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Abstract

Marvin is a program which is capableof learning conceptsfrom many different
environments.It achievesthis by usinga ßexibledescriptionlanguagebasedon Þrst
orderpredicatelogic with quantiÞers.Oncea concepthasbeenlearnt,Marvin treats
the conceptdescriptionas a programwhich can be executedto producean output.
Thus the learning system can also be viewed as an automatic program synthesizer. 

The ability to treat a concept as a program permits the learning system to
constructobjectsto show a humantrainer.Given an initial exampleby the trainer,
Marvin createsa conceptintendedto describethe classof objectscontaining the
example.Thevalidity of thedescriptionis testedwhenMarvin constructsan instance
of theconceptto showthe trainer.If he indicatesthat theexampleconstructedby the
programbelongsto the conceptwhich is to be learnt,calledthe 'target',thenMarvin
attemptsto generalizethedescriptionof its hypothesizedconcept.If theexampledoes
not belongto the target then the descriptionmust be mademore speciÞcso that a
correctexamplecanbe constructed.This processis repeateduntil the descriptionof
the concept cannot be generalized without producing unacceptable examples. 

Marvin hasan associativememorywhich enablesit to matchthe descriptionsof
objectsit is shownwith conceptsthat it hasstoredin memory.Complexconceptsare
learntby Þrstlearningthedescriptionsof simpleconceptswhich provideMarvin with
the knowledge necessary to learn the more complex ones. 

A conceptmay representa non-deterministicprogram,that is, more than one
outputmay result from the sameinput. Not all the possibleoutputsof a conceptare
acceptableastraining instances.Thus,Marvin musthavean 'instanceselector'which
is capable is choosing the best objects to show the trainer. 

Marvin has beentestedon a numberof learning tasks.Extensiveperformance
measurementsweremadeduringthesesessionswith theprogram.Theresultsindicate
that Marvin is capable of learning complex concepts quite quickly. 
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Generalisations and Experiments

Marvin is a youngchild playingwith sometoy blocksin his nursery.He seeshis motherbuilding ob-
jectswith theblocks.Trying to imitate theadult,Marvin makesanattemptat building somethinghim-
self, say,a stack.The Þrst try fails becausehe hasdonesomethingwrong.But eventually,he will be
successful as he learns from his mistakes. 

By playingwith theblocks,Marvin learnsabouttheattributesof blockswhich enablehim to build
stacks.He learnsto form a categoryof objectscalled'stacks',sothenexttime hewantsto build a stack,
hewill not needto makethesamemistakeshedid theÞrsttime.Categoriesformedthis way arecalled
concepts. 

SciencehasformalizedMarvin's trial-and-errormethodof learninginto a processcalled'TheSci-
entiÞc Method'. Using this method,a scientistobservesa natural phenomenonand forms a theory
which is an attemptto explain the observedevent.In formulating the theory, the scientistmay have
drawnon his pastexperienceandknowledgeof theworld. Oncethetheoryhasbeenformed,it mustbe
testedby performinga carefullydesignedexperiment.Its outcomemayconÞrmthehypothesisor dis-
prove it. If disproved, the scientist must modify his theory and develop a new experiment to test it. 

This thesisdescribesa programwhich usesthis approachto learningconcepts.Havingseena par-
ticular instanceof a concept,the programdevelopsa hypothesisfor its descriptionby trying to relate
theeventsit observesto conceptsthat it haslearnedbeforeandarestoredin its memory.A hypothesis
is testedby performingan experiment.That is, the hypothesisis usedto constructwhat the program
thinks is a new instanceof the concept.If the object really is a correctinstancethenthe programre-
quiressomefeedbackfrom theenvironmentto tell it so. In thepresentsystem,a humantrainersuper-
visestheprogramandanswersyesor no to theprogram'sattempt.This is somethinglike playingtwen-
ty questions with a computer. 

1.1  In the Nursery

As an introductionto theway in which the learningsystemworks, let us returnto Marvin andhis toy
blocks.Sincehedoesnot yet havea goodunderstandingof how physicalobjectsinteract,whenhetries
to imitatehis mother,who built a stack,hemaymakesomemistakesbeforehesucceeds.For example,
hemaynot understandthat thebaseobjectmustbeßat in orderto supportanotherblock on top. Let's
follow Marvin's learning sequence: 

Suppose Marvin sees a red ball on top of a green cube.

Red

Green

At his young age, Marvin may not realize it, but to understandthe scene,he must have some
descriptionin mind of what on top of means.Usually, sucha descriptionconsistsof specifyingthe
values of certain attributes, or properties of the objects. A description of this scene may be:



The scene consists of a top object supported by a bottom object.
The shape of the top is a sphere.
The colour of the top is red.
The shape of the bottom is a box.
The colour of the bottom is green.

The problemfacedby Marvin is: What doesthis instanceof on top of havein commonwith other
instances?Oncehe knows this, he will havesometest which will enablehim to form a categoryof
scenes which can be labelled on top of. 

In orderto discoversomethingabouttheobjectsheis seeing,Marvin maytry to associateelements
of the scenewith conceptshe knowsalready.Let's assumethat he knowsaboutthe different colours
and shapes that objects can have. 

The secondstatementin the descriptionaboverefersto the shapeof the top object.SinceMarvin
knowsaboutdifferentshapes,hecantry his Þrstexperiment.'If I changetheshapeof thetop object,is
thenewscenestill aninstanceof on top of?'Marvin'snewhypothesisfor thedescriptionof theconcept
is: 

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.
The colour of the top is red.
The shape of the bottom is a box.
The colour of the bottom is green.

Now Marvin mustÞndout if his generalizationis correct.That is, canthe top really be any shapeat
all? He can Þnd out by trying to place, say, a red pyramid, on top of a green block.

Red

Green

In responseto this action,Marvin's mothermay smile and conÞrmthat he hasdonethe right thing.
Flushed with success,Marvin proceedsto generalizemore of the description.Now he tries to
generalize the colour of the top object:

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.
The colour of the top is any colour.
The shape of the bottom is a box.
The colour of the bottom is green.

This is tested by constructing the object:
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Green

Green

All the possibilitiesfor the top object have beenexhausted,so the bottom can be examinednext.
Marvin noticesthatthetop of thebottomobjectis ßat,soit is reasonableto ask,will anyßatobjectdo?
A new hypothesis for the concept description is formed,

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.
The colour of the top is any colour.
The shape of the bottom is a any ßat shape.
The colour of the bottom is green.

This can be tested by replacing the block on the bottom with a table.

Green

Green

In the same way, the colour of the bottom is generalized by allowing it to be any colour. 

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.
The colour of the top is any colour.
The shape of the bottom is any ßat shape.
The colour of the bottom is any colour.

This change is tested by making the table on the bottom green. 
Now Marvin has generalizedall the values of the attributesof the objects. Is it possibleto

generalizeevenmore?It is reasonableto ask,'if thebottomcanbeanyßatobject,canit beanyshape
at all?'

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.
The colour of the top is any colour.
The shape of the bottom is any shape.
The colour of the bottom is any colour.
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The object he tries to construct should have a base which does not have a ßat top.

Green

Green

Marvin hasgonetoo far in generalizingtheshapeof thebottomobject,sincethepyramidfalls off the
ball. He must backtrackto his previouscorrect hypothesis.Since there is nothing left to try, the
generalizations end here. Marvin's Þnal concept of on top of is:

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.
The colour of the top is any colour.
The shape of the bottom is any ßat shape.
The colour of the bottom is any colour.

This exampleis not entirely realisticbecauseMarvin wasmoresystematicthana youngchild would
normallybe.Whenhewantedto makea generalization,Marvin wasvery conservative,changingonly
onepropertyat a time. Usinga conservativestrategy,if a generalizationfails, it is clearthat the range
of valuesof the propertycannotbe enlarged.However,if more than one property is changed,then
Marvin would not know which property value had been over-generalized. 

The 'ConservativeFocusingStrategy'wasÞrstdescribedby Bruneret al (1956)aspartof a study
of humanconceptformation. Since then this work has inspired a numberof computermodelsof
knowledge acquisition.

1.2  A Computer Program that Performs Experiments 

As well as being the nameof a clever child, Marvin is the nameof a computerprogramwhich is
capable of learning concepts by performing experiments in much the same way as its namesake. 

The program'stask is to createa descriptionof a conceptbasedon an exampleshownby the
humantrainer.Like the child, the programstartswith a very speciÞcdescriptionwhich includesonly
the training instance.It generalizesthis descriptionby usingknowledgethat it haslearnedbefore,just
as Marvin used his knowledge of colours and shapes. 

The learningprocesscan be characterizedas follows: A conceptdescriptiondescribesa set of
objects.The initial descriptionspeciÞesa setconsistingof only oneobject, the training instance.By
generalizingtheconcept,we describea newsetwhich includesnewobjectsaswell astheobjectsin the
old set. That is, we make the category of objects broader.

Figure1.1 illustratesthis process.The target is theconceptwhich thetrainerwantstheprogramto
learn.Learningmeansexpandingthe initial setuntil it containsall theobjectsin the target.But aswe
saw when Marvin tried to placea pyramid on top of a sphere,it is possibleto createa description
which includesunwantedobjects.This kind of generalizationis said to be inconsistent. In order to
discover if a generalizationis inconsistent,the program performs an experiment. Like Marvin, it
constructs on object to show the trainer. 
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Universe Universe

Target Target

Trial Trial

Consistent
Inconsistent

(a) (b)
 

Figure 1.1. Generalizing concepts

Somecaremustbe takenwhenchoosingan object to show.RememberwhenMarvin wantedto
test that the bottomcould be any shape?He tried to constructan objectwhosebasewas not ßat. In
otherwords,if an incorrectgeneralizationis made,theobjectshownmustbelongto theshadedregion
of Figure1.1b,that is, containedin thehypothesisbut not in thetarget.Findingsuchanobjectis quite
a difÞcult task and will be dealt with fully in this thesis. 

When an inconsistentgeneralizationis made,the programtries to modify its descriptionof the
conceptsothat it containsfewerobjectsthanthehypothesisthatfailed. If thenewdescriptionturnsout
to beconsistentthentheprogramcantry to generalizeit. Sowe canthink of the learningprocedureas
oscillating around the correct concept description, coming closer and closer until the target is reached.

1.3  Concept Description Languages

JustasMarvin, the child, hassomerepresentationof a scenein his mind, Marvin, the program,must
also have some means of representing concepts. 

The descriptionsin English of pyramids and blocks were 'structural' representationsof the
observedevent.Eachobjectwasdescribedby specifyingthe valuesof propertiessuchascolour and
shapeor whetheroneobjectwassupportedby another.Thesevaluescanbeconsideredastheresultsof
measurementsperformedby the senses.The eye can detectdifferencesin hue, Þnd boundariesand
reportpositionalinformation.In thecaseof a computer,we mustassumethatit hascamerasandrange-
Þnders attached to give it this information. 

One of the problems encounteredin pattern recognition is trying to decide what sensory
informationis sufÞcientto be ableto distinguishobjectsin the universe.If too few measurementsare
made,perhapswe will not haveenoughinformation.On theotherhand,if too manymeasurementsare
made, there is the possibility of being swamped by too much information. 

If a largenumberof measurementsaremade,it maybepossibleto detectpatternsin thedata.By
attachinga nameto thatpattern,we maysimplify thedescriptionof a concept.For example,if Marvin
hadnot knownthatblocksandtablesareßatobjects,his descriptionof on top of mayhaveincludeda
statementsuchas'Thebottomis a block or thebottomis a tableor thebottomis a ...' Insteadthesame
idea can be simply expressed as 'The bottom is ßat'. 

A recognitionsystemthat can uselearnedconceptsin this way is said to be capableof growth
(Banerji, 1977), since the descriptive power of the system increases as it learns more concepts. 

Oneof the main designgoalsof the program,Marvin, wasthat it shouldbe capableof growth. It
usesa languagebasedon Þrstorderpredicatelogic to describeconcepts.Whena conceptsuchasflat
hasbeenlearned,its descriptionis rememberedso that it may be usedin the descriptionsof other
concepts.

5



1.4  Concept Descriptions and Programming Languages

Whena personis askedto write a programfor a computer,heoftentold by his client: 'I wantto getthis
kind of informationout of theprogram,given thesedataasinput.' TheÞrstthing that theprogrammer
mustdo is createsomekind of high-leveldescriptionof what theprogramis supposedto do. He must
understand, form a concept, of the relationship between the input data and the output. 

In fact, when we write programsin Prolog (Roussel,1972), we are writing the relationship
betweeninput andoutput in the form of a statementin Þrstorderpredicatelogic. A Prologprogram
consistsof a setof clausesof theform P :- Q, R, S.This is readas'P is trueif Q andR andS aretrue.'
For example, the program to append two lists producing a third, in Prolog is:

append([], X, X).

append([A | B], X, [A | B1]) :- append(B, X, B1).

This statesthat theresultof appendinganylist, X, to theemptylist is X itself. Theresultof appending
X to a list whoseheadis A andwhosetail is B is the list whoseheadis alsoA andwhosetail is B1,
obtained by appending B and X. 

This programis a groupof predicateswhich describethe relationshipbetweenthe input lists and
the output.Wheninterpretedby a theoremprover,the outputcanactuallybe constructedif the input
lists are given. So a description language can also be a programming language. 

In the same way, Marvin's concept description languagecan be considereda programming
language.Whena conceptis learned,Marvin is not only ableto recognizeanobjectwhich belongsto
that concept.It can also executethe descriptionto constructan instanceof the concept.This is the
method used to construct training examples to show the trainer during learning. 

Theprogramis not limited to learningsimpleconceptssuchason top of. It canlearnto sort lists,
Þndthemaximumnumberin a list or parsesentencesof a simplecontext-freegrammar.Althoughnot
designedasanautomaticprogrammingsystem,Marvin is capableof generatingprogramsthatcompare
with thoseof specialpurposesystemswhich useinput/outputpairsto describetheprogram.Figure1.2
shows how Marvin may be used to synthesize programs.

Input

I/O Pair Learning Prover/Interpreter

Output  
Figure 1.2. Schematic diagram of system

1.5  Objectives of the Research

In this section,we will list theobjectivesof the researchto bedescribed.It wasintendedto developa
concept learning program which has the following characteristics.

  
¥ Theprogramshouldbecapableof learningconceptsfrom manydifferentdomains.It would achieve

this by using a ßexible description language based on Þrst order predicate logic with quantiÞers. 
¥ Oncea concepthasbeenlearned,the learningsystemshouldbeableto treattheconceptdescription

as a programand executeit. Thus the learningprogrammay also be an automaticprogramming
system. 

¥ Theability to treatconceptsasprogramspermitsthe learningsystemto constructobjectsto showto
the trainer.The systemhasgreatercontrol over its searchfor a suitableconceptdescriptionsinceit
canproposeits own trainingexamples,independentlyof the trainer.This alsorelievesthe trainerof
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additional work and providesa more convenientand understandableway of interactingwith the
program. 

¥ The learningalgorithmshouldbeableto useits pastexperience(i.e. conceptsit haslearnedbefore)
to guidethe formationof newconcepts.Complexconceptsmaybe learnedin stagesbeginningwith
easy ones and building up to the more difÞcult concepts. 

Marvin is signiÞcantin a numberof respects.To my knowledge,no other generalpurposelearning
systemis capableof generatingits own training instance.However,somespecialpurposelearning
programshavebeendevised,for example,Popplestone's(1967) noughts-and-crossesprogram.Some
natural languageacquisition systemsalso learn by trying to 'say' a meaningful sentence.Special
purposesystemshavesomein-built model,evenif elementary,to usein constructingexamples.None
of these is as ßexible as Marvin. 

It will be seenthat Marvin can learn complex conceptswhosedescriptionsinvolve existential
quantiÞers.The descriptionsmay be disjunctiveand recursive.This enablesit to learnprogramming
concepts and simple language concepts. 

Marvin's learningalgorithmcanusetheconceptsalreadyknownto guidethesearchfor the target
conceptdescription.This was also a goal of Cohen'sCONFUCIUS (Cohen, 1978). Marvin is the
successor of CONFUCIUS and carries this aspect of the research further. 

1.6  Structure of the Thesis

Chapter2 providesanintroductionto currentresearchin conceptlearning.It discussesa numberof the
problems encountered and how various researchers have attempted to solve them. 

Chapter3 givesanoverviewof theentiresystem.It containsa formal descriptionof Marvin'slanguage
and the algorithms it uses. 

Chapter 4 contains an extended example of Marvin at work on a difÞcult learning task. 

Chapter 5 describes the implementation of the program in detail. 

Chapter 6 describes the results obtained from performance measurements on the program. 

Chapter 7 suggests ways of improving Marvin and points out directions for future research. 

Chapter 8 is the conclusion. 
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2

Introduction to Concept Learning

This chaptercontainsan informal discussionof somecurrentresearchin conceptlearning.It is not
intendedto bea comparativestudy,sinceseveralsuchworksalreadyexist (Banerji,1977;Banerjiand
Mitchell, 1980;Dietterich andMichalski, 1977;Smith,Mitchell, ChestekandBuchanan,1977).There
area numberof programsin existencetodaywhich arebroadlyclassedas'conceptlearningprograms'.
TherearesigniÞcantdifferencesamongthemsincethey wereeachdesignedto meetdifferent goals.
We will examine the decisions which a designer must make in attempting to achieve those goals. 

First let us deÞne, in general, the task which a concept learning program is to perform. 

2.1  The Problem

Supposethereis a universeof objects.The objectsare as yet unspeciÞed,but they may be physical
objectssuchas tablesandchairsor moreabstractoneslike numbersand lists. Whennamessuchas
'table'areusedto referto anobject,thenthatobjectis classiÞedasbelongingto a speciÞcsubsetof the
universe.In objectrecognition,an observerappliesa previouslyestablishedrule in orderto decideto
which classan objectbelongs.That is, the observerhassomemethodfor determiningwhat is a table
and what is not. 

The problemof conceptlearningis: Given samplesof objectsof known classmembership,the
observer must develop the classifying rule. 

Thepracticalimportanceof rule inductionhasbecomeclearin recentyearswith thedevelopment
of knowledge-basedexpert systems.Theseare programswhich have achievedexpert status in a
speciÞcdomain,suchas medicaldiagnosisor symbolic algebra.Suchprogramsare are difÞcult to
write, particularlyasthe programmerrequiresthe cooperationof a humanexpertto developthe rules
which guidetheproblemsolver.Very oftenthehumanexpertcannotdescribehis own problemsolving
process.Thusprogramswhich arecapableof learningto solveproblemshaveprovedvery valuable.
An exampleof this is Meta-DENDRAL (Buchananand Feigenbaum,1978) which is capableof
learning to interpret the results of mass-spectrograms and nuclear magnetic resonance tests. 

A more long-termgoal of this researchis to try to understandthe learningprocessin general.
Sometimesthis is linked to a studyof humanlearningabilities.Howeverevenprogramswhich arenot
restricted to a speciÞcdomain, as DENDRAL is, may be designedwithout referenceto human
behaviour. 

The classifying rules which describea concept must must have some representationin the
computer. Thus the Þrst decision which the designer must face is, how should a concept be
represented?

