

ls

0 0.4 0.8

Fig. 1.4. The effect of annealing on learning to control the skinpass mill.
The criterion for success is to balance the pole for 10,000 time steps
and repeat that 60 times in a row. The number of trials plotted is the
time taken to succeed for the first time.

Michael McGarity, Claude Sammut and David Clements 11

The effect of annealing on learning to control the skinpass mill. The
criterion for success is to balance the pole for 10,000 time steps and repeat
that 60 times in a row. The number of trials plotted is the time taken to
succeed for the first time.

Constant annealing chooses the action according to the following rule:
Probability(action = i) ∝ AvLifetimei

if Av Lifetimei > β × Max Av Lifetime

Probability(action = i) = 0 otherwise

That is, the probability of choosing action i, is proportional to the
average lifetime for that action in a particular box. In addition, a cut-off
level is defined such that if the average lifetime is less than β times the
highest average lifetime of an action in the same box, then that action will
never be chosen.

In the constant annealing scheme, the value of β is constant throughout
a complete learning sequence. Under reducing annealing, the value of β

changes according to the formula:

β =
Global Lifetime

Target Lifetime

where the global lifetime is the current lifetime of the system, as a
whole, and the target lifetime is the success criterion of 10,000 time steps
(in the present experiments). With this method the cut-off level is raised
as performance increases.

Interestingly, the versions of the BOXES algorithm described by Sam-
mut (1994) consistently failed the robustness tests used here. While that
algorithm learns to control the pole and cart system quickly, it cannot
achieve a consistent level of performance by retaining the box statistics
from one learning sequence to the next as annealing does. We have previ-
ously proposed a method of voting (Sammut and Cribb 1990) to construct
a robust controller for the pole and cart. Unfortunately, this method does
not scale to problems that have a large number of control actions. The
combination of annealing and not resetting the statistics kept in each box
after a successful sequence appears to be more promising.

5 Training for Noise

Previous research in machine learning (Quinlan 1986) suggests that it is
necessary to train a learning system in a noisy environment if the final
system is to be used in a noisy environment. As can be seen in Figures
1.5 and 6, the performance of the algorithm when trained in this way is in
accord with our expectations.

The average time to failure of the mill with a noise ratio of 0.1 is about
1000 seconds when using actions learned with no noise. Actions learned
with the same noise ratio of 0.1 achieve an average time to failure of about

12 Controlling a Steel Mill with BOXES

6543210
0

1000

2000

3000

4000

5000

Noise Rat io

A
v

e
ra

g
e

 T
im

e
 t

o
 F

a
il

u
re

Fig. 1.5. Performance on a zero noise plant after training on the zero noise
plant. The dotted line shows the performance on a noisy plant.

Michael McGarity, Claude Sammut and David Clements 13

6543210
0

1000

2000

3000

4000

5000

6000

Noise Rat io

A
v

e
ra

g
e

 T
im

e
 t

o
 F

a
il

u
re

Fig. 1.6. Performance on a zero noise plant after training with a noise
level of 0.1. The dotted line shows the performance on a noisy plant
after training with the same noise level.

14 Controlling a Steel Mill with BOXES

2000 seconds. It seems from this result that learning on a low noise plant
does not improve performance on higher noise plants. However, further
tests were conducted, this time with the initial training being done on a
low noise plant with a noise ratio of 0.1. The controller now performs better
at zero noise levels than the controller learned on zero noise levels. Thus, far
from being an impediment to learning, introducing a small amount of noise
actually helps the controller to learn more about the plant. These graphs
show that training on a zero noise plant produced a poor controller for a
noisy plant, while conversely, a controller trained on a noisy plant produces
a robust controller useful for all noise levels that is actually better for the
zero noise plant than the zero noise controller. This supports the earlier
suggestion that noise, or excitation of all modes of the plant, is important
for good modelling of the plant.

6 Actuator Output

The BOXES algorithm requires that the actuator output be quantised.
The problem with this is that coarse quantisation leads to unnecessarily
large actuator changes. This would be highly detrimental to a commercial
plant, coming with the attendant maintenance problems. Three methods
were investigated in an attempt to alleviate this problem.

6.1 Smoothing the Output

An attempt was made to filter the output to the actuator in the time
domain. Such a filter is usually a running average of previous actuator
outputs. This type of filtering introduces a delay and so to minimise the
effects of the delay, the filter is generally first-order. That is, the new output
is only a function of the immediately preceding output and the input.

ut = ut−1 + α(u′

t − ut−1)

where u′ is produced by BOXES and uiis output to the plant.
By varying the filter coefficient, α, a smoother response can be obtained.

However, substantial drop off in performance occurs when the filtering is
present, as shown in Figure 1.7.

In order to explain why the performance is reduced, we looked at the
response of BOXES in the time domain. The large damped oscillations in
Figure 1.8 provides one explanation. As can be seen, filtering the output
in this way, while producing a smoother controller, also results in delays in
the control loop, and large, slow oscillations in the controlled variable.

