Using Inverse Resolution to Learn Relations

from Experiments

David Hume

Claude Sammut'

School of Computer Science and Engineering
University of New South Wales
PO Box 1, Kensington NSW
Australia 2033

ABSTRACT

We are concerned with learning relations in a reactive environment. A
learning agent observes sequences of actions that may change the prop-
erties or relationships of objects in the world. The observed sequence is
then used to form a theory which can be generalised and tested by imi-
tation. That is, the learner attempts to perform its own sequence of ac-
tions. If the test completes as expected then the generalisation is ac-
cepted. However, if it fails then a regeneralisation occurs. That is, further
generalisations are found to explain the difference between expectation
and reality.

Inverse Resolution is the primary generalisation mechanism. How-
ever, learning by experimentation in a reactive environment causes diffi-
culties that inverse resolution alone cannot handle. We describe the addi-
tions required to the theory that enable us to deal with ‘surprise” in an
experiment, i.e. learning from unexpected results. New inverse resolu-
tion operations are used to allow us to generalise from partial matches
between our theory and the world, thus enabling us to explain what

went wrong with a theory.

! Address all correspondence to Claude Sammut (email: claude@spectrum.cs.unsw.oz.au)

-1-



The Problem

We are concerned with the problem of an intelligent agent learning relations
by interacting with its environment. We will claim that a number of problems
arise in this kind of domain that do not arise in ‘batch’ learning where all the
training data are available at once. Therefore, modifications to existing rela-
tional learning theories are required.

We describe a program called CAP that uses a weakly directed learning
model to explore its environment. The representation language used is first or-
der horn-clause logic. Being a general purpose representation language, we are
able to insert CAP into a variety of different kinds of environments ranging
from robot worlds to the worlds of numbers and lists. The induction mecha-
nism used by CAP is based on inverse resolution (Muggleton, 1988; Muggleton
and Buntine, 1988) and on an earlier program, MARVIN (Sammut, 1981; Sammut
and Banerji, 1986).

If learning in a reactive environment were totally undirected then the intel-
ligent agent could perform an almost infinite variety of experiments to try to
deduce the structure of the world from their outcomes. This could be time con-
suming, so to provide some constraints on exploration, learning is only initi-
ated when another agent, presumed to be knowledgeable, performs some se-
quence of actions.

One way of characterising the motivation for CAP’s learning algorithm is to
think of it as trying to produce a theory that will enable it to recognise each se-
quence of actions it sees. A naive way of accomplishing this is to simply store
all observed sequences. Obviously this is wasteful of space and the likelihood
of recognising a new action sequence is low since only a sequence identical to
one stored could be recognised. So CAP tries to generalise from its observa-
tions. Thus, having created an initial theory we proceed to test it and then gen-
eralise it.

Testing a theory is relatively straightforward. A theory contains actions and
the world states expected to be derived from those actions. Thus, if the pro-
gram attempts to perform those actions and the resulting state is not consistent
with the final state described in the theory then the theory has been disproved.
When such a failure occurs, CAP attempts to generalise the theory to account
for the world as it is rather than as it was originally expected to be. Thus, it can
learn from its mistakes. We will refer to this process as theory adjustment. The-

ory adjustment gives rise to unplanned generalisations, so called because they

-2-



are done in order to correct a theory that failed in an unforeseen way. Planned
generalisations occur after a theory has been tested and the experiment con-
cludes successfully. Although not conclusive, this encourages CAP to accept the
theory and generalise it further.

The description of one state of the world is extremely complex in anything
other than a toy example. The larger the description, the more ways there are
to generalise it. A radical generalisation would attempt to change many terms
in the theory. Thus, if a failure occurred, it would be very difficult to isolate the
cause of the failure so that it could be rectified by an adjustment to the theory.
Therefore, CAP uses a very conservative form of generalisation. The program
can be said to escalate by stages to attempt progressively more complex gen-
eralisations. CAP terminates when it can perform no generalisations on any of

its theories such that the theories remain consistent with the world.

Constructing Theories

Suppose another agent in the world has constructed an arch. CAP would try to
construct a theory that describes the preconditions and post-conditions of each
action in the construction sequence. Sequences are represented by expressions
in first order logic that indicate the states of objects in discrete time instants and

the actions that transform one state into another. We represent the sequence

§ A2, —m g

Literals in the representation language are annotated with time stamps. Thus

as follows:

we could state that P is true at time t with the expression: P at t. We can also
state that an action has certain duration from a start time to a finish time: A dur-
ing Start/Finish.

As an example, suppose a world contains a tap from which water may be
obtained and a collection of cups and bowls which can contain water and cylin-
ders which cannot. Two types of actions are possible: pouring water from the
tap into any of the objects and pouring from one object into another. A state in
this world is illustrated in Figure 1.