2.2  Choosing a Representation

The basicproperties,which the learningmachine'ssensorscanmeasure,and their inter-relationships
constitutethe language of the machine.Thereare two ways of approachinglanguagedesign.If the
learningsystemis intendedto work in a speciÞcdomainthenthechoiceof a languageto representthe
conceptsis dictatedby the typeof objectthatbelongsto thedomain.A goodexampleof this is Meta-
DENDRAL again. 

2.2.1  Special Purpose Languages

Meta-DENDRAL(BuchananandFeigenbaum,1978)wasdesignedto form rulesthatcharacterize
thebondsof moleculeswhich breakwhenthemoleculesareplacedin a massspectrometer.Molecules
are representedby graphs.The nodesof the grapharenon-hydrogenatoms.Arcs betweenthe nodes
representthe bondsbetweenthe atoms.Eachrule describesa substructurein which certainbondsare
distinguished.If the substructureoccursin a molecule,thenthe correspondingbondsarepredictedto
break in the mass spectrometer.



Node

1
2

Atom Type

C
N

Non-Hydrogen
Neighbours

(2 x _ _)
(1 x)

Hydrogen
neighbours

any number
1

Unsaturated
Electron

0
0

 

 Bonds that break: bond between atoms 1 and 2.

Figure 2.1. A Typical Meta-DENDRAL Rule

Therule shownif Figure2.1 indicatesthatwherethereis a carbonatomwith anynumberof hydrogen
atoms,attachedto a Nitrogenatomwith oneHydrogenatom,thenthebondbetweentheCarbonatom
and the Nitrogen atom will break. 

It canbeseenthat thestructureof the languagereßectsthestructureof theobjectsin thedomain.
However,if theprogramis intendedto operatein a rangeof environments,thentherecannotbesucha
direct correspondence.The languagemust be ßexible enoughto describevery different kinds of
objects.A numberof generalpurposeconceptlearningsystemshaveusedlanguagesbasedon Þrst
order predicate logic. 

2.2.2 General Purpose Languages - Predicate logic

A simplepredicateis anexpressionlike colour(top,red).Thenamesof constantssuchas'top' and'red'
areparameters. Colour(top,red)is calledaninstantiated form of thevariable form colour(X,Y) (Hayes-
Roth, 1977). X and Y are variables which may represent any constant. In an expression such as,

[X: colour(X, red)]

when X is treatedas a universallyquantiÞedvariablethen this expressiondeÞnesthe set of all red
objects. This is the description of the concept 'red object'. 
If the language allows conjunctions of predicates, say

[X: colour(X, red) !  shape(X, sphere)]

thenthesetdescribedis theintersectionof thesetdescribedby theatomicpredicatesin theexpression.
Similarly, a disjunction (logical OR) describes the union of the sets deÞned by the predicates. 

As we will see,therearemanyvariationson thepurepredicatecalculuslanguage.Thesevariations
arise from the particular emphasis of the learning system.

2.2.1.1  Parameterized Structural Representations

Hayes-Roth(1977) has developeda languagewhich is equivalentto predicatelogic, but has some
advantagesover it. Training instancesand conceptsare representedby ParameterizedStructural
Representations(PSRs).A PSRconsistsof a setof parametersanda setof relations.For example,to
describe the scenes in Figure 2.2 (Hayes-Roth and McDermott, 1978) the PSRs are,

E1: {{TRIANGLE: a, SQUARE: b, CIRCLE: c}, 
  {LARGE: a, SMALL: b, SMALL: c}, 
  {INNER: b, OUTER: a}, 
  {ABOVE: a, ABOVE: b, BELOW: c},

   {SAME-SIZE: b, SAME-SIZE: c}}  

E2: {{SQUARE: d, TRIANGLE: e, CIRCLE: f},
   {SMALL: d, LARGE: e, SMALL: f},
   {INNER: f, OUTER: e},
   {ABOVE: d, BELOW: e, BELOW: f},
   {SAME!SIZE: d, SAME!SIZE: f}}
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An expressionsuchas {INNER: b, OUTER: a} is called a case relation. It consistsof properties
INNER and OUTER and  parameters a and b. 

B
A

C

D

E

F
 

Figure 2.2. SPROUTER example

Why shouldthis methodof representationbe choseninsteadof the conventionalpredicatelogic?
Consider this example:

A

B

C

D

 
A predicate logic description of this could be:

line(a, b) !  line(b, a) !  line(c, d) !  line(d, c)

Note that someduplicationis necessarybecausethe parametersaboveare consideredto be ordered
pairseventhoughno orderingis wanted.Thatis, two predicatesarerequiredto representthesymmetry
of the objects. A PSR representation might be:

E3: {{ENDPOINT: a, ENDPOINT: b} , {ENDPOINT: c, ENDPOINT: d}}

Here the symmetry is obvious. However, this representationis still complete.Here is a second
description of two lines:

E4: {{ENDPOINT: w, ENDPOINT: x} , { ENDPOINT: x, ENDPOINT: y}}

The linessharea commonendpoint.Implicit in thesedescriptionsis theassumptionthat theendpoints
are the sameonly if they are labeledby the sameparameter.The fact that thereare four points (not
necessarily distinct) cannot be obtained from the case relations above. 

To avoidthis problemthePSR'saretransformedinto uniform PSR's.Here,distinctparametersare
used in eachcaserelation, and new relationsare addedto establishthe equivalenceof variables.
Similarly, new relationsare addedto distinguishdifferent objects.The uniform representationof E4
becomes:

 
 {{endpoint:x1, endpoint:x2},
   {endpoint:x3, endpoint:x4},
   {DP:x1, DP:x2},
   {DP:x1, DP:x3},
   {DP:x1, DP:x4},
   {SP:x2, SP:x3},
   {DP:x3, DP:x4}} 
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'x' in the Þrstdescriptionhasbeenreplacedby x2 andx3 which areput into a new relationindicating
that they arethe SameParameter.The othervariablesmustbe distinguishedasDifferent Parameters.
E3 would have a similar uniform description except that x2 and x3 would be different parameters. 

As we will seewhen we discussvariouslearningstrategies,this representationwill allow us to
discoverconceptswhich could not be found using ordinary predicatelogic. However,the language
doeshaveits disadvantages.It is not capableof growth, althoughit may be extendedto allow this.
PSR'scan only representconjunctiveconcepts,and the NOT connectiveof predicatelogic has no
equivalent here.

2.2.1.2  Relational Productions

Vere'swork is concernedwith developingformal induction algorithmsfor expressionsin predicate
calculus(Vere,1975).Originally this work wasseenascreatinga dual for deductivetheoremproving
(Plotkin, 1970).In Vere'slanguagea literal is a list of termslike (ON.X1.X2). An identiÞerpreceded
by a period is a variable. Other terms, such as, ON are constants. A product is a conjunction of literals:

(COLOUR .X1 RED) (SHAPE .X1 SPHERE)

This languageformedthebasisfor a numberof extensionswhich haveincreasedthedescriptivepower
of the system. One extension was the development of relational production. 

Relationalproductionsbear someresemblanceto STRIPStype productions(Fikes, 1972). For
example,the following productiondescribesthe changewhich takesplacewhena block, a, is moved
from on top of another block, b, to a third, c.

A

B C B

A

C

 

(clear a)
(ontable b)
(ontable c)

(on a b)
(clear c)

(on a c)
(clear b)!

 

Figure 2.3. Before and after pair

The left-mostgroupof predicatesarethecontext or invariantconditionswhich arenot changedby the
operation.(on a b) and(clearc) which aretruebeforebecomefalseafter.(on a c) and(clearb), initially
false, become true after the Þring of the rule. 
First order predicatelogic is not very well suited to describingchangeof state.However, in robot
planning,it is essentialto be able to do this easily.Relationalproductionscanextendthe descriptive
power of ordinary predicatelogic so that changesof state can be expressedin a conciseway.
Productionsystemsarealsocommonin manyknowledgebasedexpertsystems,consequently,a system
capable of learning productions can be used to build an expert's knowledge base. 

Note that the production above only describesthe way in which a block is taken from one
supportingblock to another.In orderto describetherangeof differentoperationswhich cantakeplace,
a disjunctive concept is necessary.This is representedby a setof productions,eachof which describes
one type of operation.
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(clear X)
(ontable X)
(clear Y)
(ne X Y)

(clear x)
(on X Y)
(ne X Y)

X
Y

XY

(clear X)
(on X Y)

(clear x)
(ontable X)
(clear Y)

X
Y

X Y

(clear X)
(on X Y)
(clear Z)
(ne X Z)

(clear Y)
(clear x)
(on X Z)
(ne X Z)

Y

X

Z Y Z

X

P1

P2

P3

Transformation Picture

 

Sometimesit is necessaryto specifyexceptionsto a rule.For example,analmostuniversalcriterionfor
establishingthat an animal is a bird is that it ßies. However, there are someexceptions.Bats are
mammals,but they ßy. To expressthis it is necessaryto introducelogical negation.For example,
(ßies.X) ~(bat.X) could describethe concept'bird'. Vere'sTHOTH programis capableof learning
expressions of the form,

 P ~ (N1 ~ (N2 ~ ...))

P is a productwhich representstheconcept.N1 is a productwhich describesanexceptionto P, N2 is an
exceptionto the exception,etc. The negativeproductsarecalledcounterfactuals. [Of coursethereare
some birds which do not ßy; they would go into a separate disjunct of the concept].

 
Vere'slanguagecontainsfeaturessuchasdisjunctionandnegationwhich Hayes-Roth'slanguage

doesnot have.It alsointroducesthe relationalproduction.However,someof the problemsassociated
with variable bindings in predicatelogic, which Hayes-Rothtried to solve, still occur in THOTH.
RecentlyVere hasreportedfurther work associatedwith variablesbindings(Vere, 1981).At present,
THOTH is still incapable of adding to its descriptive power by growing. 

2.2.1.3  Variable Valued Logic 

VariableValuedLogic is thenamegivenby Michalski (1973)to anaugmentedform of predicatelogic.
Oneof themainreasonsfor developingthis classof languageswasto makeconceptdescriptionsmore
readablefor humans.To achievethis, accordingto Michalski, the numberof disjunctionsshouldbe
minimized, the numberof predicatesin a conjunctionshouldalso be kept small. Recursionmust be
avoided if possible.

 
The basic elements of VL languages are called selectors. Some examples are:

[colour(box1) = white]
[length(box1) >= 2]
[weight(box1) = 2..5]
[blood-type(P1) = O, A, B]
[on-top(box1, box2)]
[weight(box1) > weight(box2)]
[type(P1).type(P2) = A, B]

Oneof the mosteffectivewaysof simplifying a descriptionis the useof the internal disjunction. The
expression2..5 representsa rangemeaningthat the weight of the box may be between2 and5 units.
Theblood-typeof personP1maybeanyof O or A or B. Thelastrule abovestatesthatbothP1andP2
may have blood-types A or B.
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VariableValuedLogic is intendedto be a generalpurposedescriptionlanguage.In order to allow a
program using VL to operate in a speciÞcdomain, the user supplies the system with domain
knowledge.This is doneby specifyingthetypeandrangeof thedescriptorsthatwill beused.Thetypes
are,

Unordered There is no structure in this domain (e.g. blood-type)

Linearly Ordered The domain is a linearly ordered set (e.g. weight)

Tree Ordered Elementsare orderedin a tree wherea superiornoderepresentsa concept
which is more general than its descendents. For example:

Plane Geometric Figure

Polygon Oval

Triangle     Rectangle     Pentagon Ellipse     Circle  

Among the other environmentspeciÞcations,the user may describe the propertiesof predicate
functions such as

"  x1, x2, x3 ([left(x1, x2)][ left(x2, x3)]   [left(x1, x3)])
which states that if x1 is left of x2 and x2 is left of x3 then x1 is left of x3. 

The ability to add domainknowledgeis one way of tailoring a generalpurposelanguageto the
requirementsof a speciÞcenvironment.This avoidsthenecessityof build anentirelynewlanguagefor
each new problem and still provides descriptors that are appropriate for describing concepts succinctly.

2.2.1.4  CODE

Banerji (1969) suggestedthat it would be possibleto createeffective descriptionsby learning the
domainknowledge.This is the approachtakenby Cohen(1978) in his program,CONFUCIUS.The
description language, called CODE, becomes more powerful as more knowledge is acquired. 

Simple expressions are of the form:
colour(X) = red

x # set1
set1 $ set2

For eachoperatorthereis alsothenegation,~, etc, enablingthe representationof exceptions.Thereis
also anotheroperator,contained-in which is true when an object is containedin a conceptthat is in
CONFUCIUS' memory. Thus,

(X, Y) contained-in connected iff  
neighbour(X) = Y and
neighbour(Y) = X

recognizes points X and Y which are connected by a line segment.

(X, Y, Z) contained-in triangle iff
(X, Y) contained-in connected and

 (Y, Z) contained-in connected and
(Z, X) contained-in connected

recognisesthe triangledescribedby theverticesX, Y andZ. Notice that triangle usedconnected in its
description.A knowledgeof trianglesrequiresa knowledgeof straightlines,asonewould expect.This
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demonstratesthe way in which CONFUCIUSlearnsto understandmore aboutits world as it learns
more concepts. In many ways this models the behaviour of humans. We develop a greater
understanding of our world by a long process of acquiring gradually more sophisticated concepts.

 
Disjunctiveconceptscanalsobeexpressedin CODE.Thelanguagealsoallowsrecursionwhich is

essential for describing abstract concepts of among other things, numbers and lists.
 

The main goal inßuencingthe designof CODE is the ability of oneconceptto refer to another;
CODE is a growing language.Eachdescriptionlanguagehasits merits and its faults. Which one is
chosendependson thedesigngoalsof the learningsystem.However,thechoiceof representationalso
profoundly affects the design of the learning strategy.

2.3  LEARNING STRATEGIES

As we demonstratedin the toy blocks example,the kind of learningwe are investigatinginvolves
generalizingthedescriptionof a particularobjectto a moregeneraldescriptionof a classof objects.In
this sectionwe will discusssomedifferent generalizationprocedures,but Þrst, we must give some
informal deÞnitions of a few frequently used terms.
 
Definitions

 
1. We will assumethe the sensorypre-processorsof our learningmachinereport the resultsof its

measurementsas predicatessuch as colour(X,red). This expressionis true when the object
representedby X hasa propertycalledcolour andthevalueof colouris red. Thereis anequivalent
representationfor sucha statementin all of the generalpurposelanguagesdescribedin the last
section.

 
2. Basic predicates may be combined with ANDs and ORs in the usual way.

 
3. If a concept,C, is describedby a logical expression,P(X), thenwe sayCrecognizes theobject,Obj

if P(Obj) is true.
 

4. A concept,C1 is more generalthananotherconceptC2 if everyobject recognizedby C2 is also
recognized by C1. 

5. In many learningalgorithms,it is necessaryto be able to match expressionsin different concept
descriptions. Suppose, for example, that we want to match

colour(box1, red) ! size(box1, big) (P1)
and

 colour(X, red) !  size(X, big) (P2)

We saythatP1 matchesP2 underthesubstitution, %= {box1/X} or P1 = P2 %. TheexpressionP2 %
is obtained by substituting box1 for every occurrence of X in P2. 

6. For conjunctive concepts (concepts with no OR operation) we can give a deÞnition of
generalization in terms of the description language. If there exists a substitution % such that

C1 & C2

thenC1 is moregeneralthanC2 (Vere,1975).For example,less(1,Y)which representsthe setof
all numbers greater than 1, is more general than

less(1, X) ! less(X, 5)

If a conjunctionis consideredasthe setof its componentliterals then,given the substitution{X/
Y}, theÞrstexpressionis a subsetof thesecond.Therearefewerconstraintson thevariablesand
so it speciÞes a larger set. 

The problemnow facedby the designeris to choosea learningstrategythat will enablea programto
developa usefulgeneralizationefÞciently.Learningalgorithmsaresometimesdividedinto two classes
according to the approach they use.
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2.3.1  Data-Driven Methods

If I showyou two examplesof thesameconceptandask'what is theconcept?'your reactionmight be
to study the examplesto seewhat they had in common.Given two expressionE1 and E2, we may
considerthat a generalizationderivedfrom them shouldcontainthe featuresthat E1 and E2 hold in
common. For example,

 
colour(X, red) !  size(X, big) ! shape(X, cube)

and
colour(Y, red) !  size(Y, small) ! shape(Y, cube)

generalizes to
colour(Z, red) ! shape(Z, cube)

Soin a sense,we areÞndingthe intersectionof setsof predicates.If therearea numberof expressions
from which we may produce a generalization then we Þnd the intersection of all of them: 

((E1 * E2) * E3) * E4) ...
'*' representsthe operationof Þnding the intersection or maximal commonsubexpressionof two
expressions. 

Finding common generalizationsisn't as easy as it may Þrst appear. To Þnd common
generalizationsof two concepts,we haveto matchpredicates.This entailsÞndingconsistentparameter
bindings betweenthe concepts.In realistic examples,it is usually possibleto Þnd more than one
substitution. Consider the objects in Figure 2.4 from the example by Dietterich and Michalski  (1981).

B

A

C

E

D
 

Figure 2.4. Finding the Maximal Match Between Two Examples

 These may be described by the following expressions:

E1: circle(a) ! square(b) ! small(a) ! small(b) ! ontop(a, b)

E2: circle(e) ! square(d) ! circle(c)
 !  small(e) ! large(d) ! small(c)
 !  ontop(c, d) ! inside(e, d)

If theprogrambeginsby trying to Þnda matchfor a thenit maynoticethatcircle(a) matchescircle(e).
Furthermoresmall(a) matchessmall(e). Thusa substitution{ a/e} is possible.Howeverthis will not
lead to the mostobviousgeneralization,namelythat thereis a small circle abovea square.We may
therefore, state our goal as a search for a maximal match of literals and parameter bindings. 

The problemof Þndinggreatestcommonsubexpressionsis NP-complete.Therefore,enumerative
searchmethodswill be very costly unlesssomeheuristicsareusedto prunethe search.The systems
developed by Hayes-Roth and McDermott (1978) and by Vere (1975) fall into this category. 

2.3.1.1  SPROUTER

Hayes-Roth(1977) has developedan algorithm, called interference matching, for extracting the
commonalitiesfrom examples.The comparisonof PSR'sis likened to Þndingthe intersectionof the
setsof caserelations.For example,an abstraction obtainedfrom the descriptionsof E1 and E2 in
Figure 2.2 earlier in this chapter, is:

15



{{ABOVE:1, BELOW:2} ,
  {SAME!SIZE:2, SAME!SIZE:1} ,
  {SMALL:2},  {SQUARE:1},  {CIRCLE:2},  {TRIANGLE:3},  {LARGE:3}} 

Thereare threeobjects:a small circle, a small squareand a large triangle.The squareis abovethe
circle. 

Sinceanysubsetof thesetof commonrelationsis alsoanabstraction,it is importantto distinguish
betweenthe set and its proper subsets.An abstractionwhich is properly containedin no other
abstraction is a maximal abstraction. 