6.2 Weighting the Output with Error Magnitude

This type of smoothing relies on weighting the output with a function of
error (difference from a setpoint). In this way, the controller should respond
to large errors with large control actions, bringing the plant under control.

Michael McGarity, Claude Sammut and David Clements 15

1.00.80.60.40.20.0
0

1000

2000

F i l t e r C o e f f i c i e n t

A
v

e
ra

g
e

 T
im

e
 t

o
 F

a
iu

re

Fig. 1.7. Performance as actuator output is filtered

16 Controlling a Steel Mill with BOXES

4003002001000
2.8

2.9

3.0

3.1

3.2

T ime

E
lo

n
g

a
ti

o
n

4003002001000
-200

-100

0

100

200

T ime

T
il

t

4003002001000
- 2 0

- 1 0

0

10

20

T ime

C
ro

w
n

4003002001000
- 1 0

- 5

0

5

10

T ime

In
te

g
ra

l

Fig. 1.8. Response of one run with high filtering. Note the long damped
oscillations. X-axis in seconds.

Michael McGarity, Claude Sammut and David Clements 17

210
0

1000

2000

3000

4000

Actua tor We ight ing Coef f ic ien t

A
v

e
ra

g
e

 T
im

e
 t

o
 F

a
il

u
re

Fig. 1.9. Actuator Weighting vs Performance. No significant best value
is observed.

Likewise, as the error becomes smaller, the actuator changes also become
smaller, and a smoother controller results. To test this theory, the following
function of actuator weighting was used.

Action′(e) =

∣

∣

∣

∣

2e

emax

∣

∣

∣

∣

α

× Action(e)

where emaxis the error at the failure boundary.

The output of the actuator is thus weighted by a function of the absolute
value of the error. To test the effectiveness of weighting the output in this
way, and perhaps to find a good weight curve, 20 test runs of selected
algorithms with different weighting parameters were allowed to learn from
30,000 trials. The average final value of the time to failure was recorded
for selected weighting parameters. Note that the results from this example,
like many in these experiments, may be specific to the skinpass mill. The
results are not meant to be useful for all plants, but simply to show the
viability of the idea. The results from this test are given in Figure 1.9.

These are disappointing, in that no significant best weighting curve
was found. However, the sharp decline in performance around the actuator
weighting coefficient of 0.5 warranted further attention. Again, we turn

18 Controlling a Steel Mill with BOXES

t i l t

50000

200

100

0

-100

-200

50000

1

0

-1

-2

-3

integral of elongation

50000

40

20

0

-20

-40

crown

elongation

50000

3.2

3.1

3

2.9

2.8

Fig. 1.10. Large oscillations due to wide zero.

to the time domain behaviour of BOXES controlling the mill, and take a
typical example from weighting parameter of 0.3, and one at 0.5. Both
examples are at a noise ratio of 0.5, which is quite high. These are shown
on Figures 1.10 and 1.11 respectively.

We speculate that the drop-off is due to larger oscillations occurring
around the setpoint These oscillations are in turn due to the lack of control
and the large noise amplitude. If this is the case, then smaller weighting
parameters produce narrower regions where the controller has little effect,
which leads to smaller oscillations. Conversely, a large weighting parameter
would produce larger regions where the controller has little effect. If the
oscillations became larger than the size of the boxes, this would possibly
produce instability and poor performance.

Figure 1.2 shows a successful controller with larger oscillations around
the setpoint. The amplitude of these oscillations is about ±0.08%, or about

Michael McGarity, Claude Sammut and David Clements 19

t i l t

50000

200

100

0

-100

-200

50000

1

0.5

-0.5

-1

-1.5

integral o f elongation

50000

40

20

0

-20

-40

crown

elongation

50000

3.2

3.1

3

2.9

2.8

0

Fig. 1.11. Smaller oscillations due to narrower zero. Both runs (Figures
1.10 and 1.11) had the same external noise level.

20 Controlling a Steel Mill with BOXES

40% of the failure boundaries. This algorithm has a weighting parameter
of algorithm of 0.5, so the weighting function should have a value of about
0.65 at he limit of oscillations. In Figure 1.11, the size of the oscillation is
smaller, about 25% of the failure boundary, and the weighting parameter
is 0.3. This gives a similar weighting function value, about 0.65. While
this hardly convincing proof that a direct relationship between the value
of the weighting function and the size of the oscillations exists, it does
support to some extent the idea that reducing the actuator output around
zero may reduce performance. Also note that the actual values where the
performance drops off are related to the choice of gains available to each
box. These were not chosen for any good reason in the original formulation
of the problem, and have not been included in the learning procedure in any
way. Thus, in order to produce a gentler controller, these gains could be
chosen (hopefully as part of the learning scheme, but perhaps by a human
designer) to produce a smoother but still useful controller.