The description of the sequence for pouring water from cup A into cup B is:

cup(a) at0 cup(a) at 1

cup(b) at0 pour(a, b) during 0/1 cup(b) at 1
contains_liquid(a) at 0 ~contains_liquid(a) at 1
~contains_liquid(b) at 0 contains_liquid(b) at 1



iy

go00C

cup(A) contains-liquid(A)
cup(B) ~contains-liquid(B)
cylinder(C) ~contains-liquid(C)
cylinder(D) ~contains-liquid(D)
bowl(E) ~contains-liquid(E)

Figure 1: Water world

Notice that for simplicity we have omitted descriptions of objects C, D and E,
but they too are part of the complete sequence description.

Given a sequence of actions applied to states in the world, what sort of the-
ory can we devise? CAP behaves rather like a frog trying to catch a fly. The
frog’s attention is attracted by movement. CAP’s attention is attracted by
change. Let us take arch building as an example. During the construction proc-
ess, our attention will be focussed at different times on different objects. While
constructing the columns, we will move one block at a time onto a column.
While moving one block certain actions will be performed repeatedly. For ex-
ample, to lift a block to a certain height requires us to repeat the lifting action
for several time units before changing to a lateral movement to locate the
block over the column. These changes in operation lead us to the following

heuristics:

e Divide the original sequence into sub-sequences when the objects being af-
fected change. E.g. transfer one block to a column and then find another
block.

e Divide the sub-sequences into sub-sub-sequences when actions on the
same objects change. E.g. perform a sequence of lifting actions on one
block and then switch to lateral movement of the same block.

In our water world example, CAP transforms the observation into the follow-

ing initial theory:



transfer(Source, Destination) during Initial/Final :-
cup(Source) at Initial,
cup(Destination) at Initial,
contains_liquid(Source) at Initial,
~contains_liquid(Destination) at Initial,
pour(Source, Destination) during Initial/Final,
cup(Source) at Final,
cup(Destination) at Final,
~contains_liquid(Source) at Final,
contains_liquid(Destination) at Final.

where ‘transfer’” would actually be an arbitrary symbol invented by the pro-
gram to uniquely identify this concept and all of the object names have been
turned into variables. There are other objects in the world that are not relevant
to this example but which are still present. Predicates involving the irrelevant
objects are trimmed out. A more detailed description of the procedure for
transforming observations into theories is outside the scope of this paper but is
described elsewhere (Hume, 1991; Hume and Sammut, 1991).

As we mentioned previously, CAP uses a very conservative method of gen-
eralising its theories. Since the representation language is horn-clause logic, we
use inverse resolution to generalise clauses. The main generalisation operators
are absorption and intra-construction with some modifications necessary for op-
eration in the reactive environment. Absorption generalises expressions using
only background knowledge while intra-construction is able to invent new
terms in the description language, thus expanding its ability to describe novel
situations. Details of these operations are given by Hume (1991) and the origi-
nal theory behind them is described by Muggleton and Buntine (1988). In this
paper we will describe how these operations must be extended in order to be
useful in reactive learning.

Each theory is assigned a generalisation level. Beginning at the lowest level,
CAP performs experiments to test the theory in its current state and then pro-
ceeds to more and more general theories as long as they are consistent with

the world. The generalisation levels are described below.

Level 1 At this level we simply try to repeat the example sequence. In fact
this is testing a generalisation since, when the observed sequence be-
came the seed for the initial theory, constants were replaced by vari-
ables, irrelevant terms were removed and recursive expressions

were introduced to replace sequences where possible.

Level 2 Here we try to generalise the primitive action predicates (e.g. move,

-5-



pickup, etc.). There are two internal levels of generalisation. First we
attempt absorption, i.e. trying to use concept we already know about

and then we try intra-construction, i.e. inventing new concepts.

Level 3 At the next level we attempt to generalise sub-sub-sequences, i.e. se-
quences of the same action on the same objects. Again there are two

internal levels of generalisation: absorption and intra-construction.

Level 4 At the highest level we attempt to generalise sub-sequences, i.e. se-
quences of different action on the same objects. The same two inter-
nal levels of generalisation exists here.

Unplanned generalisations also go through a number of levels similar to those

described above.

Inverse Resolution and Experiments

The method of inverse resolution searches for a theory, in horn-clause logic,
from which we could derive the examples in the training data. Several different
operations are available for rewriting the example descriptions as more gen-
eral expressions, thus providing candidate theories. Let us examine how this
would work in the case of CAP.

We have already briefly seen how an initial theory is constructed from an
observation. In a batch learning system, this theory would be checked against
an unseen test set. However, in interactive learning, no such test data exists, so
the program must create its own tests. We will demonstrate this procedure
with several examples which will also indicate how generalisation is affected by

experimentation.