Thealgorithmto Þndthemaximalabstractionof two PSR'srandomlyselectsa caserelationfrom
one PSR and puts it in correspondencewith one from the other PSR.Parametershaving identical
properties are identiÞed as equivalent and the resulting case relation becomesthe (primitive)
abstractionassociatedwith thatsetof parameterbindings.Thenotherpairsof primitive caserelations,
one from each of the two exemplarPSR's,are out into correspondence.If the new comparison
producesbindingswhich areconsistentwith previousbindingsthenthe new caserelationis addedto
the abstraction.Otherwise,a new abstractionis formed with the commoncaserelation as primitive.
Thusa numberof competingabstractionsmaybeproduced.Sincemanyunwantedabstractionsmaybe
produced heuristics are used to prune the search. 

A problemwhich is encounteredusingthis matchingalgorithm(andmostothers)canbeillustrated
by the following example:

E5: {{SMALL: x}, {SQUARE: x}, {RED: x}} 
E6: {{SMALL: y}, {SQUARE: y}, {SQUARE: z}, {RED: z}} 

In both E5 andE6 thereis a small squareanda red square.However,in E5 they arethe sameobject.
Thusa methodis requiredthatwill allow thesingleinstanceof SQUAREin E5 to matchtwo instances
in E6. Many-to-onebinding algorithmsare currently under investigation.An essentialpart of the
solution proposedHayes-Rothand McDermott (1981) is the transformationof a PSRrepresentation
into a uniform PSrepresentation.By introducingSameParameterandDifferent Parameterrelationsit
would be possibleto Þndan abstractionwhich insistedthat the parametersof SMALL andSQUARE
are the same,and the parametersof SQUARE and RED are the same,but it doesn'tcare if the
parameters of SQUARE and RED are different.

2.3.1.2  THOTH

In a PSRrepresentationof a concept,themembersof a caserelationareunordered.Relationsmustbe
matchedaccording to correspondingproperty names such as ABOVE and BELOW. In Vere's
representationthereareno specialpropertynames,insteadthereareliterals which areorderedlists of
terms.Although the two languageshave much in common,their internal representationsare quite
different; consequently,the matching algorithms are also different. To illustrate Vere's matching
algorithm, we will use one of his own examples (Vere, 1975). 

We wish to Þnd a maximal common sub-expression of,

R1 = (B X2) (W X3) (C X2 R) (S X3 X2)
R2 = (W X6) (B X5) (S X6 X5) (D X6 E)

Literals from R1 andR2 which are the samelengthandcontainat leastone term in commonin the
same position are paired.

P1 = (B X2) (B X5)
P2 = (W X3) (W X6)
P3 = (S X3 X2) (S X6 X5)

Terms in the pairs which do not match are replaced by variables producing the generalization,

(W .Y) (B .Z) (S .Y .Z)

In this example,only one set of pairs could be produced,but as we saw in Section1.4.1, some
matchingproblemsmay result in severalpossiblewaysof pairing literals. In this casethe pairswhich
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give the longest generalization are chosen. 
If the conceptbeing learnedis conjunctive,then it is sufÞcientto Þnd the intersection of all the

products to produce the generalization. Generalizing disjunctive concepts poses a few problems. 
It is not possibleto simply matchdescriptionsof instancesany more.If two instancesbelongto

different disjuncts,then the matchingdescriptionswill producean emptyor incorrectgeneralization.
Therefore Vere (personal communication) adopts the following modiÞcation:

Supposethe instancesshownto the programareI1, I2, I3, I4, I5, I6. The procedure
beginsby trying to generalizeI1 and I2 to Þnd a maximal commongeneralization
(mcg). Supposealso that I1 and I2 are successfullygeneralizedinto mcg G1. We
thentry to generalizeG1 andI3. Supposethis attemptfails becauseI3 belongsto a
differentdisjunctto I1 andI2. We jump overI3 andtry to generalizeG1 andI4. This
succeedsgiving mcgG2.Now we try to generalizeG2 andI5. This fails. Thenwe try
to generalizeG2 and I6. This succeedsgiving mcg G3. The procedurethenbegins
anotherpassthroughtheremaininginstances,that is, throughthe list I3, I5. Suppose
I3 and I5 can be successfullygeneralizedinto G4, then we obtain the disjunctive
generalization G3 '  G4.

THOTH is also capable of performing other learning tasks. These will be described only brießy here. 
In manylearningtaskstheremaybeinformationrelevantto theproblembut which is not supplied

explicitly. This may be in the form of domainknowledgeor asVere calls it background information.
To illustrate this situation,Vere (1977) usesthe exampleof teachingthe programpoker hands.To
teachfull house it is sufÞcientto showtheprogramtwo handsbothof which havethreecardswith the
samenumberandthe remainingtwo with a different number.No informationis requiredbeyondthat
presentin the descriptionof the examples.However,to learn the conceptstraight, the programmust
know somethingaboutthe orderingof cardsin a suit to recognizethat the handsshownasexamples
contain a numerical sequence. This background information may be represented as:

(next 2 3) (next 3 4) ... (next K A)

Whena handis shownasan instanceof straight the programmustbe ableassociatethe description
with the background information.

THOTH is capableof learningcounterfactuals. Taking anotherof Vere'sexamples(Vere,1980),
thetaskof thelearningsystemis to Þnda descriptionwhich discriminatesbetweenthesetof objectson
the right and and the set on the left in Figure 2.5. It is not possibleto producesucha description
without makingexceptions.The objectson the right aredescribedashavingan objectX on top of an
object Y. Y is a green cube. X must not be blue except if it is a pyramid.

Recently,Verehasdevelopeda newalgorithmfor constrained N-to-1 generalizations. At thetime
of writing, complete details of the algorithm were not available.

2.3.2  Model-Driven Methods 

Model-drivenlearningmethodsusuallybeginwith a singlehypothesiswhich is usedasa startingpoint
for a search. Generally these methods can be characterized as follows: 

Create initial hypothesis 
while hypothesis !  target concept do
 Apply a transform which will produce a new hypothesis which is either
more general or more speciÞc, depending on the search strategy.

Herewe havea situationwhich is, in someways,similar to gameplayingor problemsolving.Thereis
an initial stateand a goal state.By generalizingthe description,the programperformsan operation
which is part of a searchfor the goal. The differencebetweenplaying chessand learningis that the
chess program knows when it has reached the goal state, a learning program does not.

The spaceof the searchis the setof all sentencesin the languagewhich canbe derivedfrom the
initial hypothesisby the applicationof the transforms.Mitchell (1977)calls this the VersionSpaceof
the concept formation task. Three things must be decided when developing the search algorithm:

1. What is the starting point?
The program may begin with a hypothesisfor the conceptwhich is very speciÞc,being the
descriptionof a singleobject.It maythenproceededto generalizethis descriptionuntil it describes
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a sufÞcientlygeneralclass.Alternatively, the programmay choosea startinghypothesiswhich is
too general. It then tries to produce new hypotheses which are more speciÞc.

 
2. What transformation rules should apply? 

In eachlanguagetheremustbe a way of determiningwhich of two descriptionsis moregeneral
than the other.This meansthat the spaceof conceptdescriptionsis partially ordered(Mitchell,
1977). The transformations rules must use this ordering to produce a new hypothesis.

 
3. What search strategy is appropriate? 

The designer must choose a search strategy such as depth-Þrst or breadth-Þrst etc.

(ON T1 T2)
(SPHERE T1)
(GREEN T1)
(CUBE T2)
(GREEN T2)

G

G

r1

(ON T10 T11)
(SPHERE T10)
(BLUE T0)
(CUBE T11)
(GREEN T11)

n1

(ON T3 T4)
(PYRAMID T3)
(BLUE T3)
(CUBE T4)
(GREEN T4)

r2

(ON T12 T13)
(SPHERE T12)
(GREEN T12)
(CUBE T13)
(BLUE T13)

n2

(ON T5 T6)
(CUBE T5)
(YELLOW T5)
(CUBE T6)
(GREEN T6)

r3

(ON T14 T15)
(ON T15 T16)
(CUBE T14)
(YELLOW T14)
(CUBE T15)
(BLUE T15)
(CUBE T16)
(GREEN T16)

n3

(ON T7 T8)
(ON T8 T9)
(CUBE T7)
(GREEN T7)
(CUBE T8)
(RED T8)
(CUBE T9)
(GREEN T9)

r4

(ON T17 T18)
(CUBE T17)
(BLUE T17)
(CUBE T18)
(GREEN T18)

n4

POSITIVE INSTANCES NEGATIVE INSTANCES

G

B

B

G

G

B

Y

G

Y

B

G

G

G

R
B

G

 

Figure 2.5. Vere's Introductory problem

2.3.2.1  Meta-DENDRAL 

When presentedwith a large numberof training instance,how doesMeta-DENDRAL generateits
rules?The searchis general-to-specific. That is, it beginswith the mostgeneralpossiblehypothesis,
then uses a breadth Þrst search to Þnd a more speciÞc rule which is acceptable. 

The most general rule is that any bond between any molecule will break.
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N - C * C - C . . .

. . .

X

X - X * X

X

C*N. . . . . .

X * X

X - C * C - X

X - X * X - X

 

Figure 2.6. Portion of a Meta-DENDRAL Search

This is representedby X*X in Figure2.6.In onestepof thesearch,eachattributeof a nodeis changed.
This resultsin a numberof alternativeruleswhich mustbeevaluatedto determinewhich aresuitable.
The criterion used is as follows,

If a rule matchesfewer positive instancesthan its parent(that is, the rule is more
speciÞc)but matchesat least one positive instancein at least half of the training
molecules(that is, it is not too speciÞc)then this rule is 'better'.The searchmay
continuealongthis path.If this conditionis not met by any of the descendentsof a
rule, then the parent is output as the most acceptable rule.

Meta-DENDRAL illustrates anotherproblem which must be faced by the designerof a learning
program.Someinput samplesmay be incorrectly classiÞed.Suchinput is called 'noise'.In order to
avoid being misled, the program uses a probabilistic evaluation function for guiding its search. 

Anotherpoint to noteis that whenthe problemdomainis well understood,the designercantake
advantageof specializedknowledge.For example,the searchprocedureused in Meta-DENDRAL
would be unacceptable in an environment which had a greater branching factor than this problem.

2.3.2.2  VL-Systems 

Michalski recognizedthe importanceof domain knowledgein learning. However, his aim was to
designa generalpurposemodel-drivenlearningprogram.Therefore,theVL2 systems,developedat the
Universityof Illinois, allows thehumanuserto describethedomainin thedescriptionlanguagerather
than have the domain knowledge Þxed in the structure of the learning program itself.

 
The problem which the Illinois group deals with is this:  Given,

 
¥ A set of data rules which specify the input (training samples). 
¥ A set of rules to deÞne the problem environment 
¥ A preference criterion which, for any two symbolic descriptions speciÞes which is preferable

 
determine a set of rules to describe the input, which is more general than the data rules. 
Thepurposeof thepreferencecriterion is to give theusersomecontrolover theprogram'ssearch.It is
envisagedthat the programwill be usedby humanexpertsinteractivelyto reÞneknowledgeabouta
particularproblem.Thereforean importantgoal is to producerulesthatareeasilyreadby people.The
preference criteria allow the user to tell the program what form of rule to look for. 

The learningalgorithmusedin the program,INDUCE-1.1 is describedby Dietterich (1978)and
Michalski (1980).Brießy, theprogrambeginsby augmentingthedatarulesinput by theuser,by using
theinferencerulesin thedomainknowledgeto producenewrules.For example,if anexampleincludes
a triangle,the fact that it is alsoa polygonis alsoadded.Whenall the inferredruleshavebeenadded,
the program begins a breadthÞrst searchfor the most speciÞcgeneralizationswhich satisfy the
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preferencecriteria. Throughoutthe searchthereare a numberof mechanismsto limit the branches
which are pursued. 

The searchproceedsas follows: The algorithm builds a sequenceof setscalled partial stars,
denotedby Pi. An elementof a partialstaris a product(i.e. conjunctionof selectors).Theinitial partial
star(Pi) consistsof the setof all selectors,ei, from the descriptionof the training example.Theseare
consideredsingleelementproducts.A new partial starPi+1 is formed from an existingpartial starPi

suchthat for eachproductin Pi, a setof products is placedinto Pi+1 whereeachnewproductcontains
theselectorsof theoriginal productplusonenewselectorof theei which is not in theoriginal product.
Beforea newpartialstaris formed,Pi is reducedaccordingto a userdeÞnedoptimality criterionto the
'best' subset before a new partial star is formed.

2.3.2.3  CONFUCIUS 

Well before the current group of learning systemswere under development,Banerji (1964) had
proposeda predicatelogic descriptionlanguagewhich could 'grow'. That is, conceptslearnedduring
onetrainingsessionarestoredin memoryandmaybeuseby theprogramin the future to simplify the
description of a new concept to be learned. Thus domain knowledge could also be learned. 

Theoriginal learningalgorithmusedin CONFUCIUSwasderivedfrom thework of Pennypacker
(1963).This, in turn,wasderivedfrom theConservativeFocusingAlgorithm describedby Bruneret al
(1956). The algorithm developed by Cohen (1978) for CONFUCIUS is:

1. An instance is presented to the program by the trainer.

2. The programgeneratesall the true statementsit can to describethe exemplar.This includes
statements describing containment in previously learned concepts.

 
3. CONFUCIUSthenproceedsto removestatementsfrom the description.Rememberthat a subset

of a description is a more general description.
 

4. The new hypothesisobtainedby the removalis testedto seeif it is moreor lessgeneralthanthe
target concept. This may be done in either of two ways:

 
¥ by showing the descriptionof the hypothesisto the trainer and asking if it is part of the

concept to be learned 
¥ or if negativeexampleshavebeensupplied,by seeingif thehypothesisrecognizesanyof the

negative instances.

In implementing this search method there is one major obstacle to overcome. Suppose the statements

colour(X) = red !  colour(Y) = red !  colour(X) = colour(Y)

arein thehypothesis.If only oneof thestatementsis removed,thenthehypothesisis no moregeneral
thanit wasbefore,becausetheremovedstatementis implied by theremainingtwo. ThusCONFUCIUS
must be able to keeptrack of implicationsand removesetsof statementsin order to generalizethe
concept. 

The internal representationof a concept,called a GRAFT, was designedto ensurethat the
recognitionof objectsis performedquickly. CONFUCIUScontainsanassociativememorywhich Þnds
the concepts which are most likely to recognize an object.
 

2.4  Marvin

In manyrespectsMarvin is thesuccessorof CONFUCIUS.Its generalapproachto learningis thesame
as describedfor the model-drivensystems.The main featurewhich setsit apartfrom other learning
systems is the fact that it can generate its own training examples. 

Some of the problemsdiscussedin this chapterhave not been consideredalthough they are
important.Marvin cannotlearnconceptswhich involve many-to-onevariablebindings,nor canit learn
exceptions. 
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3

An Overview of Marvin

In this chapter we will give a formal description of Marvin. The major components of the program are:
 

1. A language for describing objects and concepts. 
2. An interpreterfor the language.This mustprovidethe ability to recognizeobjectsbelongingto a

given concept.It must also be able to constructan instanceof a concept,that is, 'perform an
experiment'. 

3. An associativememorywhich storesconceptdescriptionsoncetheyhavebeenlearnedandenables
them to be accessed quickly by the learning procedure. 

4. A generalizationprocedurewhich, given a concept description, can output a more general
description. 

5. A learningstrategywhich startswith aninitial hypothesisandrepeatedlyappliesthegeneralization
procedure in a search for the target concept description.

The last component,the learningalgorithm,links thewholesystemtogether.Themainstepsinvolved
in the algorithm are:

Initialize Theexamplepresentedby the traineris describedby a form of First OrderPredicate
Logic. This descriptionforms the Þrst hypothesisfor describingthe conceptto be
learned. 

Generalize Marvin tries to generalize the hypothesis. If it is not possible to create a
generalization, the learning process stops. 

Test The generalizationis testedby constructingan objectbelongingto the hypothesised
concept.Theobjectis shownto the trainer.If heagreesthat theobjectis recognized
by the concept to be learned then generalise. 

Restrict If the hypothesisedconceptrecognizesobjectsnot belongingto the conceptto be
learnedthen a new, more speciÞchypothesisis created.Test the more speciÞc
hypothesis.

To understand how Marvin works it is necessary to know the language it uses to represent concepts. 

3.1  The Description Language

As we havealreadyseen,Marvin operatesin a universeof objects.In order to differentiatebetween
them, the universeis partitionedaccordingto the valuesof an object'sattributesor properties.For
example,Theredball on top of a greenblock which we sawin Chapter1 canberepresentedasa list of
property/value pairs: 

E1 = <top: S1; bottom: B1>

Top andbottom arethe namesof the propertiesof the objectE1. They may be thoughtof asthe Þeld
namesof a Pascalrecord(Wirth, 1972).S1andB1 arethevaluesof thoseproperties.In this case,they
are the names of other objects, 

S1 = <shape: SPHERE; colour: RED> 
B1 = <shape: BOX;  colour: GREEN> 

RED, GREEN, BOX, SPHERE also name other objects. One such object is,

RED = <value: red>

This time, red is simply a word, and stands for no other object. 
A conceptdescriptionis a booleanexpressionwhich describesa classof objects.Ultimately, all

conceptdescriptionsspecify the properties(and their rangeof values)associatedwith eachobject in
the class. 

To describe the concept on top of Marvin constructs the concept: 



[X0: 
[(  X1, X2, X3, X4, X5, X6:

X0.top = X1  ! 
  X1.shape = X2  ! 
  X1.colour = X3  ! 
  X0.bottom = X4  ! 

X4.shape = X5  ! 
  X4.colour = X6  ! 
  any-shape(X2)  ! 
  any-colour(X3)  ! 
  ßat(X5)  ! 
  any-colour(X6)
  ]
  ] 

This canbe interpretedasspecifyingthesetof all X0 suchthat the top of X0 is X1 andthebottomof
X0 is X4. The shapeof X1 is X2, which may be any shape,the colour of X1 is X3, it may be any
colour, and so on. Any-shape, any-colour and flat are the names of other concepts stored in memory. 
To Þnd out if E1 is an instanceof on top of, Marvin would executethe statementon-top-of(E1).A
usefulanalogyfor a conceptdescriptionis the booleanfunction of ordinaryprogramminglanguages.
Whena function of this kind is called,the actualparametersof the call aresubstitutedfor the formal
parametersin the body of the function. The booleanexpressionwhich constitutesthe body is then
executedandreturnsa resultof trueor false.If theresultis true thentheobjectspassedto theconcept
as parameters are instances of the concept. 

Concept descriptionsdiffer from boolean functions when a variable is passedas an actual
parameterandthe variableis not boundto any value.A booleanfunction would normally fail in this
case.However,whena conceptis 'executed',it creates a valuefor theunboundvariablewhich satisÞes
the concept description. 

The interpretationof the languageis describedfully in the next section.In the remainderof this
section we will give a complete speciÞcation of the syntax of the language.

¥ An object is an elementof the universe.It is representedby a list of property/valuepairs. A
property is a word which has no interpretation, but may be considered as a label.

 
¥ A value is a number or a word or another object or object name.

 
¥ An event is a sequence of values (v1, v2, ...). For example,  (S1, B1).

 
¥ A term is a value, or a variable, or a selector.