6.3 Control Effort Cost

When designing more conventional controllers, a common way of compro-
mising between controller fluctuations and other measures of control quality
such as setpoint following is to place a cost on the chosen action. This cost
may be related to the magnitude of the action or to the size of the change of
the action depending on the desired behaviour of the controller. We have
used this idea in BOXES to smooth the output of the controller for the
pole and cart with better results than either of the first two methods. The
way we have done this is to modify the merit equation, as shown below.

merit = weight ×
Lifetime

Usagek

A ‘do nothing’ action was introduced into the pole and cart system.
This action was given a large weighting (w = 3) in comparison to the push-
left and push-right actions (w = 1). Figure 1.12 shows how the original,
unweighted BOXES controller performs on this task, with the solution
being characterised by jerky, unnecessary actions.

Figure 1.13 shows how BOXES performs with weighting. This second
graph shows a marked difference in control strategy (which is also evidenced
in the rules developed by the learning agent). In comparison with the earlier
methods of actuator smoothing, there is only a minimal increase in learning
time to reach the same level of average time to failure for the pole and cart.

Because the mill has 125 actions, providing a weighting is somewhat
more complicated and experiments are still proceeding.

Michael McGarity, Claude Sammut and David Clements 21

4003002001000
-2 .4

-0 .8

0.8

2.4

T ime

C
a

rt
 P

o
s

it
io

n

4003002001000
- 1

0

1

T ime

C
a

rt
 V

e
lo

c
it

y

4003002001000
-0 .2

-0 .1

0.0

0.1

0.2

T ime

T
h

e
ta

4003002001000
-1 .5

-0 .5

0.5

1.5

T ime

A
n

g
u

la
r

V
e

lo
c

it
y

Fig. 1.12. The behaviour of the pole and cart using a controller without
a cost on the action

7 Conclusions

Reducing annealing allows most of the actions in a box to gain experience.
This means that a more complete model of expected time to failure can be
built up for each action. As a result a more robust controller for the mill
could be constructed.

It was noticed that adding noise to systems with no annealing or no
noise improved the performance of the mill. It was suggested that this is
because the noise excites the plant, enabling the BOXES model of the plant
to be made more complete. This effect was not evident for the pole and
cart, probably because the instability of the plant caused enough excitation
by itself to make it possible to model the plant.

Three methods were attempted to improve the quality of the BOXES
control. Filtering the output had the effect of introducing a delay into
the control loop. As might be expected, this produced a marginally stable
controller, exhibiting long, slow oscillations. Very poor performance was
found. It was hoped that by weighting the output to be smaller near to
zero error, a smoother controller might result. Instead, the small weighting
near zero error produced a zone where the controller had little effect, and
the oscillation usually found in a BOXES controlled plant increased in
amplitude to fill this zone. Only very steep weighting showed any sign
of improving performance. Placing a cost on a control action was the

22 Controlling a Steel Mill with BOXES

3002001000
-2 .5

-1 .5

-0 .5

0.5

1.5

2.5

T ime

C
a

rt
 P

o
s

it
io

n

3002001000
- 2

- 1

0

1

2

T ime

C
a

rt
 V

e
lo

c
it

y

3002001000
-0 .2

-0 .1

0.0

0.1

0.2

T ime

T
h

e
ta

3002001000
- 2

- 1

0

1

2

3

T ime

A
n

g
u

la
r

v
e

lo
c

it
y

Fig. 1.13. The behaviour of the pole and cart using a controller with a
cost on the action

most useful of the three. Using a BOXES learning agent that places a
cost on action magnitude, we found learning times were not significantly
effected. The resulting controller, however, was far more economical with
its outputs, resulting in a controller which produced a output only when
really necessary. Unfortunately, no systematic way of choosing the cost for
each action has yet been found, but our results do show that this technique
is worth pursuing.

Bibliography

1. Anderson, C. W. (1987). Strategy Learning with Multilayer Connec-
tionist Representations. In P. Langley (Eds.), Proceedings of the Fourth

International Workshop on Machine Learning. (pp. 103–114). Los Al-
tos: Morgan Kaufmann.

2. Michie, D. and Chambers, R. A. (1968). Boxes: An Experiment in
Adaptive Control. In E. Dale and D. Michie (Eds.), Machine Intelli-

gence 2. Edinburgh: Oliver and Boyd.

3. Quinlan, J. R. (1986). The Effect of Noise on Concept Learning. In R.S.
Michalski, J.G. Carbonell and T.M. Mitchell (Eds.), Machine Learn-

ing: An Artificial Intelligence Approach, Vol. 2. Los Altos: Morgan
Kaufmann Publishers.

Michael McGarity, Claude Sammut and David Clements 23

4. Sammut, C. A. (1994). Recent Progress with BOXES. In K. Furakawa,
S. Muggleton and D. Michie (Eds.), Machine Intelligence 13. Oxford:
The Clarendon Press, OUP.

5. Sammut, C. and Cribb, J. (1990). Is Learning Rate a Good Perfor-
mance Criterion of Learning? In B. W. Porter and R. J. Mooney (Eds),
Proceedings of the Seventh International Machine Learning Confer-

ence. (pp. 170–178). San Mateo, CA: Morgan Kaufmann.

6. Roberts, W.L. (1972). An approximate Theory of Temper Rolling,
Iron and Steel Engineer YearBook, pp 530–542.