Example 1

Suppose we initially wish to merely repeat an experiment as in the first level of
generalisation. The theory is M U W where M is the set of stored concepts and
W is the set of predicates defining the current state of the world. Suppose M is:

fill_from_tap(Container) during Start/Finish :—
cup(Container) at Start,
~contains_liquid(Container) at Start,
tap_on(Container) during Start/Finish,
cup(Container) at Finish,
contains_liquid(Container) at Finish.

-6-



and Wis:
cup(a) at 5,

~contains_Liquid(a) at 5.

where 5 is an arbitrary time stamp. To test the theory we must perform an ex-
periment, starting at the current time, with the current state of the world. Thus
we wish to test fill_from_tap(X) during 5/End. Initially the test can proceed as an or-
dinary resolution proof as illustrated in Figure 2. Note however, that an action
does not exist in the world state, so part of the proof must be the execution of
an action what one is encountered, e.g. tap_on. Execution of an action results in
new state information that allows the proof to proceed. In this case, the proof
was successful, so the theory is given some support and further generalisations
can be attempted. However, the most interesting cases arise when the proof
cannot be completed. This suggests that the current theory is incorrect since it

could not predict the results of the experiment.

fill_from_tap(Container) during Start/Finish :—
cup(Container) at Start,
~contains_liquid(Container) at Start,
tap_on(Container) during Start/Finish,
cup(Container) at Finish,

contains_liquid(Container) at Finish. . i
-—fill_from_tap(X) during 5/End

{Start/5, Finish/End},

— cup(X) at 5,
~contains_liquid(X) at 5,
tap_on(X) during 5/End,
cup(X) at End,
contains_liquid(X) at End.

cup(a) at 5

~contains_liquid(a) at 5 '~ ~contains_liquid(X) at 5,

tap_on(X) during 5/End,
cup(a) at End,
contains_liquid(a) at End.
tap_on(a) during 5/6
— tap_on(X) during 5/End,
cup(a) at End,
contains_liquid(a) at End.

cup(a) at 6
— cup(a) at 6,
contains_liquid(a) at 6.

contains_liquid(a) at 6.
:— contains_liquid(a) at 6.

Figure 2: Proof tree for experiment

-7-



Example 2

Let us look at a further example to see how a failure in prediction can lead to
the creation of new concepts. This time we wish to pour water from cup A in
to cup B but B already contains water. Recall that the concept for transferring
water from source to destination is:

transfer(Source, Destination) during Initial/Final :-
cup(Source) at Initial,
cup(Destination) at Initial,
contains_liquid(Source) at Initial,
~contains_liquid(Destination) at Initial,
pour(Source, Destination) during Initial/Final,
cup(Source) at Final,
cup(Destination) at Final,
~contains_liquid(Source) at Final,
contains_liquid(Destination) at Final

If the state of the world contains the following:

cup(a) at5

cup(b) at 5

contains_liquid(a) at 5

contains_liquid(b) at 5
An attempt a testing ‘transfer’ will fail because the destination does not satisfy
the condition that it should be empty. We could abandon the test or else try a
generalisation to force it to proceed. Let us compare the world as we would

like it to be with what it is:

cup(a) ats cup(a) at5
cup(b) at 5 cup(b) at 5
contains_liquid(a) at 5 contains_liquid(a) at 5
~contains_liquid(b) at 5 contains_liquid(b) at 5

Taking the difference, we construct a new concept:

may_contain_liquid(X) :— contains_liquid(X) at T
may_contain_liquid(X) :— ~contains_liquid(X) at T

We may now proceed with the experiment. Since CAP’s goal is to ensure that
the final state of the plan is achieved, pouring into an already full container is
perfectly acceptable since it will contain water at the end. This is an example of
the use of inverse resolution’s W-operator for constructive induction. Given
the two clauses at the base of the W, we attempt to construct clauses that could
derive the initial clauses. This is illustrated in Figure 3.

Figure 4 puts this W-construction in the context of the attempt to check the
initial transfer concept. Recall that to test a concept, we begin a proof. At some
point we may discover that the proof cannot proceed and it is then necessary

to see if we can generalise the concept. This leads to a digression in the proof.