 
¥ Variables are written as X0, X1, ...

 
¥ A selector 

<variable> . <property name>

Thus,Xi.prop is interpretedasthe valueassociatedwith property,prop, in the objectrepresented
by Xi. The value of S1.colour is RED.

 
¥ A statement is a predicate of the form 

C(t1, .., tn)

whereC is thenameof a conceptwhich recognizes theevent(t1, .., tn). Theti areterms.Theterm
recognize is usedhere as deÞnedin Section2.3. For conveniencethe predicateequal will be
written as 

t1 = t2

but its internalrepresentationis thesameas'equal(t1, t2)'. Equal is theonly conceptwhich is built
into  the language. Thus it is possible to say 

S1.colour = red

However other predicates (concepts), such as ßat(B1), must be learned by Marvin.
 

¥ A  conjunction is an expression of the form 
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[(  X0, X1, ... : S1 ! S2 ! ... ]

whereX0, X1, ... areexistentiallyquantiÞedvariablesandS1,S2,... arestatementswhich contain
references to X0, X1, ... For example, 

[(  X1, X2: X1.shape = X2 !  X1.value = sphere  !  ... ]

¥ A concept, C has the form 

C = [X0, X1, ... : D1 ' D2 '  ... ]

where X0, X1, ... are universally quantiÞed variables and D1, D2, ... are conjunctions which

contain references to X0, X1, ... The deÞnition of flat given in Chapter 1 may be expressed as,

[X0: X0.value = box ' X0.value = table]

3.2  Interpreting the Language

In the on top of learningtask,we saw that to test a generalization,a new object was shownto the
trainer.To show an appropriateobject,Marvin must treat the generalizedconceptdescriptionas the
speciÞcationof the object to be created.The object is constructedas a side-effectof an attemptto
'prove' the conceptdescription.This is very similar to the methodusedby Prolog to interpret its
programs. 

As an example,considerthe conceptwhich describesa list, X2, obtainedby appendingthe list,
X1, onto another list, X0 (cf. Prolog deÞnition Section 1.4). This may be described as: 

append = 
[X0, X1, X2:

X0.value = nil !  X2 = X1 ! list(X1)
  '  

[(  X3:
     X0.hd = X3
     ! X2.hd = X3
  ! number(X3)
  ! append(X0.tl, X1, X2.tl)
  ]
  ]

If X0 is nil thenX2 is thesameaslist X1, otherwisetheheadof X0 is thesameastheheadof X2 and
the tail of X2 is the result of appending X1 to the tail of X0. 
The concept 'list' describes a list of numbers and may be deÞned as, 

list = 
[X0: 

X0.val = none
  '

number(X0.hd) !  list(X0.tl)
  ]

Marvin hasno in-built knowledgeof numbers.For this example,let's assumethat it haslearnedthe
concept 'number' already. We will see how this is done in Chapter 4. 
Suppose x is the list [1, 2] and y is [3]. If we assert that 

[(  z: append(x, y, z)]

thenMarvin will try to provethat this expressionis true.That is, it mustprovethat the list, z, exists.It
is a proof by construction since if such a z can be found the assertion is obviously true. 

Assuming that the deÞnition of append is known to Marvin, the 'proof' procedure is as follows:
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1. Marvin retrievesthe deÞnitionof appendfrom its memoryand calls it as if it were a boolean
function. The quantiÞedvariable,z, is representedby a 'dummy value' which is passedas the
actualparameter.As the conceptis entered,X0 is boundto [1, 2], X1 is boundto [3] andX2 is
bound to z's dummy value.

 
2. Now an attemptis madeto proveeachconjunctionin appenduntil oneis found to be true.Since

X0.value !  nil the Þrst conjunction fails, an attempt is made to prove the second.
 

3. Encounteringthe expression( X3: .., the programcreatesa dummyvaluefor X3. The statement
X0.hd= X3 is interpretedasreplacingthedummyvalueof X3 by a realvalue,i.e. thevalueof the
headof X0. RememberthatX2 is boundto z'sdummyvalue.WhenMarvin seesanexpressionlike
X2.hd, it assumesthat the dummyvaluemustrepresentan objectwhich hasa head.The valueof
theheadis boundto thevalueof X3. Thuspartof a newlist hasbeencreatedsuchthattheheadof
the list is the same as the head of X0.

 
X0 = <head: X3; tail: ...>
X2 = <head: X3; tail:  * >

4. Next, an attemptis madeto prove append(X0.tl,X1, X2.tl). Since X2 representsa list 'under
construction',X2.tl is the dummy value, *, representingthe tail of the list. This value will be
passedas the actualparameterto the next call of append.So the remainderof the list will be
constructed by this call.

 
5. 'append' will be called recursively until 

X0.value = nil  !  X2 = X1  !  list(X1)

is reached.At this point, X2 is bound to the dummy value, *, representingthe tail of the list
constructedby the calling concept.This can now be replacedby the value of X1. By now the
entire list will have been constructed and the proof terminates. 

Whenwe introducedthebooleanfunctionasananalogof conceptdescriptions,we saidthat theactual
parameters(a1, .., an) weresubstitutedfor the formal parameters(p1, .., pn) in thebodyof the function.
In practice,the functionwould not bephysicallychanged.Instead,thecorrespondencebetweenactual
and formal parametersis recordedas a set of pairs {a1/p1, .., an/pn}. This will be referredto as the
binding environment of the concept.Similar associationswill appearthroughoutMarvin. Another
exampleof suchbindingsoccurswhena propertybelongingto an object is boundto a speciÞcvalue.
The property/value list can be regarded as a special set of bindings associated with an object. 

Let usnow describehow thevalueof a termis found.Thevaluecanonly bespeciÞedwith respect
to a particularbindingenvironment.A function 'value(Term,Env)' will bedeÞned.It returnsthevalue
associated with term, Term, in binding environment, Env. 

value(X, Env) = X if  constant(X).
value(X, Env) = Y if

variable(X) and
  member(X/V, Env) and

 Y = value(V, Env).
 

If X is a variable then the value of X is the value of the term bound to X in the current environment. 

value(X, Env) = Y if
Obj = value(X, Env) and

 member(P:Y, Obj).

Thevalueof theselectorX is thevalueassociatedwith theproperty,P in theobject,Obj, represented
by X. If Obj is beingconstructedandthe property,P doesnot yet exist in Obj, thena new property/
value pair, P:* is added, where * is a dummy value.

Now we canspecifythe semanticsof the statementsof Marvin's language.A statementis saidto
be true if the function 'prove' is successful.A proof canonly be describedwith respectto a binding
environment.

prove(X = X, Env) is always true.
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prove(X = Y, Env) if  
number(X) and
number(Y) and

 X and Y are numerically equivalent.
prove(X = Y, Env) if

word(X) and
word(Y) and
X and Y are alphabetic equivalents.

 
prove(X = Y, Env) if

object(X) and
 object(Y) and
 for each pair p:v1 in X there is a pair p:v2 in Y

such that prove(v1 = v2, Env).
 

prove(X = V, Env) if
Y = value(X, Env) and

 prove(Y = V, Env) is true.
 

prove(X = Y, Env) if
variable(X) and

 X = value(Y, Env). 

If X is anunboundquantiÞedvariablerepresentedby a dummyvalue,thenthedummyis replacedand
X is bound to value(Y, Env).

prove(X = Y, Env) if
variable(Y) and

 prove(Y = X, Env).
 

prove(P '  Q, Env) if
prove(P, Env) or prove(Q, Env).

prove(P ! Q, Env) if
prove(P, Env) and

 prove(Q, Env).

P andQ mustbeprovedto betruesimultaneously.If theproof of P createsbindingswhich preventQ
from being provedthen Marvin must try to Þnd an alternativeproof for P. This may be done if P
represents a disjunctive concept and there is more than one disjunct which may be true. 

prove(P(<args>), Env) if
P is the name of a concept [<formal>: <expr>] and

  <actual> are bound to <formal> to create a new environment NewEnv and
prove(<expr>, NewEnv) is true. 

Whena statementlike P(x, y, z) is to beproved,theactualparametersx, y andz mustbeboundto the
formal parametersof P. This createsa new binding environment,NewEnv, for the proof of the
expression which describes P.

prove([(  <exvars>: P(<exvars>)], Env) if  
<exvars> are represented by dummy values and prove(P(<exvars>), Env) is true. 

Dummyvaluesarecreatedto representeachquantiÞedvariable.Thedummyvalueswill bereplacedby
real values during the execution of P. 

The speciÞcationgiven aboveis similar to that given in (Banerji, 1978). The most important
differenceis that in this system,expressionsmay contain referencesto other concepts.And since
concepts may be disjunctive, we must consider the possibility of backtracking as discussed above. 

Cohen(1978)alsoproposedan object constructionprocedurewhich could be usedin a concept
learning system like CONFUCIUS. 
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3.3  Pattern Matching and Memory

Marvin's memory consists of two parts:
 

1. The set of all concepts learned so far. 
2. An index to the learned concepts.

 
Theindexconsistsof asetof pairs<Stmnt,List> whereList is thelist of all theconceptswhichcontain
statementswhich match Stmnt.Givenanotherstatement,S, theindexenablesusto Þndall theconcepts
which containstatementswhich matchS by looking up the correspondingStmnt,which alsomatches
S.

While performinga memorylookup andduring otherpartsof the learningprocess,Marvin must
compareor match statements.Thematchingprocedureis a simpleuniÞcationalgorithmvery muchas
onewould Þndin a theoremprover(Robinson,1965).Two expressionsX andY maybematchedusing
the following algorithm: 

 unify(X, Y)
if  X is a variable then

if  X is bound to value v then return  unify(v, Y)
else bind v to Y and return  TRUE

if  Y is a variable then return  unify(Y, X) 
if  X and Y are both objects or atoms then 

return  TRUE if X is identical to Y
if  X and Y are both numbers then 

    return  TRUE if the numerical values are the same
if  (X = Obj1.Prop) and (Y = Obj2.Prop) then 

   return  unify(Obj1.Prop, Obj2.Prop)
if  X and Y are both statements then 

if  the predicate names are the same
and corresponding arguments of X and Y unify
then return  TRUE 

else return  FALSE

As in theobjectconstructionprocedure,uniÞcationalsobindsvaluesto variables,althoughthepurpose
is now slightly different. If anattemptis madeto matchanunboundvariablewith a valueor variable,
then it becomesbound.In this way, the uniÞcationalgorithm builds up substitutions. Following the
practiceof resolutiontheoremproving literature,we obtaina substitutioninstanceof anexpressionby
substitutingtermsfor variablesin that expression.A substitutionis a setof orderedpairs{t 1/v1, t2/v2,
...}. To denotethesubstitutioninstanceof anexpression,E, usinga substitution,%, we write E%. Thus
C(X0.colour, X1) = C(X1, X2) %, where % = { X0.colour/X1, X1/X2} . 

Unify enablesusto build anindexto memorywhich hasthepropertythatfor everystatementS' in
every concept C, there exists a pair <S, L> such that S' = S % for some % and C #  L.

Thelearningalgorithmwill ensurethatconceptsarelearnedin disjunctivenormalform. That is, if
a conceptconsistsof a numberof conjunctions,then one conjunctionis learnedat a time. And one
conjunctionis storedat a time. Partof the storing routineensuresthat the assertionaboveis always
true. 

3.4  Generalisations 

In Chapter2 we deÞnedthe meaningof 'generalisation'for a simplepredicatelogic language.Let us
now do the same thing for Marvin's language, but in more detail.
 
Definition 3.1: The cover of a concept,C, (written cover(C)) is the set of all eventswhich are

recognized by C.
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Definition 3.2: If there are two concepts:

C1 = [X: P(X)] and C2 = [X: Q(X)]

C1 deÞnesthesetof all events(X) suchthatP(X) is trueandC2 deÞnesall (X) suchthatQ(X)
is true. The cover of concept which is the conjunction of P and Q:

[X: P(X) ! Q(X)]
is cover(C1) )  cover(C1).

Definition 3.3: Similarly the cover of a concept which is the disjunction of P and Q: 

[X: P(X) ' Q(X)]
is cover(C1) ⋃ cover(C2).

 
Definition 3.4: A concept C1 is more general than a concept C2 if 

cover(C1) & cover(C2)

That is, C1 recognizes all the events which C2 recognizes and possibly others as well.

An importantpartof the learningalgorithmthatwe aregoing to developis a methodfor transforming
an expressionwhich representsa conceptinto an new expressiondescribinga moregeneralconcept.
Thereforewe mustdeÞnegeneralizationsin termsof the constructsof the language.Severalauthors
have previously proposeddeÞnitions of generalizationfor Þrst order predicate logic languages
(Reynolds,1970;Plotkin,1970;Vere,1975).It will beusefulto recallVere'sdeÞnition:A conjunction
of literals D1 is a generalization of conjunction D2 if 

(  %: D2 % & D1

This follows from deÞnition3.2 which statedthat the coverof a conjunctionis the intersectionof the
covers of the individual literals.
 
Definition 3.5:  C1 is a proper generalization of C2 if 

1. (  %: D2 % $ D1 
2. ( %: D2 %& D1 but %is not an alphabeticvariant substitution.Expressionsare alphabetic

variants if they only differ in the names of variables. 

Definition 3.6: An expression,C1, in disjunctive normal form (a disjunction of conjunctions),is a
generalization of anotherdisjunctiveexpression,C2 if for eachconjunctionin C2 thereis a
conjunction in C1 which is more general. That is: 

["  D2 # C2: [(  D1 # C1: D1 " D 2]]

The symbol "  is used to indicate the D1 is a generalization of D2. 
Now let's seehow thesedeÞnitionsapply to Marvin. In Chapter1 when Marvin, the child, tried to
generalizehis hypothesisedconcepts,he replaceda statement(or group of statements)by a more
general statement. To illustrate this, consider the description of E1, the original training example: 

[X0: 
[(  X1, X2, X3, X4, X5, X6:

      X0.top = X1
      ! X1.shape = X2
  ! X2.value = sphere
   ! X1.colour = X3
   ! X3.value = red
   ! X0.bottom = X4
   ! X4.shape = X5(1)

 ! X5.value = box (2)
 ! X4.colour = X6 (3)
 ! X6.value = green (4)

]
  ]
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This might be Marvin's Þrst attempt at producing a description of the concept. It will be called trial T0. 
When,say, the shapeof an object is generalized,a speciÞcshape,suchasX2.value= sphereis

replaced by any-shape(X2).Most learning algorithms,such as CONFUCIUS, would remove any
referenceto shaperather than replaceit. In Marvin's case,removal is not appropriatebecausethe
generalizationwill be testedby constructingan objectto showthe trainer.Supposethe objectis to be
displayedon a colour graphicsterminal, then it must havea shape;hencethe policy of replacement
rather than removal. 

Let us now try to describe this replacement process. Let a concept, P, be stored in memory: 

P = 
[X0: 

[(  X1, X2:
      X0.colour = X1
      ! X1.value = red
   ! X0.shape = X2
   !  X2.value = sphere
  ]
 '

[(  X1, X2:
      X0.colour = X1 (P3)

 ! X1.value = green (P4)
 ! X0.shape = X2(P1)
 ! X2.value = box (P2)

]
  ] 

P(X) is true if X is a red sphereor a greenbox. Underthe substitution%= {X0/X4, X1/X5, X2/X6}
thenumberedstatementsin thedescriptionof E1 matchall thestatementsin theseconddisjunctof P.
Sinceall thestatementsin a disjunctof P canbematched,P(X4) mustbe true.Thus,we obtaina new
concept T1 by replacing the matched statements in T0 by the statement P(X4). 

[X0: 
[(  X1, X2, X3, X4:

      X0.top = X1
    ! X1.shape = X2
   ! X2.value = sphere
   ! X1.colour = X3
   ! X3.value = red
  ! X0.bottom = X4
   ! P(X4)
  ]
  ]
 
Now, I claim thatT1 is moregeneralthanT0. T0 maybesplit into two setsT = M ⋃ M', whereM is the
set of statementsreplacedby the new statement,S, and M' is the set of remainingstatementsin T0.
SinceS refersto a disjunctiveconceptand M matchesone of the disjunctsof the concept,M must
represent a subset of the objects described by S. Thus, cover({ S} )   cover(M). Therefore, 

cover({S} ⋃ M') & cover(M ⋃ M')

andthereforeT1 " T0. Thereplacedstatementsin M aresaidto directly imply thenewstatement,S.To
the previous deÞnitions of generalization we can add the following: 

Definition 3.7: If C1 andC2 aretwo conceptsandthereis a subsetof statements,M, in C2 suchthatM
implies a new statement, S, then 

C1 = C2 Ð M ⋃ {S}
is a generalizationof C2. If, S, refersto a disjunctiveconceptthenC1 > C2. Also, if C1 " C2

and C2 " C3 then C1 " C3.
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This deÞnes a replacement transform, R, such that 

R(T0, M, S) = T1 and T1 " T 0

Of course,at any time theremay be a numberof replacementspossible,asis the casewith on top of.
Choosing which ones and the order in which they are done is the task of the learning strategy. 

3.5  The Learning Strategy

The learningalgorithmis a combinationof thegeneralizationandobjectconstructionprocedures.Our
aim is to beginwith an initial hypothesisfor the concept,calledtrial T0, andusingthe generalization
procedure,createa successionof new trials Ti. Eventuallytherewill be a Tn suchthat any attemptto
producea further generalization,Tn+1 will result in an inconsistent generalization. A generalizationis
saidto beinconsistentif theresultingtrial recognizeseventsthattheconceptto belearneddoesnot.Tn

is called the target. 
A new trial canbe createdin eitherof two ways: If the currenttrial, Ti is consistent,thenTi+1 is

createdby applying the generalizationprocedurewhich replacessomestatementsby a single,more
generalone.However,if Ti is inconsistentthenwe do not want to generalizethetrial. Insteadwe must
createa Ti+1 which is morespeciÞcanddoesnot recognizethoseeventswhich the targetdoesnot. A
morespeciÞctrial may be createdby adding new statementsor returningremovedstatementsto the
description.Rememberfrom deÞnition3.2 that by increasingthe numberof statements,the coverof
the trial becomes smaller. 

If a statement,S, refersto a conceptwhich hasonly a singleconjunctionandS is usedto replace
its implicants,thenthereplacementwill resultin a newtrial which is equivalentto theold one.SinceS
describesexactly those eventswhich are describedby its implicants, the new statementwill not
increasethe cover of the trial. Before a new trial is created,Marvin checksthat it will be a proper
generalization, if it is not then this trial is ignored. 
The learningprocessbeginswhena training instanceis shownto Marvin. First, the descriptionof the
event is transformedinto a conceptdescription,T0. This will be the Þrst hypothesisusedby the
learning algorithm. 

The algorithm for this transformation is quite straightforward: 

for each object in event
create a variable, X, to represent object

  for each pair p:v in object
if  v is an object then

Y:= new variable representing v
else Y:= v
create statement X = Y
if  v represents an object then

create statements to describe it as well

An exampleof theway in which this transformationworkswasgivenin theprevioussectionwhenthe
description of E1 was converted from property lists to a logical description. 

During this initial descriptionprocess,a list of the variablesis kept alongwith the objectswhich
they represent.So at the end we havea substitutionwhich recordsthe correspondencebetweenthe
objects shown and the variables used. 

Thestatementsgeneratedby this procedurearecalledprimary statements. Thetrial at this point is
not a generalizationbecauseit describesaneventidenticalto theinstancewhich thetrainerhasshown.
All generalizationswill be obtainedby matching statementsin the trial with conceptsstored in
memory.Theproceduremaybeappliedrepeatedly.Statementsfoundby generalizationof theprimary
statementsmaybeaddedto thetrial. Thesenewstatements,togetherwith theprimariesmaybeusedto
match against other concepts to produce new generalizations which are in turn added to the trial. 

As we sawin Section3.4,if thereis a subset,M, of thetrial which matchesa disjunctof a concept,
P which is in Marvin'smemory,thenwe mayreplacethestatementsin M by oneof the form P(Xn, ..,
Xm). If P is a conjunctiveconcept,that is, thereis only oneconjunction,thenthe new trial is exactly
equivalentto theold one.However,if P is disjunctivethenthentrial is a propergeneralizationbecause
the cover of the trial has been enlarged. 
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The learning algorithm begins by scanning down the list of statements in the trial. 

generalize(Trial)
    for each statement, t in Trial,

TryConceptsWith(t)  

Thevariable,Trial, is a globalvariableknownto all theproceduresin theprogram.TryConceptsWith
usesthe statement,t, to look for a concept,P, which might be a replacementto generalizeTrial. If it
Þndsa P which containsa matchfor t, it checksP to Þndout if all its statementshavea match.That is,
P recognizes some part of the training event. 

Next, the programdeterminesif replacingthe matchedstatement,M, by a referenceto P will
produce a proper generalization. If so, the new statement is added at the end of the new trial. 

TryConceptsWith(t) 
    for each concept P in memory such that
      (  a disjunct D in P and D contains a match for t:

for each subset M, Trial $ M such that M = D%
make new statement S = P(Xn, .., Xm)
if  adding S will make a proper generalization then

create new Trial = Trial - M ⋃ {S}
if not qualiÞed(Trial) then

remove S from Trial and restore M,
i.e. return to old Trial

else ignore P
if  no M can be found then return FALSE 

%is thesubstitutioncreatedwhenthedisjunct,D is matchedwith M. TheparametersXn, .., Xm in the
new statement are obtained from %. 

It is possiblethat the replacementhasproduceda trial which recognizeseventswhich the target
doesnot. This is an inconsistentgeneralization.Marvin performsanexperimentto testtheconsistency
of the generalization.If the new trial is consistent,the program continuesto searchfor more
replacementsin order to generalizethe new trial. Note that a statementwhich has already been
removedmaystill beallowedto matchpartsof a conceptin memory.It is only necessarythatat least
one of the replaced statements still be in the trial. 

If the new trial is inconsistentthenit mustbe madesufÞcientlyspeciÞcthat it is containedin the
target.A conceptis mademorespeciÞcby adding statements.Whenthestatementsin M arereplaced
by a moregeneralstatement,S, we losesomeinformationcontainedin M. If the generalizationwas
consistent,thenthe informationlost wasnot important.However,if the generalizationis inconsistent
thentoo muchinformationhasbeenlost. This suggeststhat by re-examiningthe implicantsin M we
can determinewhich statementsshouldbe addedto makea more speciÞctrial, that is, to return the
relevant information to the description of the concept. 

qualiÞed(Trial) 
if  experiment with trial failed then

for each i in M, (M is inherited from TryConceptsWith)
put i back into trial
if  TryConceptsWith(i) then return TRUE
else remove(i)

else return TRUE 

The procedurequaliÞed searchesfor the statementswhich will make the trial sufÞcientlyspeciÞc.
QualiÞedtakesanimplicant,i, of thenewstatement,S andreturnsit to thetrial. It immediatelyuses,i,
to look for new referencesto conceptsto add.This is doneby calling TryConceptsWith recursively.
When further statementsare addedthey too must be qualiÞed.This continuesuntil the experiment
succeeds or there are no more concepts to try. 

The experiment which Marvin performsinvolvesshowingthe traineran instanceof thenew trial.
Supposewe havethe situationshownin Figure 3.1, wherea consistenttrial T0 is generalizedto an
inconsistent trial Ti+1.
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Figure 3.1. Inconsistent Trial

Marvin mustproduceanobjectwhich will tell it if thegeneralizationis consistentor not. Supposethe
object,X, in Figure3.1 is shown.X satisÞesTi+1 but it alsosatisÞesthe target.If X is shownto the
trainer, he will answer 'Yes, this is an example of the concept', even though Ti+1 is inconsistent. 

The objectconstructionroutinemustproducean examplefrom the shadedregion in order to be
useful.That is theobjectmustberecognizedby Ti+1 but not by thetarget.How canthis bedoneif the
description of the target is not known? 

Although the targetdescriptionis not known, we do, at least,know a set of statementswhich
containthe target.SupposeA is thesetof all statementswhich canbe inferredfrom theprimaries,T0.
Thetargetwill eventuallybeobtainedby replacingsomestatementsby otherswhich theyimply. Sothe
target, Tn must be a subset of A. 

A $  Ti+1 and A $  Tn

Ti+1 differs from Ti in thatsomesetof statements,M, hasbeenreplacedby a statementS whereM S
(M implies S). 

Ti+1 = Ti Ð M ⋃ {S}

Let T'i+1 = A ÐTi+1. Ti+1 cannotcontainall of thestatementsin Tn otherwiseTn " Ti+1. ThereforeT'i+1

contains some statements of Tn. 
T'i+1 may contain some statementswhich are implied from within Ti+1. Let these implied

statementsform the set Q. Let N = T'i+1 Ð Q. N must contain statementsin Tn otherwiseevery
statement in Tn is implied by Ti+1. That is Tn "  T i+1 which is a contradiction. 

Thus, if an event,E, is generatedsuchthat Tn is true but no statementin N is true (denotedby
Tn ~ N) thenE cannotbelongto Tn becausesomestatementin Tn hasbeenmadefalse.Thusif theset
A is generatedit is possibleto guaranteeunderany circumstancesthat the exampleshownwill be a
useful one. 

Marvin usesa method of creating exampleswhich avoids generatingevery statementin A.
However,this is doneat somecost,aswe will see.Whena statementis removedfrom thetrial it must
be falsiÞed by the object constructionprocedure,experiment, unlessthat statementis implied by
statementsstill in the trial. If the latter is true, it would be impossibleto falsify. For example,if any-
shape(X) has been removed, this cannot be falsiÞed if ßat(X) is still in the trial. 

Supposethata consistenttrial, Ti, is generalizedto an inconsistentoneTi+1 by addinga statement
which refersto theconcept,P.Let usfurthersupposethatP consistsof threedisjunctsD1, D2, D3. D1 is
the disjunct which matchesa subset,M, of Ti. The problem is, will falsifying M producea useful
training example? 

If M must be false then the object constructionprocedurewill choosean object which satisÞes
eitherD2 or D3 in P.SinceTi+1 is inconsistent,oneof thesedisjunctsmustmakeTi+1 describeanevent
which will beoutsideTn. Let usassumethatD2 is thatdisjunctandD3 producesaneventin Tn. If the
object construction procedure chooses D3 then the training example will not be acceptable. 

To avoid this problem,we insist thatMarvin'smemorymustbepartially orderedaccordingto the
following criteria: 

1. If C1 and C2 are two concepts in memory and C1 " C2 then C1 must contain a reference to C2.
2. If there are two concepts C1 and C2 such that:
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cover(C1) )  cover(C2) ! *

and there is a third concept C3 such that 

cover(C3) = cover(C1) ) cover(C2)

then C1 and C2 must refer to C3. In other words, if two conceptsdescribea commonset of
instances then, this intersection should be separated out as a third concept referred to by both. 

Conceptsarestoredin a hierarchywith themoregeneralconceptsat the top. If C1 " C2 thensinceC1

mustcontaina referenceto C2, C1 will not beusedin a generalizationuntil a statementreferringto C2

hasbeenintroducedinto the trial. [This is so becauseall of the statementsin a conjunctionmustbe
matchedbeforea replacementis madeandoneof thosestatementsmustlook like, C2(x, y, z, ...)]. Thus
the learning algorithm uses a speciÞc-to-general search strategy. 

In the exampleabove,if Tn " D3 thenthe secondorderingrequirementof the memorywould be
violated.ThetrainermustteachD3 asa separateconceptÞrstsinceit is commonto P andthetarget.If
this is donethenMarvin will be able to generatecorrecttraining examplesby ensuringthat only the
statementsremovedso far arefalse.Thereis no needto generateall thestatementsin A providedthat
the memory is 'well structured'. 

The methodusedhere placesthe responsibilityof maintaininga well orderedmemory on the
trainer. This is necessaryonly if we do not wish to generatethe set A. In Chapter7 a methodis
proposed that will allow Marvin to maintain the ordering automatically. 

The procedure experiment creates training examples: 

experiment(Trial) 
Simplify Trial
F:= statements to be made false
repeat

Generate a new training instance by proving Trial
until  all the statements in F are false
return  last instance generated so that it can be shown to the trainer 

Sincethe proof procedureusedto generateobjectsis fairly primitive, it is easyto createconceptsfor
which the proof will not terminate.To avoid this somepre-processinghasto be done.The Trial is
simpliÞedby removingredundantstatements.For exampleif one statement,S1, implies another,S2,
then there is no need to prove S2 since S2 must be true anyway. 

The programmust show an examplewhich has not beenseenbefore. To do this, it chooses
statementsfrom amongthosethathavebeenremovedandmakessurethatanyobjectit producesdoes
not satisfy the statements in F. 
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4

A Complete Example

Many of the ideasintroducedin Chapter3 may becomeclearerby observingMarvin performinga
complex learning task.

We havealreadyseenthatMarvin hasno knowledgeof numbers.A characterstringsuchas'12' is
no morethananidentiÞer,it receivesno specialinterpretation.Therefore,if we wantto teachconcepts
which requireaknowledgeof numbers,thenÞrstwehaveto teachMarvin aboutnumbers.This process
will bedescribedin this chapter.First Marvin will needto know how to representnumbers,later it will
learn to comparethem using the 'less than' relation and Þnally, Marvin will learn how to Þnd the
maximum number in a list.

A binary numberis a string of digits suchas,100110.Leadingzeroswill not be allowed,so the
numberzero itself will not be allowed.The string '100110'may be representedas the left recursive
binary tree shown in Figure 4.1.

0

1

1

0

0

1nil  

Figure 4.1. Representation of 100110

In fact, numbersaspresentedto Marvin areobjectsof the form <left: X; right: Y> whereX is another
number and Y is a digit. The number 'one' is

<left: nil; tail: <val: 1>>

where the left hand side of the tree is nil and the right hand side has a value of 1.
The remainderof this chapterconsistsof an annotatedprintout producedby Marvin. Marvin is

instructedto 'learnnumbers'.'Numbers'is the nameof a Þle which containsthe deÞnitionsof objects
which the trainerwill showastrainingexamples.For example,d0, is thenameof thedigit 0. 'Two' is
the nameof the object representing2. 'e1' .. 'e4' are the namesof lists which will be usedto teach
Marvin about 'Maximum'. The contents of 'numbers' is:

d0 = <val: 0>
d1 = <val: 1>
one = <left: nil; right: d1>
two = <left: one; right: d0>
three = <left: one; right: d1>
four = <left: two; right: d0>
Þve = <left: two; right: d1>
six = <left: three; right: d0>
seven = <left: three; right: d1>
e1 = <head: one; tail: none>
e2 = <head: two; tail: e1>
e3 = <head: two; tail: none>
e4 = <head: one; tail: e3>



What is the name of the concept? digit

Marvin promptsthe trainer,askingthenameof theconceptto be learned.Its Þrsttaskis to learnwhat
are valid binary digits. At this stage the memory is completely empty; no concepts are known.

Show me an example of digit: (d0)
This disjunct is:

X0.val = 0

Whenthedigit d0 is shown,Marvin remembersit without questioningthe trainerat all. Sincethereis
nothing in memory that it can refer to, no generalizations can take place, so it learned by rote.

Show me an example of digit: (d1)
This disjunct is:

X0.val = 1

Similarly, the descriptionof d1 doesnot matchanythingin memoryso it is alsorememberedwithout
question.

Show me an example of digit: no

Since0 and1 aretheonly binarydigits, thetrainerrefusesto showanyfurtherexamples.At this point
Marvin displays the concept it has learned.

Description of digit is:
[X0:

X0.val = 0
' 

X0.val = 1
]

Learned in  0.03 secs

Notethatonedisjuncthasbeencreatedfor eachexampleshown.Thedescriptionstatesthata digit has
the value 0 or the value 1.

Do you want to teach me another concept? yes
What is the name of the concept? number
Show me an example of number: (one)

Again Marvin promptsthe traineraskingto learnmore.This time theconcept'binarynumber'is to be
learned. The Þrst example is the number 'one': <left: nil; right: d1>

Testing:
X0.left = nil
X0.right = X1

==> X1.val = 1
digit(X1)

Marvin Þrst generatesall the primary statements,that is, the statementswhich exactly describethe
example.It thenattemptsto matchthe statementsof the the Þrst trial conceptwith the statementsof
conceptsthatarein memory.In this case'X1.val = 1' matchestheseconddisjunctof digit. Theprogram
replacesX1.val = 1 by thenewstatement'digit(X1),' thusproducing a generalizationof theÞrsttrial.
The '==>' preceding a statement indicates that it has been removed from the trial.

Is
X0 = <left: nil; right: <val: 0>>
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recognized by the concept? no

In order to test its hypothesis,Marvin usesthe trial conceptto generateits own exampleto showthe
trainer. Thus it shows,

<left: nil; right: <val: 0>>

In orderto createthis object,Marvin ensuredthat the removedstatementwasfalse.That is, no object
whoseright part was 1 would be allowed.Since,for this example,we do not wish Marvin to know
aboutzero,thetraineranswersthatthis is not a valid exampleof number.Theprogramthenattemptsto
Þnd someway of making the trial more speciÞc.In this case,the only way this can be doneis by
abandoning its generalization. Thus 'digit(X1)' is removed and 'X1.val = 1' is restored.

This disjunct is:
X0.left = nil
X0.right = X1
X1.val = 1

Since no more generalizationscan be made,Marvin entersthis descriptionas the Þrst disjunct of
number.

Show me an example of number: (two)

To learn the second disjunct the trainer shows Marvin the number 'two'.

Testing:
X0.left = X1

==> X1.left = nil
==> X1.right = X2
==> X2.val = 1

X0.right = X3
X3.val = 0
number(X1)

The programcanmatchthreeof the primary statementswith the Þrstdisjunctof number,so they are
removedand replacedby 'number(X1).'This illustratesthe importanceof the orderingof examples
shownby the trainer.It is essentialthat 'one'be shownÞrst,otherwisethe recursivenatureof number
would not be apparent.

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>

recognized by the concept? yes

Thenewtrial is usedto showthetraineranexampleof Marvin'scurrentideaof whata numbershould
look like. Sincethe left part of X0 cannotbe the number'one'(this is precludedby insistingthat the
removedstatementsare false)number is calledrecursivelyto createthe number4. Note that Marvin
has never seen a 4 and yet it can still create one.

Testing:
X0.left = X1

==> X1.left = nil
==> X1.right = X2
==> X2.val = 1

X0.right = X3
==> X3.val = 0

number(X1)
digit(X3)
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Since4 is an acceptablenumberMarvin cancontinueto generalizethe trial. It matches'X3.val = 0'
with the Þrst disjunct of digit and makes the generalization digit(X3).

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 1>>

recognized by the concept? yes

The new trial also produces a valid number, 5.

This disjunct is:
X0.left = X1
X0.right = X3
number(X1)
digit(X3)

Since Marvin cannot make any more generalizations,it concludesthat it has learnedthe second
disjunct.

Show me an example of number: no

The trainer indicates that there are no more disjuncts to learn.

Description of number is:
[X0:

[(  X1:
X0.left = nil
X0.right = X1
X1.val = 1

]
' 

[(  X1, X3:
X0.left = X1
X0.right = X3
number(X1)
digit(X3)

]
]

Learned in  0.25 secs

TheÞnaldescriptionof 'binarynumber'is: X0 is a numberif its left part is nil andits right part is 1 or
the left is a number and the right is a digit.

Do you want to teach me another concept? yes
What is the name of the concept? lessd
Show me an example of lessd: (d0, d1)

Beforewe canteachMarvin how to recognizethatonenumberis lessthananother,we mustÞrstteach
it theorderingamongdigits.Thepurposeof learninglessd is simply to tell Marvin that0 comesbefore
1.

Testing:
==> X0.val = 0

X1.val = 1
digit(X0)

Is
X0 = <val: 1>
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X1 = <val: 1>

recognized by the concept? no
Testing:

X0.val = 0
==> X1.val = 1
==> digit(X0)

digit(X1)
Is
X0 = <val: 0>
X1 = <val: 0>

recognized by the concept? no

SinceMarvin hasseendigits before,it triesto generalizelessd. However,thetraineranswersno to both
generalizations.

This disjunct is:
X0.val = 0
X1.val = 1

Show me an example of lessd: no
Description of lessd is:
[X0, X1:

X0.val = 0
X1.val = 1

]

Learned in  0.08 secs

Marvin learnsthat if therearetwo objectsandthe Þrstoneis the digit 0 andthe secondis the digit 1
then this is a lessd event.

Do you want to teach me another concept? yes
What is the name of the concept? less
Show me an example of less: (two, three)

Now Marvin is ready to learn less. The Þrst example it will be shown is the pair (2, 3).

Testing:
X0.left = X2

==> X2.left = nil
==> X2.right = X3

X3.val = 1
X0.right = X4
X4.val = 0
X1.left = X2
X1.right = X3
number(X2)

The Þrstgeneralizationillustratesan importantfeature.Although threestatementsincluding 'X3.val =
1' matchedthe Þrstdisjunctof number,only two wereremoved.The digit 1 occurselsewherein the
descriptionof (2, 3). It is referredto by the statementX1.right = X3. Therefore,a descriptionof X3
must remainin the trial. However,this hasnot preventedthe descriptionof X2, the left part of X0,
from being generalized.

Is
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X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>

recognized by the concept? yes

The programshowsthe trainerthe pair (4, 5) which is a valid exampleof less.So Marvin knowsthat
the generalization was consistent.

Testing:
X0.left = X2

==> X2.left = nil
==> X2.right = X3
==> X3.val = 1

X0.right = X4
X4.val = 0
X1.left = X2
X1.right = X3
number(X2)
digit(X3)

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 1>>; right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 1>>;  right: <val: 0>>

recognized by the concept? no

However,thenextgeneralizationthatit makesis not.WhenX3 is generalizedto anydigit, theprogram
constructthe pair (6, 6). This is obviouslynot an instanceof less so Marvin mustmakethe trial more
speciÞc.