-8-



transfer(Source, Destination) during Initial/Final :-
cup(Source) at Initial,
cup(Destination) at Initial,
contains_liquid(Source) at Initial,
may_contain_liquid(Destination) at Initial,
pour(Source, Destination) during Initial/Final,
cup(Source) at Final,
cup(Destination) at Final,
~contains_liquid(Source) at Final,

may_contain_liquid(X) :— ~contains_liquid(X) at T contains_liquid(Destination) at Final may_contain_liquid(X) :— contains_liquid(X) at T

transfer(a, b during 5/Final :-
cup(a) at Initial,
cup(b at Initial,
contains_liquid(a) at 5,
contains_liquid(b at 5,
pour(a, b) during 5/Final,
cup(a) at Final,
cup(b) at Final,
~contains_liquid(a) at Final,
contains_liquid(b) at Final

transfer(Source, Destination) during Initial/Final :-
cup(Source) at Initial,
cup(Destination) at Initial,
contains_liquid(Source) at Initial,
~contains_liquid(Destination) at Initial,
pour(Source, Destination) during Initial/Final,
cup(Source) at Final,
cup(Destination) at Final,
~contains_liquid(Source) at Final,
contains_liquid(Destination) at Final

Figure 3: W-operator constructs new concepts

Figure 4 shows an attempt to use the concept, C, to complete a proof. In the
previous example, this was ‘transfer’. As in the example, we use the W opera-
tor to construct a generalisation that will allow us to produce a clause that can
be used in the proof. This results in C’ (e.g. a clause allowing the destination
container to be full). A side effect of this process is to produce a more general
clause, G and two auxiliary clauses, A and B.

Perhaps the strongest constraint that learning in a reactive environment
imposes is that the generalisations and experiments possible are dictated by
the environment. In this sense, CAP is opportunistic in its learning. It cannot
necessarily plan an ‘optimal” search for a theory. Instead, inverse resolution
operations are triggered by the current state of the world, so CAP must make
use of whatever information comes to hand. This is well illustrated in our final

example.

Figure 4: Unplanned generalisation during experimentation

-9-



0 @

Figure 5: This state causes simultaneous generalisations.

Example 3

Figure 5 represents that state of the world after some experimentation has al-
ready taken place and the cups have been removed. For any further experi-
mentation to take place, CAP must make two new assumptions: that the source
of the transfer need not be a cup and the destination also need not be a cup.
Thus two simultaneous generalisations are forced upon the system. While it is
not good scientific method to test two hypotheses at once, the hope is that as a
result of the experiment, the world will have changed in such a way as to en-
able further, conservative generalisation to continue.

There are many different ways in which we can use partial matches be-
tween the world and our hypotheses to drive generalisations. In this paper we
do not have sufficient space to describe all the permutations, but the reader is
referred to Hume (1991) for a complete account. Hume also describes a variety

of experiments with CAP in different domains.

Conclusion
The intent of this paper was to demonstrate that incremental learning by inter-
action with an external world poses problems not encountered in batch learn-
ing of relations. Because the world dictates what generalisations can be per-
formed and tested, learning is necessarily opportunistic. Previous relational
learning systems (Muggleton and Buntine, 1988) have used a complexity heu-
ristic for guiding the selection of induction operations. For the problems we
have described, such heuristics are not available. Instead, we must focus on
how to use the current state of the world to maximise information gain during
an experiment.

Another problem, not addressed here, is how the program should deal
with large quantities of irrelevant information. Spatial domains often have

many objects that are ‘by-standers’ to the main events. Despite their non-par-

-10 -



ticipation in actions, relationships between them and the objects directly ef-
fected by actions do change. How should irrelevant relations be filtered out?
Despite these difficulties we have found that the horn-clause representation
has been extremely useful for a number of reasons. Because concepts can be
treated as logic program they can be executed as procedures, this making
them easy to test. This representation also makes it possible to use inverse
resolution as the generalisation method. This provides us with the most gen-
eral means of discovering relations that we know of and can be extended rela-
tively easily to deal with temporal relations and to the partial matching neces-

sary for comparing a hypothesis with ‘reality’.

References

Hume, D. (1991). Induction of Procedures in Simulated Worlds. Ph.D. Thesis, Uni-
versity of New South Wales.

Hume, D. and Sammut, C. (1991). “Applying Inductive Logic Programming in
Reactive Environments” in Proceedings of the Inductive Logic Programming
Workshop, Porto, Portugal.

Muggleton, S. (1988). “A Strategy for Constructing New Predicates in First Or-
der Logic” in Proceedings of the Third European Working Session on Learning,
D. Sleeman (ed). Glasgow: Pitman.

Muggleton, S. and Buntine, W. (1988). “Machine Invention of First-order Predi-
cates by Inverting Resolution” in Proceedings of the Fifth International Ma-
chine Learning Workshop, R.S. Michalski, J.G. Carbonell, T.M. Mitchell (eds).
Ann Arbor: Morgan-Kaufmann.

Sammut, C. (1981). Learning Concepts by Performing Experiments, Ph.D. Thesis,
University of New South Wales.

Sammut, C. and Banerji, R.B. (1986). “Learning Concepts by Asking Questions”
in Machine Learning: An Artificial Intelligence Approach (Vol. 2), R.S. Michal-
ski, J.G. Carbonell, T.M. Mitchell (eds). Morgan-Kaufmann.

-11 -