Testing:
X0.left = X2

==> X2.left = nil
==> X2.right = X3
==> X3.val = 1

X0.right = X4
==> X4.val = 0

X1.left = X2
X1.right = X3
number(X2)
digit(X3)
lessd(X4, X3)

Marvin created the statement'digit(X3)' when it was examining X3.val = 1. That is, a call
TryConceptsWith(X3.val= 1) wasexecuted.Therearetwo conceptswith matchesfor this statement:
digit and lessd. If therewere no preferredorder Marvin might havetried lessdÞrst.However,since
lessdis conjunctive,replacingits implicantsby a statementlessd(X4,X3) would not havecreateda
trial that was a proper generalization of the old one. Thus lessd was ignored. 

Now we seethat lessddoeshavesomeuse.Since the introductionof digit(X3) madethe trial
inconsistent,Marvin looksat the implicantof digit(X3) in orderto makea trial which is morespeciÞc.
Lessd may now be used for that purpose.

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>

recognized by the concept? yes

In fact the trial is now consistentbecauseMarvin wasableto show(4, 5) which is an instanceof less.

38 



Note that normally Marvin would not askabout(4, 5) againbecauseit canrememberthe instancesit
has generated before. This part of its memory has been switched off for this demonstration.

Testing:
X0.left = X2

==> X2.left = nil
==> X2.right = X3
==> X3.val = 1

X0.right = X4
==> X4.val = 0
==> X1.left = X2
==> X1.right = X3

number(X2)
==> digit(X3)

lessd(X4, X3)
number(X1)

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>
X1 = <left: <left: nil; right: <val: 1>>; right: <val: 0>>

recognized by the concept? no

A further generalizationis made.This createsthe instance(4, 2). Up till now it hasbeenpossibleto
ensurethatall removedstatementsarefalsewhenaninstanceis constructed.However,herewe havea
casewhere 'digit(X3)' has been removedbut lessd(X4,X3) insists that X3 is, in fact, a digit. A
removedstatementcanonly be falsiÞedif it is not implied by statementsin the trial. (4, 2) indicates
that the trial is inconsistent again, since the second element of the pair cannot be just any number.

This disjunct is:
X0.left = X2
X0.right = X4
X1.left = X2
X1.right = X3
number(X2)
lessd(X4, X3)

The inconsistenttrial cannotbe mademorespeciÞcwithout going back to the previoustrial, andno
more generalizationscan be made,so the processendsfor the Þrst disjunct of less. The description
statesthat if two numbershavethesameleft part,but theright partof theÞrstnumberis lessd thanthe
right part of the second then less is true.

Show me an example of less: (Þve, six)

To teach Marvin the second disjunct, the trainer shows the pair (5, 6).

Testing:
X0.left = X2
X2.left = X3

==> X3.left = nil
==> X3.right = X4

X4.val = 1
X2.right = X5
X5.val = 0
X0.right = X4
X1.left = X6
X6.left = X3
X6.right = X4
X1.right = X5
number(X3)
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Is
X0 = <left:

<left: <left: <left: nil; right: <val: 1>>;  right: <val: 0>>;  right: <val: 0>>;
             right: <val: 1>>
X1 = <left:

<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 1>>;
             right: <val: 0>>

recognized by the concept? yes

The Þrst generalization creates a concept which construct the pair (9, 10), thus it is consistent.

Testing:
X0.left = X2
X2.left = X3

==> X3.left = nil
==> X3.right = X4
==> X4.val = 1

X2.right = X5
X5.val = 0
X0.right = X4
X1.left = X6
X6.left = X3
X6.right = X4
X1.right = X5
number(X3)
digit(X4)

Is
X0 = <left:

<left: <left: <left: nil; right: <val: 1>>;  right: <val: 1>>;  right: <val: 0>>;
              right: <val: 0>>
X1 = <left:

<left: <left: <left: nil; right: <val: 1>>;  right: <val: 1>>;  right: <val: 0>>;
              right: <val: 0>>

recognized by the concept? no

The next trial constructs(12, 12) which is not consistentandmustbe mademorespeciÞcjust aswas
done in the Þrst disjunct.

Testing:
X0.left = X2
X2.left = X3

==> X3.left = nil
==> X3.right = X4
==> X4.val = 1

X2.right = X5
==> X5.val = 0

X0.right = X4
X1.left = X6
X6.left = X3
X6.right = X4
X1.right = X5
number(X3)
digit(X4)
lessd(X5, X4)

Is
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X0 = <left:
<left: <left: <left: nil; right: <val: 1>>;  right: <val: 0>>;  right: <val: 0>>;

             right: <val: 1>>
X1 = <left:

<left: <left: <left: nil; right: <val: 1>>;  right: <val: 0>>;  right: <val: 1>>;
             right: <val: 0>>

recognized by the concept? yes

The new trial constructs (9, 10) again.

Testing:
X0.left = X2

==> X2.left = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val = 1
==> X2.right = X5
==> X5.val = 0

X0.right = X4
X1.left = X6

==> X6.left = X3
==> X6.right = X4

X1.right = X5
==> number(X3)

digit(X4)
lessd(X5, X4)
less(X2, X6)

Is
X0 = <left:

<left: <left: <left: nil; right: <val: 1>>;  right: <val: 0>>;  right: <val: 1>>;
             right: <val: 1>>
X1 = <left:

<left: <left: <left: nil; right: <val: 1>>;  right: <val: 1>>; right: <val: 0>>;
             right: <val: 0>>

recognized by the concept? yes

Thenext trial is generatedby a replacementwhich addsa recursivecall to less.This is consistentsince
the instanceshownis (11, 12). Note that 'number(X3)'waseliminatedby this replacement.Statements
which are inferred from the primaries can also take part in statement matching.

Testing:
X0.left = X2

==> X2.left = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val = 1
==> X2.right = X5
==> X5.val = 0

X0.right = X4
X1.left = X6

==> X6.left = X3
==> X6.right = X4

X1.right = X5
==> number(X3)

digit(X4)
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==> lessd(X5, X4)
less(X2, X6)
digit(X5)

Thereplacementwhich added'less(X2,X6)' to thetrial couldnot remove'lessd(X5,X4)' becauseX5 is
referredto elsewherein the conceptso somedescriptionof X5 is required.However,it may now be
possible to relax the restriction on X5 so Marvin tries replacing 'lessd(X5, X4)' in favour of 'digit(X5).'

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 1>>; right: <val: 1>>

recognized by the concept? yes

Since (4, 7) was constructed this relaxation was a good generalization.

MORE SPECIFIC WITH number(X6)
MORE SPECIFIC WITH number(X2)
Testing:

X0.left = X2
==> X2.left = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val = 1
==> X2.right = X5
==> X5.val = 0

X0.right = X4
==> X1.left = X6
==> X6.left = X3
==> X6.right = X4
==> X1.right = X5
==> number(X3)

digit(X4)
==> lessd(X5, X4)

less(X2, X6)
==> digit(X5)
==> number(X6)
==> number(X2)

number(X1)

As Marvin continuesto generalize,it deducesthatX6 andX2 arenumbers.However,neitherstatement
canbeusedto generalizethetrial. This is becauseall their implicantseitherhavebeenremovedalready
or theycannotberemovedat all. Sinceno statementcanberemoved,theadditionof statementscould
not producea propergeneralizationandmayevenmakethetrial morespeciÞc.Thus'number(X6)'and
'number(X2)' are ßagged as out of the concept immediately.

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>
X1 = <left: nil; right: <val: 1>>

recognized by the concept? no

'Number(X1)' does make a more general trial. This time it is inconsistent, constructing (4, 1).

This disjunct is:
X0.left = X2
X0.right = X4
X1.left = X6
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X1.right = X5
digit(X4)
less(X2, X6)
digit(X5)

With 'number(X1)'in the trial, no consistentgeneralizationscan be made,so 'number(X1)'must be
removed.In fact, no moregeneralizationsarepossibleevenafter removingthe statement.The second
disjunctis complete:If the left partof theÞrstnumberis lessthanthe left partof thesecond,andboth
the right parts are digits, then the pair is an instance of less.

Show me an example of less: (one, two)

The two disjunctsof less learnedso far cover all the possibilitiesexcept(1, 2). This is the example
which the trainer shows Marvin to complete the description of less

Testing:
==> X0.left = nil
==> X0.right = X2
==> X2.val = 1

X1.left = X0
X1.right = X3
X3.val = 0
number(X0)

Is
X0 = <left: <left: nil; right: <val: 1>>; right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 0>>

recognized by the concept? yes

The Þrst trial constructs (2, 4) which is valid.

Testing:
==> X0.left = nil
==> X0.right = X2
==> X2.val = 1

X1.left = X0
X1.right = X3

==> X3.val = 0
number(X0)
digit(X3)

Is
X0 = <left: <left: nil; right: <val: 1>>; right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 1>>

recognized by the concept? yes

the second trial constructs (2, 5) which is also valid.

Testing:
==> X0.left = nil
==> X0.right = X2
==> X2.val = 1
==> X1.left = X0
==> X1.right = X3
==> X3.val = 0

number(X0)
==> digit(X3)

number(X1)
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Is
X0 = <left: <left: nil; right: <val: 1>>; right: <val: 0>>
X1 = <left: nil; right: <val: 1>>

recognized by the concept? no

The last generalization is inconsistent since it constructs (2, 1).

This disjunct is:
X1.left = X0
X1.right = X3
number(X0)
digit(X3)

TheÞnaldescriptionof thusdisjunctstatesthat if X1 = 2*X0 or X1 = 2*X0+1 thenless is true.This is
more general than strictly necessary, but it does the job.

Show me an example of less: no

Description of less is:
[X0, X1:

[(  X2, X3, X4:
X0.left = X2
X0.right = X4
X1.left = X2
X1.right = X3
number(X2)
lessd(X4, X3)

]
' 

[(  X2, X4, X5, X6:
X0.left = X2
X0.right = X4
X1.left = X6
X1.right = X5
digit(X4)
less(X2, X6)
digit(X5)

]
' 

[(  X3:
X1.left = X0
X1.right = X3
number(X0)
digit(X3)

]
]

Learned in  4.80 secs

Do you want to teach me another concept? yes
What is the name of the concept? max

Thetrainernow tells Marvin that it will learnmax. max(X, Y) is true if X is a list of numbersandY is
the largest number in X

Show me an example of max: (e1, one)
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The Þrst exampleshown by the trainer teachesMarvin about single elementlists. The exampleis
([1], 1). For conveniencelists will be enclosedin squarebrackets(in the text only). The lists are
presented to Marvin as objects with properties 'head' and 'tail' corresponding to 'car' and 'cdr' in LISP.

Testing:
X0.head = X1
X0.tail = none

==> X1.left = nil
==> X1.right = X2
==> X2.val = 1

number(X1)
Is
X0 = <head: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  tail: none>
X1 = <left: <left: nil; right: <val: 1>>; right: <val: 0>>

recognized by the concept? yes
This disjunct is:

X0.head = X1
X0.tail = none
number(X1)

Marvin shows ([2], 2) and thus has learned that if X1 is the only number in X2 then max is true.

Show me an example of max: (e2, two)

The next example shown by the trainer is a pair ([2, 1], 2) in which the head of the list is the maximum.

Testing:
X0.head = X1
X0.tail = X2
X2.head = X3

==> X3.left = nil
==> X3.right = X4
==> X4.val = 1

X2.tail = none
X1.left = X3
X1.right = X5
X5.val = 0
number(X3)

Is
X0 = <head:

<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 0>>;
              tail:

<head: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;
   tail: none>>

X1 = <left: <left: <left: nil; right: <val: 1>>;  right: <val: 0>>; right: <val: 0>>

recognized by the concept? yes

Marvin proceeds as before, making a generalization and showing an instance ([4, 2], 4) which is valid.

Testing:
X0.head = X1
X0.tail = X2

==> X2.head = X3
==> X3.left = nil
==> X3.right = X4
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==> X4.val = 1
==> X2.tail = none

X1.left = X3
X1.right = X5
X5.val = 0

==> number(X3)
max(X2, X3)

Is
X0 = <head:

<left: <left: <left: nil; right: <val: 1>>;  right: <val: 0>>;  right: <val: 0>>;
              tail:

<head: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;
   tail: <head: <left: nil; right: <val: 1>>; tail: none>>>

X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>

recognized by the concept? yes

The next instance shown is ([4, 2, 1], 4). At this point a recursive reference to max has been introduced.

Testing:
X0.head = X1
X0.tail = X2

==> X2.head = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val = 1
==> X2.tail = none

X1.left = X3
X1.right = X5

==> X5.val = 0
==> number(X3)

max(X2, X3)
digit(X5)

Is
X0 = <head:

<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 1>>;
              tail:

<head:  <left: <left: nil; right: <val: 1>>;  right: <val: 0>>;
    tail: <head: <left: nil; right: <val: 1>>; tail: none>>>

X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>

recognized by the concept? yes

([5, 2, 1], 5) is the next instance. Marvin is still creating consistent generalizations.

Testing:
X0.head = X1
X0.tail = X2

==> X2.head = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val = 1
==> X2.tail = none
==> X1.left = X3
==> X1.right = X5
==> X5.val = 0
==> number(X3)
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max(X2, X3)
==> digit(X5)

number(X1)
Is
X0 = <head: <left: nil; right: <val: 1>>;
              tail:

<head: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;
    tail: <head: <left: nil; right: <val: 1>>; tail: none>>>

X1 = <left: nil; right: <val: 1>>

recognized by the concept? no

It Þnally goes too far with ([1, 2, 1], 1). Now the concept must be made more speciÞc.

MORE SPECIFIC WITH less(X3, X1)
Testing:

X0.head = X1
X0.tail = X2

==> X2.head = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val = 1
==> X2.tail = none
==> X1.left = X3
==> X1.right = X5
==> X5.val = 0
==> number(X3)

max(X2, X3)
==> digit(X5)

number(X1)
less(X3, X1)

Is
X0 = <head:

<left: <left: nil; right: <val: 1>>; right: <val: 1>>;
              tail:

<head: <left: <left: nil; right: <val: 1>>;  right: <val: 0>>;
    tail: <head: <left: nil; right: <val: 1>>; tail: none>>>

X1 = <left: <left: nil; right: <val: 1>>; right: <val: 1>>

recognized by the concept? yes

When Marvin learnedless, somereplacementswere not attemptedbecausethey would not result in
propergeneralizations.The introductionof 'less(X3,X1)' doesnot removeanyof its implicantseither,
however since we are now trying to restrict the trial, that doesn't matter.

This disjunct is:
X0.head = X1
X0.tail = X2
max(X2, X3)
less(X3, X1)

With the additionof 'less(X3,X1)', Marvin haslearnedthat if the headof the list is greaterthan the
maximum of the tail then the maximum of the whole list is the head. 

Until now, all the existentially quantiÞedvariablescould be eliminatedby changingpairs of
statements such as

X0.right = X4 ! X4.val = 1
into

X3.right.val = 1
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However, this disjunct of max uses the Þrst genuinely quantiÞed variable, X3.

Show me an example of max: (e4, two)

To teachthenextdisjunctof max thetrainershowsMarvin ([1, 2], 2). If theheadof thelist is lessthan
the maximum of the tail then the maximum of the whole list is the maximum of the tail.

Testing:
X0.head = X2

==> X2.left = nil
==> X2.right = X3
==> X3.val = 1

X0.tail = X4
X4.head = X1
X4.tail = none
X1.left = X2
X1.right = X5
X5.val = 0
number(X2)

Is
X0 = <head:

<left: <left: nil; right: <val: 1>>;  right: <val: 0>>;
              tail:

<head:
    <left: <left: <left: nil; right: <val: 1>>;  right: <val: 0>>;  right: <val: 0>>;
 tail: none>>

X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>

recognized by the concept? yes

([2, 4], 4) is the Þrst instance constructed.

Testing:
X0.head = X2

==> X2.left = nil
==> X2.right = X3
==> X3.val = 1

X0.tail = X4
X4.head = X1
X4.tail = none
X1.left = X2
X1.right = X5

==> X5.val = 0
number(X2)
digit(X5)

Is
X0 = <head:

<left: <left: nil; right: <val: 1>>; right: <val: 0>>;
              tail:

<head:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 1>>;

   tail: none>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;  right: <val: 1>>

recognized by the concept? yes

([2, 5], 5) is the next instance.

48 



Testing:
X0.head = X2

==> X2.left = nil
==> X2.right = X3
==> X3.val = 1

X0.tail = X4
X4.head = X1
X4.tail = none

==> X1.left = X2
==> X1.right = X5
==> X5.val = 0

number(X2)
==> digit(X5)

number(X1)
Is
X0 = <head:

<left: <left: nil; right: <val: 1>>; right: <val: 0>>;
              tail:

<head: <left: nil; right: <val: 1>>;
   tail: none>>

X1 = <left: nil; right: <val: 1>>

recognized by the concept? no

WhenMarvin shows([2, 1], 1), theprogramhascreatedan inconsistentgeneralizationby introducing
'number(X1)'.

Testing:
X0.head = X2

==> X2.left = nil
==> X2.right = X3
==> X3.val = 1

X0.tail = X4
X4.head = X1
X4.tail = none

==> X1.left = X2
==> X1.right = X5
==> X5.val = 0
==> number(X2)
==> digit(X5)

number(X1)
less(X2, X1)

Is
X0 = <head:

<left: <left: nil; right: <val: 1>>;  right: <val: 0>>;
              tail:

<head:
<left: <left: nil; right: <val: 1>>;  right: <val: 1>>;

   tail: none>>
X1 = <left: <left: nil; right: <val: 1>>; right: <val: 1>>

recognized by the concept? yes

It qualiÞesthis generalizationby addingless(X2,X1). The instance([2, 3], 3) indicatesthat thetrial is
consistent once again.

Testing:
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X0.head = X2
==> X2.left = nil
==> X2.right = X3
==> X3.val = 1

X0.tail = X4
==> X4.head = X1
==> X4.tail = none
==> X1.left = X2
==> X1.right = X5
==> X5.val = 0
==> number(X2)
==> digit(X5)
==> number(X1)

less(X2, X1)
max(X4, X1)

Is
X0 = <head:

<left: <left: nil; right: <val: 1>>; right: <val: 0>>;
      tail:

<head:
<left: <left: nil; right: <val: 1>>; right: <val: 1>>;

   tail:
<head: <left: nil; right: <val: 1>>;
   tail: none>>>

X1 = <left: <left: nil; right: <val: 1>>; right: <val: 1>>

recognized by the concept? yes

The trial is generalizedfurther with max(X4, X1). The instanceconstructedis ([2, 3, 1], 3) which is
valid.

This disjunct is:
X0.head = X2
X0.tail = X4
less(X2, X1)
max(X4, X1)

Show me an example of max: no
Description of max is:
[X0, X1:

X0.head = X1
X0.tail = none
number(X1)

' 
[(  X2, X3:

X0.head = X1
X0.tail = X2
max(X2, X3)
less(X3, X1)

]
' 

[(  X2, X4:
X0.head = X2
X0.tail = X4
less(X2, X1)
max(X4, X1)

]
]
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Learned in  5.83 secs
Do you want to teach me another concept? no
End of run

In fact the target has been reached. 
A fourth disjunct is necessaryto saythat if the headis equalto the maximumof the tail thenthe

maximumis thehead(or themaximumof thetail). This is not shownheresincethe learningsequence
is much the same as the other disjuncts of max.
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5

A Tour Through Marvin

Marvin is the resultof severalstagesof evolution.Originally, the programwaswritten in Prolog,but
the latestversion,which is describedin this chapter,is implementedin Pascal.CurrentlyMarvin runs
on a VAX 11/780- UNIX system.The entireprogram,including dataareasruns in about80K bytes
and the source consists of approximately 2200 lines of Pascal code.

At its highest level Marvin looks like this:

Marvin:
look at world;
repeat

learn new concept
remember concept
ask trainer   'Do you want to teach me another concept?'

until  answer = no

Marvin's world is a Þle containingthe descriptionsof all the objectsit can seeduring one training
session.The world may alsocontainthe deÞnitionsof conceptswhich havebeenlearnedin previous
sessions.Marvin beginsby readingtheworld Þleandthenit repeatedlyasksthetrainerto teachit new
conceptsbasedon the objects it can see.Once a conceptis learned,it is storedin an associative
memory.

5.1  Learning Disjunctive Concepts

Marvin learnsdisjunctiveconceptsby learningoneconjunctionat a time. It beginsby askingtrainerto
showan exampleof the conceptto be learned.This exampleis usedto learnoneconjunctionof the
entireconcept.As we haveseen,a sequenceof trial conceptsis generatedandtesteduntil the targetis
reached.When it hasÞnished,Marvin assumesthat one conjunctionhasbeenlearnedand asksthe
trainer to show it a new exampleso that the programcan learn anotherconjunction.This can be
summarized as follows:

learn:
ask  'What is the name of the concept? '
read conceptname 
Look up name in program's dictionary
repeat

ask  'Show me an example of the concept'
read example
if  example = no  then

the complete concept has been learned
else LearnConjunction(conceptname, example)

until  complete concept is learned
print  description of concept

Marvin Þrstasksthe nameof the concept.It looks up this namein a dictionary to seeif the nameis
alreadyknown. If it is this meansthat the trainerhasalreadytaughtMarvin part of the concept.The
conjunctionaboutto be learnedwill beappendedto theexistingdescription.If thenameis not known
then a new entry is made in the dictionary.

Thedictionaryis implementedasa hashtable.Eachentryassociatedwith a conceptnameis a pair
consistingof theformal parametersof theconceptandits deÞnition.An entrymayberepresentedby a
Pascal record:



concept       = record
formal: list of variable;
deÞnition: list of conjunction

end

The deÞnition is a list of conjunctions. Each new conjunction is appended to the end of the list.
Thelearningalgorithmbeginswith a call to LearnConjunction which,asthenamesuggests,learns

one conjunction of the concept description.

LearnConjunction(ConceptName, Example)
description := primary(Example)
Trial:= create(description)
generalize(Trial)
simplify(Trial)
remember(Trial)

Trial and description are global variables,known to the whole program.The actionsperformedby
LearnConjunction are:

¥ The primary statementsare constructedfrom the training instance.This is done by procedure
primary which alsogeneratesthe list, Args, of universallyquantiÞedvariableswhich will become
the formal parametersof theconceptif this is theÞrstconjunctionto be learned.Theexistentially
quantiÞed variables, exvars, are also created.

¥ The list of statementswhich form the descriptionof the training instanceis thenusedto create a
conjunction which will become the initial trial.

¥ The trial is then generalized. This procedure is the heart of the learning algorithm.

¥ Once the target concepthas been learned,it is simplified, that is, redundantstatementsand
variables are removed.

¥ Finally, theconjunctionis rememberedby updatingtheassociativememory.This involvesadding
the new statements in the conjunction to the index.

5.2  Creating Descriptions of Concepts

TheÞrstactionwhich Marvin mustperformwhentrying to learna conceptis to convertthedescription
of aneventinto a representationthatit canmanipulate.Thatrepresentationis Þrstorderpredicatelogic.
Eachobject in the training instanceis assigneda uniquevariablenamewhich the systemwill useto
refer to it. This is accomplishedby theprocedureprimary which scansthroughtheobjectsin a sample
event and describes each in turn.

primary(Example)
for each  object  in  Example,

create a variable, X to represent object
 if  X is identical to another object, Y  then

Create an identity statement X = Y
Add the statement to the isin list of X and Y

else describe(X)
return  description

An objectmayappearmorethanoncein anevent.If this happensthenanidentity relationbetweenthe
variablesrepresentingtheobjectis created.For example,if we appenda list, L, ontotheemptylist, nil,
thentheresultis identicalto L. A trainingexampleto teachthis caseof append maybe (nil, L, L). The
statement X2 = X1 will be generated to indicate that the second and third arguments are identical.

Eachvariablehasan isin list which is a list of all thestatementsthat thevariableoccursin. As we
will seelater, this information is usedby the learningalgorithm.An object is describedby making
assertionsaboutthe valuesof its properties.Eachproperty:value pair in the object to be describedis
taken in turn and a primary statement is constructed from that pair.
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describe(ObjectName)
for each  property:value pair  in  object,

Create a statement ObjectName.property = V
 if  value is an object  then

if  object has been described before  then
V = variable name given previously

else
V = new variable to represent the object

describe(V)
Add the statement to the isin lists of its variables

Note that describe is recursive.If the valueof an objectis itself an objectthenthe valuemustalsobe
described.However,Marvin musttakecarenot to describethe sameobjecttwice. For example,there
may be two brothers:

Fred = <age: 12; father: Jack>
Bill = <age: 14: father: Jack>

and
Jack = <age: 38; wife: Jill>

To create primary statementsfor this example Marvin would Þrst describe Fred. During this
description, Jack would also be described.

X0.age = 12
X0.father = X2
X2.age = 38
X2.wife = X3

  . . .

Bill's turn is next, but Jack has already been described so the new statements created are simply:

X1.age = 14
X1.father = X2

A list mustbekeptwhich containsthenamesof all theobjectsthathavebeendescribedso far. In this
way we do not createdtwo descriptionsof thesameobject,andin thecaseof two objectswhich refer
to each other, the program does not get caught going around a circular list.

If the conceptbeing learnedis brothers then X0 and X1 becomethe formal parametersof the
concept(i.e. the universallyquantiÞedvariables)and X2, X3 etc. becomethe existentiallyquantiÞed
variables (exvars).

Thedescription of aneventis a list of thestatementsin thecurrenttrial (aswell asthosethatwill
be removedduring the generalizationprocess).A statementmay be representedby the following data
structure:

statement     = record
state: integer;
implicants: list of statement;
predicate-name: word;
args: list of value

end

Ratherthanphysically removingstatementsfrom the description,the learningalgorithmchangesthe
state of the statement.The stateÞeld of a statement,S, keepsa count of the numberof statements
implied by S which arein the trial. If thestateis 0 thenS is in the trial, sinceit hasnot beenreplaced
by anystatementwhich it implies.If thestateis a positivenumberthenit hasbeenreplacedby at least
one other statement.

Sometimes,a replacementwill fail. A new statementmay be introducedto replaceits implicants.
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However,this statementmayresultin a trials which canneverbeconsistentaslong asit is partof the
description.When this occursthe new statementis removed.This is indicatedby a stateof -1. In
Chapter 4 the statements which had non-zero states in the description were marked by an arrow ==>.

The implicants Þeld is a list of the statementswhich imply S. Primary statementshave no
implicants. However, statementswhich are introducedby a replacementoperationhave, as their
implicants, the statementswhich they replace. Args is the list of actualparameterswhich may be
variables,selectorsor constants.Valueshavetype tagsassociatedwith themso that the programcan
determinethe type of eachargument.Selectors,distinguishedby a SEL tag, havetwo attributes:obj
and prop which indicate the the property prop is being selected in the object obj.

As an example of a statementstructure, consider append(X0.tl, X1, X2.tl). A graphical
representationof this is shownin Figure5.1.Primarystatementshavethesameinternalstructure.For
example,X0.colour = red is representedby the structurein Figure5.2. Oncethe primary statements
havebeenconstructed,a new conjunctionis created.A conjunctionis representedby the following
structure:

conjunction   = record
alternatives:  list of conjunction
exvars:  list of variables;
description:  list of statement;

end

Exvars is a list of theexistentiallyquantiÞedvariableswhich appearin theconjunction.Description is
the list of statementsin the conjunctionandalternatives is the list of remainingconjunctionsfor the
concept.

0

implicants

append

tl tl

sel

var 0 var 1

var 1 sel

 

Figure 5.1. append(X0.tl, X1, X2.tl)

The procedurecreate, called by LearnConjunction, allocatesa new record and sets exvars and
description to the valuesreturnedby primary. Rememberthe initial descriptionis the list of primary
statements.Thevalueof alternatives is nil until a conjunctionfollowing thepresentoneis learned.The
new conjunction is placed as the last alternative in the concept structure described earlier.
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0

equal

colour

sel

red

var 0
 

Figure 5.2. X0.colour = red

To completethis discussionof therepresentationof concepts,Figure5.3showstheentiredatastructure
for the trial concept of number in Chapter 4.

X0.left = X1

X1.left = nil

X1.right = X2

X2.val = X1

X0.right = X3

X3.val = X0

number(X1)

digit(X3)

quantified variables

X2 X3

im
pl

ic
an

ts
 of

 n
um

be
r

implicant
of digit

 

Figure 5.3. The last trial of number
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5.3  Memory

The function of the memory is to enableMarvin to recognizepatternsin the examplesit hasbeen
shown.This is doneby recallingconceptswhich describea part of the world that it cansee.Marvin's
internalrepresentationof thesceneis thesetof primarystatements,T0. In Section3.4 we sawthat if a
concept,C, containsa disjunctwhich matchesa subsetof a trial Ti thenC is true.Thusthemain r™le
of theassociativememorywill be to assistthegeneralizationprocedureto look for subsetsof the trial
description which match disjuncts of concepts in memory.

Marvin's memory consists of a list of associations:

association    = record
stmnt: statement;
UsedIn:  list of concept

end

Eachassociationrecordsthefact thata statementwhich matchesstmnt is usedin all of theconceptsin
the list, Usedin.

After eachconjunctionin a conceptis learned,a procedure,index, is calledto updatethememory.
Each statement in the new conjunction is taken in turn and placed in the index. It operates as follows:

index(statement, concept)
if  memory is empty  then  

memory := NewAssociation(statement, concept)
else

ConceptList:= lookup(statement)
 if  ConceptList empty  then

add NewAssociation(statement, concept) to memory
 else if  concept  not in  ConceptList  then

add concept to ConceptList

The function NewAssociation simply createsa new associationrecordas deÞnedabove.If Marvin's
memory is empty then a new associationis addedimmediately.OtherwiseMarvin looks up the
statementin the index to thememory.Theprocedurelookup returnsthe list of conceptswhich contain
statements which match the parameter given.

lookup(stmnt1)
for each  pair <stmnt2, UsedIn>  in  memory,

if  match(stmnt1, stmnt2)  then
return  UsedIn

Theprogramjust scansthroughthe list which representsmemorylooking for a match.For thescaleof
problemswhich havebeenusedto testMarvin, a linearsearchhasprovedadequate.However,if a very
largedatabaseis required,fasterlookup techniquescouldbeused.A methodfor improving lookup is
discussed in Chapter 7.

The function match performsthe patternmatchingbetweenstatements.It usesthe uniÞcation
algorithm outlined in Section 3.3.

match(stmnt1, stmnt2)
if  stmnt1.predicate-name = stmnt2.predicate-name
and length(stmnt1.Args) = N
and length(stmnt2.Args) = N
then  for  i  in  1..N,

if not  unify(stmnt1.arg[i], stmnt2.arg[i]) then
return  FALSE

Two statementsmatchif theyhavethesamepredicatenameandall their argumentsunify. As wasseen
earlier, variablesare namedwith respectto a particularbinding environment,so a completecall to
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unify must include the environments of the statements being matched. For example,

unify(stmnt1.arg[i], env1, stmnt2.arg[i], env2)

When searchingfor a matchbetweenstatementsin the trial and statementsin the index, env1 will
representtheenvironmentcreatedfor theprimarystatementsby primary. Thevariablesin env2 will be
instantiated by the pattern matching procedure.

Let us now give a complete deÞnition of unify:

unify(term1, env1, term2, env2)
if  term1 is a variable  then  

if  term1 is bound to value, v in env1  then
return  unify(v, env1, term2, env2)

else
bind(term1, term2, env1);
record the substitution for term1
return  TRUE

else if  term2 is a variable  then  
return  unify(term2, env2, term1, env1)

else if  term1 is same type as term2  then  
case type of

ATOM:  return (term1 = term2);
NUMBER:  return (value of term1 = value of term2);
SELECTOR:

if  term1.property = term2.property  then  
return  unify(term1.obj, env1, term2.obj, env2)

else return  FALSE
else return  FALSE

If eithertermis a variablethenthevaluesmustbelookedup in thesetof substitutionsor boundif they
are not alreadybound.Sinceatomsare storedonly once,referencesto atomswill matchonly if the
point to thesameatom.Two referencesto numbersmatchonly if thenumericalvaluesreferredto are
the same. Selectors match if the property name is the same and the variables in the selector match.

Whena substitutionis madeit is recordedin a specialstackcalledthe trail. This is donefor the
beneÞtof thegeneralizationprocedurewhich,at certaintimes,will needto backtrackandundosomeof
the substitutions created by the pattern matcher.

So far in this section we have used the terms substitution and binding environment without
describinghow theyareimplemented.Themethodusedis well known to compilerwriters.A binding
environmentis representedby a groupof slots,calleda frame, on a stack.Eachvariableis associated
with oneslot in theframe.VariableXn is boundto thevaluestoredin position,frame + n, in thestack,
where frame points to the base of the binding environmentof that variable. For example, the
substitution { X0/RED, X1/BLUE, X2/GREEN}  is represented as

Green

Blue

Redframe --->

frame + 1

frame + 2

 

The advantageof a stackimplementationis that it makesbacktrackingvery easy.When it becomes
necessaryto changethebindingenvironmentbackto a previousstate,we needonly changethe frame
pointer.
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5.4  The Generalization Algorithm

The goal of the generalizationalgorithmis to look for replacementswhich createa new trial which is
more generalthan the currentone. The programscansdown the list of statementswhich form the
description.If a statementhas not beenreplacedpreviously (i.e. state# 0), the algorithm tries to
introduce new statementswhich refer to a concept whose description contains a match for the
statement.

generalize(description)
for  each statement  in  description,

if  statement.state !  0  then
TryConceptsWith(statement)

The statement which is being used to look for concepts is called the focus (Bruner, 1956).
TryConceptsWith will look up the focus in memory to Þnd the list of conceptswhich contain

statements similar to the focus. In the following procedure, this list is called UsedIn.

TryConceptsWith(focus)
declare global  StmntsOut
recognized:= FALSE
UsedIn:= lookup(focus);
for  each concept  in UsedIn,

if  CheckConcept(concept)  then
recognized:= TRUE

if  recognized  then  return  TRUE
else return  FALSE

CheckConcept is calledfor eachmemberof UsedIn to discoverif anyof theseconceptsrecognizeany
partof thedescription.Thoseconceptswhich do will beusedto generalizethetrial. If no suchconcept
is found then TryConceptsWith returns false.

During the life of TryConceptsWith, somestatementsin the descriptionwill be replacedby new
statements.As a statementis removed,a referenceto it is placedat the headof the list StmntsOut.
TryConceptsWith will be called recursivelyso it should be rememberedwhen anothercall to it is
encountered,that eachinvocationof TryConceptsWith createsa new StmntsOut.The new StmntsOut
will remainin existenceonly aslong astheinvocationof TryConceptsWith which createdit remainsin
existence.

CheckConcept(concept)
for  each disjunct  in concept,

if  Contains(disjunct)  then return  TRUE
return  FALSE

CheckConcept tries eachdisjunctof the conceptto seeif the trial Contains a matchfor that disjunct.
When a match is found, the procedure returns true. If no match is found then it returns false.

Contains implementsa searchfor a subset,M, of the descriptionwhich matchesa conjunction.
Contains is implementedas a recursiveprocedurein order to perform a depth Þrst searchfor all
possiblematchesbetweena disjunctof a knownconceptandthedescriptionof the trainingevent.The
argumentconjunction is a list of statementsin a conceptwhich is alreadystoredin memory.With each
recursivecall of Contains, theprogrammovesdownthis list, trying to matchits headwith a statement
in thedescription.If theheadof conjunction matchesa statement,S, thenS maybean implicant,so it
is removed. That is, the state indicator of S is incremented by 1.

Contains is thencalledrecursivelyto Þnda matchfor theremainderof theconjunction.If contains
fails, then the programcould not Þnd a completematch for the conjunction.That is, S is not an
implicantso it is restoredto thetrial (thestateindicatoris decremented).ThevariablePartOut records
the statementsthat havebeentemporarily removed.When contains hasfound one completematch,
StmntsOut is partially restoredso that othermatchescanbe found. Note that StmntsOut is usedasa
stack.Since PartOut points into this stack, the assignmentStmntsOut:= PartOut has the effect of
partially cutting back StmntsOut.

When a match fails, the substitutionscreatedduring the patternmatchingoperationsmust be
forgotten. OldSubst is usedto recordthepositionon thestackto which theprogrammustbacktrackin
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orderto forgetthevariablebindings.Noticethatby backtracking,thealgorithmtriesto Þndall possible
matches for the disjunct of a concept.

Contains(conjunction)
if  conjunction = nil then

if  Replacement(StmntsOut, focus) succeeds  then
return  TRUE

else return  FALSE
else

PartOut:= StmntsOut
OldSubst:= Substitutions
 for  each statement  in  description do

if  match(statement, conjunction.head)  then
remove(statement)
if  Contains(conjunction.tail)  then

A complete match has been made
StmntsOut:= PartOut

else restore(StmntsOut, PartOut)
ForgetSubst(OldSubst)

return  TRUE if a least one complete match was found

Whentheprocedurereachestheendof theconjunction,a completematchhasbeenfound.At this point
Marvin will try to Þnish the replacement process by creating a new statement.

Replacement(StmntsOut, focus)
if  focus  not in StmntsOut  then

return  FALSE
S:= CreateStatement(StmntsOut)
if  S = nil then

return  FALSE
if  not  MoreGeneral and not  restricting  then

remove(S)
return  FALSE

if  Consistent(S)  then
TryUnremoved(StmntsOut)
return  TRUE

else return  FALSE

Replacement must perform a number of tests before a new trial can be created.

¥ The focus statementwhich was passedas a parameterto TryConceptsWith must be in the
statements removed.

¥ If theprogramis trying to generalizethetrial, thenit mustinsist thatat leastsomestatementshave
beenremoved,otherwiseit would not be a proper generalization.However, if the programis
attemptingto makethe trial morespeciÞc(restrictingit) thenit doesn'tmatterif no statementcan
be removed.

¥ Oncea newtrial hasbeenformed,it mustbetestedto seeif it is consistent.To do this aninstance
of the trial is shown to the trainer. If the trial is not consistent, it must be made more speciÞc.

CreateStatement(StmnstOut)
Find the arguments of the new statement.
if  there is a  many-to-one binding then return nil
if  TriedBefore(ConceptName, ArgList) then return nil
FindRemovable(StmntsOut)
S:= NewStatement(concept, Args)
append S to description
return  S
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To createthenewstatement,Marvin mustÞndtheactualparametersof thecall from thesubstitutions
producedby thepatternmatcher.It is possiblethat thematchcontainsa many-to-onevariablebinding.
At presentMarvin is incapableof dealingwith this situation.Theargumentsfor thenewstatementcan
be found quite easily by looking up the values bound to each formal parameter of the concept.

FindArgs:
ArgList:= nil
for  each argument  in formal parameters of concept,

Þnd value, v bound to argument in substitution
if  v  in Arglist  then

many-to-one:= true
return  FALSE

else place v in ArgList
return  ArgList

TriedBefore Þndsout if the sameconcepthasbeenusedto recognizethe sameeventbefore.If this is
true then the statementbeing createdwill be a duplicateof one alreadyin the description.A new
statementshouldnot be createdif thereis a statementalreadyin the descriptionwhich hasthe same
predicate name and an identical argument list. So we deÞne TriedBefore as,

TriedBefore(ConceptName, Arglist)
if there exists  a statement, S
such that  S.predicate-name = ConceptName
and S.args = Arglist
then  return  TRUE

The programmustalsocheckthat the statementsin StmntsOutmay be removedwithout violating the
condition that the trial must be able to specify a complete object.

Supposea training instanceshownby the traineris theevent(fred, bill, jack) wherefred, bill and
jack arethenamesof objects.Whentheprimarystatementsaregeneratedthesenamesarereplacedby
the variables(X0, X1, X2). Thesewill becomethe formal parameters of the new concept,onceit has
beenlearned.Obviously,theremustalwaysbesomestatementin thetrial which describeseachformal
parameter.

FindRemovable(StmntOut)
for  each statement, S  in  StmntsOut,

if  CannotRemove(S)  then  restore(S)

Most of theprimarystatementswill havethe form Xn.property = value. If thereis a statementsuchas
X0.head = X3 whereX3 is anexistentiallyquantiÞedvariablethenthis statementwill becalleda parent
of X3. (The statementhasintroducedX3 to the world.) X3 mustbe describedsomewhere;thus if the
programattemptsto removea statementcontainingX3 anda parentof X3 is still in the trial thenthat
statement may not be removed unless there are other references to X3 elsewhere in the trial.

CannotRemove(statement)
if  statement is a primary  then

return  NoOtherRef(second argument of statement)
else for  each argument  in  statement,

if  argument is a formal parameter of target
and NoOtherRef(argument)
then  return  TRUE
else if  ParentIn(statement) and NoOtherRef(argument) then

return  TRUE
return  FALSE

Let us describethe proceduresfor Þndingthe parentof a variableand for Þndingif thereare other
references to it.
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ParentIn(value v)
L:= list of statements which contain variable, v
for  each statement, S  in  L,

if  s = Xn.prop = v  and S  in Trial  then  return  TRUE

The isin list of v is beingusedto Þndout which statementscontaina referenceto v. Thesestatements
are then examined to see which one is the parent of v.

To Þndout if a variableis referredto in otherstatements,Marvin scansthroughthe isin list of v
and checks if v is a member of the argument list one of the statements which is in the trial.

NoOtherRef(v)
if  v  in Args  then  return  FALSE
L:= list of statements containing v
for  each statement, S  in  L  and S  in  Trial,

if  member(v, arguments of S)  then  return  FALSE
return  TRUE

Args is thelist of argumentsof thestatementwhich is aboutto beaddedto thetrial. If v is in Args then
it doesn't matter if there are no other references elsewhere.

Finally, the new statementcanbe constructedandaddedto the description.The argumentsfound
by FindArgs becomethe parametersto of the statements.StmntsOut containsthe list of implicants.
Oncea recordfor the statementhasbeenallocated,it mustbe placedin the occurrencelist of eachof
the variables contained in the statement.

NewStatement(concept, Args)
allocate record for new statement, S
predicate-name of S:= concept;
S.Arguments:= Args;
S.Implicants:= copy of StmntsOut;
S.state:= 0
for  each argument of S,

place S in occurrence list of argument
return  S

The trial createdby the replacementwhich hasjust takenplacemustbe checkedto ensurethat it is a
propergeneralizationof the previoustrial. This canbe guaranteedif at leastoneof the implicantsof
the new statementhasbeenremovedfor the Þrst time. A statementmay alreadybe outsidethe trial
because it is the implicant of another statement.

MoreGeneral:
for each  statement  in  StmntsOut,

if  statement has just been removed  then  return  TRUE

If a statementis in StmntsOut then its stateindicator hasjust beenincrementedby 1. If the stateis
equal to one then the statementhasnot beenremovedpreviously.Thereforethe replacementbeing
attempted now generalizes the trial because a statement has been removed.

The programnow hasa trial which it can test to seeif it is consistentor not. This is oneof the
functionsof Consistent. If the trial is consistentthen further generalizationswill be attemptedwhen
Consistent returns.If it is not consistent,Consistent will try to constructa morespeciÞctrial by using
the implicants of the new statement to add more information to the trial

Consistent(NewStatement)
if  experiment with trial fails  then

for  each statement  in  StmntsOut,
if  statement is not in  trial  then

restore(statement)
if  TryConceptsWith(statement)  then

return  TRUE
else remove(statement)

remove(NewStatement)
return  FALSE

else return  TRUE
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This algorithmchooseseachimplicantof thenewstatementin turn andtriesto introducenewconcepts
with theseimplicants.Sincethis is recursive,TryConceptsWith will createa newtrial andtestit. If this
oneis alsoinconsistent,theprogramwill checktheconsistencyof thattrial aswell. If all theseattempts
fail thenthenewstatementmustbeabandonedsinceit wasimpossibleto createa consistenttrial which
includesNewStatement. WhenNewStatement is removed,thestateindicatoris setto -1. This allowsthe
statement to be used as the focus for TryConceptsWith, but excludes it from the trial.

WhenMarvin waslearningless we sawthatnot all thestatementsin StmntsOut couldberemoved.
X3.val = 1 could not be removedwhen number(X2) was introducedbecauseX3 was referredto by
morethanoneobject.However,after thereplacementwascompleted,thestatementcouldberemoved.
TryUnremoved looks at the implicantsof a new statementto seeif thereareany primary statements
which can be removed after the replacement has been completed.

TryUnremoved(StmntsOut)
for  each statement  in  StmntsOut,

if  statement is a primary  and it is in  trial  then
relax(statement)

This codebearssomeresemblanceto partsof Consistent exceptthat Marvin is now relaxing some
constraints on the concept rather than introducing new ones.

relax(statement)
if  CanNotRemove(statement)  then  return
else remove(statement)
for  each implicant of  statement,

if  implicant is not in  trial  then
restore(implicant)
if  TryConceptsWith(implicant)  then

return
else remove(implicant)

restore(statement)

TheÞnalprogramto considerin the learningalgorithmis thepartof theprogramwhich performs
experiments.

PerformExperimentWith(trial)
experiment(trial)
ask  'Is object recognized by concept?'
if  answer is  'yes'  then  return  TRUE
else return  FALSE

Experiment invokesthe proof procedureswhich will constructan instanceof the concept.Thereare
two phasesin generatinganinstance:constructinganevent,andensuringthat theeventis onethatwill
enable Marvin to learn something new.

5.5  Executing Concepts as Programs

In orderto producea trainingexample,Marvin treatsa conceptdescriptionasa program.Theoutputis
an event which is recognizedby the concept.In Section 3.2 we discussedthe semanticsof the
description language. Now let us look in detail at how objects are constructed.

An objectis constructedby theactionsof theprimarystatements,which cansometimesbethought
of as assignmentstatements.When an argumentof the '=' predicateis an unboundvariable (or
property)a value is assignedto it. The otherconstructsof the language,the conceptcalls, AND and
OR connectives, control the execution of the primaries.

In the Þrst stageof our tour throughMarvin's objectconstructionprogram,we will look at how
objects and values are represented during execution.
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5.5.1  Binding Environments and Stacks

Earlier we sawthat a stackwasusedto storesubstitutionsfor variablesduring patternmatching.The
same sort of mechanism can be used to represent substitutions during the execution of a program.

Remember that the deÞnition of append is:

[X0, X1, X2:
X0.value = nil !  X2 = X1 !  list(X1)

' 
[(  X3:

   X0.hd = X3
!  X2.hd = X3
! number(X3)
! append(X0.tl, X1, X2.tl) (C1)

]
]

During the executionof append, the variablesX0, .., X3 will havesomevaluesassociatedwith them.
This associationis implementedby placinga referenceto thevalueof variableXn in thestackposition,
frame + n, where frame is the baseof the binding environmentof this call to append. Eachtime a
conceptis called, spacefor its binding environmentmust be allocatedon the stack. This will be
described shortly.

Consideringappend(X0, X1, X2) asa procedurecall in a conventionallanguage,X0, X1 andX2 are
valueswhich arepassedto append to be boundto the formal parametersof the procedure.Of course,
our purposeis to havethe interpretersupply valuesfor X0, X1 and X2. This is indicatedby asking
Marvin to prove

[(  X0, X1, X2: append(X0, X1, X2)]

Whentheinterpreterencounters( Xn, a dummyvalue,calleda QVAR, is createdanda referenceto it is
placedin the stackas the valueof Xn. QVARs are intermediatestoragelocationswhich, initially, are
empty.At somepoint in the executionof the concept,a QVAR will be assigneda valueby a primary
statement.

Implementation Note: QVARs may be allocatedoff a stack so that the spacethey occupy may be
reclaimed after use.

5.5.2  Executing Primary Statements

Suppose the interpreter is executing the statement:

X0.colour = red

X0 is anobjectwhich is going to beconstructedwith a propertycolour whosevalueis red. Thevalue
of X0 is representedby a QVAR, Q, which is unboundinitially. In orderto executethestatement,a new
objectmustbe created,anda property:valuepair mustbe put into the objectwith the valuescolour:
red inserted. Part of the structure resulting after completing this statement is shown in Figure 5.4.

The interpretercalls the function equiv to executean equivalencestatement.It tries to Þnd the
valuesof the left andright handarguments.If it cannotÞnda valuethena new QVAR is created.For
example,sinceX is representedby anunboundQVAR, whenMarvin looksfor thevalueof X0.colour, a
new object is constructedwith the propertycolour. The value of colour is not known yet, so a new
QVAR is created to represent it.
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Figure 5.4. Executing X0.colour = red

equiv(value1, value2)
x:= value-of(value1)
y:= value-of(value2)
if  x or  y are nil  then  return  nil
else if  x is an unbound QVAR then

x:= y and put x on trail
return  TRUE

 else if  y is an unbound QVAR then
y:= x and put y on trail
return  TRUE

 else both x and y are bound
return  equal(x, y)

In our example,equiv is calledthus:equiv(X0.colour, red). TheÞrsttaskof theprocedureis to discover
what the valuesof its argumentsare.X0.colour may alreadybe bound,if it is not, a QVAR mustbe
created to represent it.

value-of(x)
if  x = nil then return nil
else case  type(x) of

ATOM : if  x is the name of an object then
  return  object

  else return  x
NUMBER, OBJECT: return  x
VARIABLE: return  value-of(stack[frame + n])
SELECTOR: return  value-of(get(value-of(obj, prop)))
QVAR: return  val-of-qvar(x)

If x is a variablethenthe valueboundto x mustbe found.This canbe doneby locatingthe stackslot
associatedwith the variable.The stack is an array of values,thus the value of the variable,Xn, is
stack[frame + n] where,frame, is the index of the baseof the binding environmentfor the current
concept call.

If x is a selectorof theform Xn.prop, thenthevalueof Xn mustÞrstbefound.A procedure,get, is
then called to get the value associated with the property, prop, in the value of Xn.

During executionit is possibleto build up a chainof QVARs whereoneQVAR pointsto another.
Val-of-qvar returns the value at the end of the chain.

Get is thefunctionwhich createsobjects.Theargumentsof get areobj, thenameof anobject(that
is, a variable)andprop the nameof a property.If obj is not boundthena new objectis createdanda
pair createdwith prop in the propertyÞeld.The value Þeld of the pair is not yet known, so a new
QVAR is created and put in.

65



get(obj, prop)
if  obj = nil then return nil
else if  obj is a word or number then return nil
else if  unbound(obj) then

obj:= new object
add obj to trail
make a new property:value pair

property := prop and value := new QVAR
return  QVAR

else if  (  pair <property:value> in  object then
return  value

else if  obj not  complete then
make a new property:value pair

property := prop and value := new QVAR
return  QVAR

else return nil

A new pair is also createdif the object exists,but is still 'under construction'.An object must be
completely speciÞed within one concept.

To complete the description of equiv we now specify the meaning of equal

equal(value1, value2)
x:= value-of(value1)
y:= value-of(value2)
if  x or  y are nil  then  return  FALSE
case type(x) of

QVAR, ATOM: return  TRUE if  x and y are identical
NUMBER: return  TRUE if  numerical values are same
OBJECT: return  TRUE if for each  pair p1:v1 in  x,

(  pair p2:v2 in  y:
p1 = p2 and equal(v1, v2)

5.5.3  The Control of Execution and Backtracking

The executionof primary statementsinstantiatesobjects.The remainderof the interpreteris involved
in controlling the order in which the primaries are executed.

The interpreterexecutesthestatementsin a conjunctionsequentially.If thestatementis a primary
statement,it is evaluated.If the statementis a referenceto anotherconcept,then then execution
environment is modiÞed and execution begins on a new conjunction.

To call a concept, the interpreter performs the following actions:

call(concept, actual-parameters)
bind formal-parameters to actual parameters
D:= Þrst conjunction in concept
save alternatives
make QVARs for quantiÞed variables in D
return  D

We havealreadyseenhow the formal paramatersarebound.Whena conceptconsistsof a numberof
conjunctions,Marvin cannotknow which conjunctionmust be provedso that the entire trial will be
true.Thus,the interpreterwill try to provethe Þrstconjunctionit Þndsandsavesthe rest in casethe
proof is not successful and another alternative must be tried.

In orderto beableto backtrack,quitea lot of informationmustbestored.Whena newconceptis
to be proved,the environmentof the calling concept,the parent,mustbe saved.The following items
are saved as a record, called a control node, on Marvin's control stack:
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frame: When backtracking occurs the system must return to the original binding
environment. Thus the stack frame pointer of the calling concept must be saved.

 
TrailPoint: As well asreturningto the previousbinding environment,QVARs which havebeen

assignedvaluessincethe presentenvironmentwas savedmust be cleared.When a
QVAR is assigned a value, it is placed on a stack called the trail. 

 
alternatives: This pointsto thenextconjunctionto beattemptedwhenbacktrackingreturnsto this

point. 
 

parent: When a conjunction terminates,control must return to the calling concept- the
parent. Thus a pointer to the control node of the parent is saved. 

 
continuation: Apart from knowing which conjunctioncalled the presentone,the interpretermust

know which statement to continue executing from.

Supposethereis a conjunctionP ! Q ! R. BeforeP is executed,the currentenvironmentis saved.
Theframeon thevariablestackis saved.Thecurrenttrail pointeris savedso that if P assignedvalues
to QVARs but eventuallyfailed, thoseassignmentscanbe undone.If P succeeds,the interpretermust
know that it shouldcontinueexecutionat Q. This is thepurposeof the 'continuation'pointer.If Q fails
it may be becauseP bounda variableto a valueunacceptableto Q. In this caseanotherdisjunctof P
shouldbetried in anattemptto producevariablebindingswhich areacceptableto bothP andQ. Thus
before entering P for the Þrst time, one conjunction is selectedfor executionand the remaining
alternativesareplacedon the stack.WhenQ fails, the interpreterwill look for P's alternativeson the
stack.

Figure5.5 showsthe stateof all the stacksduring the executionof append. The explanationsto
follow may becomeclearerby referring to this diagram.It showsa snapshotof the systemwhenthe
Þrst disjunct of number is being executed.It is assumedthat number was called recursivelyby the
seconddisjunctof number which, in turn, wascalledfrom theseconddisjunctof append. Append was
called from the original request to construct an example to show the trainer.
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Figure 5.5. Stack Organization During Execution of append
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C1 andC2 arecontinuationsrecordedon thecontrolstack.Theyrefer to thecorrespondingstatements
markedin thedescriptionsof theconcepts.D1 is theseconddisjunctof numberwhich is analternative
left on the stack in case the Þrst disjunct fails. List is deÞned as:

[X0:
X0.val = none

'
number(X0.hd) ! list(X0.tl)

]

The deÞnition of number is:

[X0:
[(  X1:

   X0.left = nil
! X0.right = X1
! X1.value = 1

]
' 

[(  X1, X2:
   X0.left = X1 (D1)
! X0.right = X2
!  number(X1)
! digit(X2)

] (C2)
]

and digit is

[X0: X0.value = 0 '  X0.value = 1]

Rememberthat one Þeld in a conjunction record contains a list of quantiÞedvariables.Before
execution of the conjunction can begin, each variable must be assigned a new QVAR.

Execute containsthemainexecutionloop for a conjunction.This proceduremovesdownthelist of
statements,D, in the conjunction.As it encountersa primary statement,it is evaluatedby equiv. If a
conceptreferenceis encountered,call is invoked.This savesthecurrentvalueof D on thecontrolstack
andchangesD to the Þrst conjunctionof the calledconcept.Succeed and backtrack alsochangethe
valueof D. Succeed setsD to thecontinuationof theparentandbacktrack setsit to a newalternativeto
try after the proof has failed for previous alternatives.

execute(D)
repeat

successful:= true
while  (D "  nil) and successful do

S:= head of  D
if  S is a primary then

if  equiv(S.arg[1], S.arg[2]) then
D:= tail of D

else
D:= backtrack
successful:= FALSE

else D:= call(S)
if  successful then  D:= succeed

until  CSP = 0

All changesin theenvironmentarerecordedon thecontrolstack.Thecurrentenvironmentis indicated
by the Control Stack Pointer (CSP).When the while loop terminates,a conjunctionmay havebeen
executedor failed. In bothcases,theCSP will bemodiÞed.Beforetheprogramcancontinueexecution
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it mustcheckthat the entireprogramhasnot beencompleted- eithersuccessfullyor unsuccessfully.
Terminationoccurswhenthe control stackis empty.Sinceall the work that the interpretermustdo is
scheduled by the contents of the stack, when CSP = 0, all the work is done.

Let us now considerwhat actionsmust be performedwhen a conjunctionhasbeensuccessfully
executed.

succeed:
while  CSP "  0 do

node:= ControlNode[CSP]
mark QVARs in this node's environment as complete
CurrentFrame:= node.frame
if  node.continuation = nil  then  CSP:= node.parent
else return  node.continuation

Whena concepthasbeensuccessfullyexecuted,theobjectsthat it constructedaremarkedascomplete.
The binding environment is changedto the binding environmentof the parent. If the parent's
continuationis nil, thatis, thereareno moreconditionsto satisfyin theparent,thentheprocedureskips
to the control nodeof the parent'sparent.Otherwise,it returnsthe continuationof the parent.This
becomes the new D in execute.

Theargumentsof a completedconceptaremarkedascompletesothatanotherconceptcannotadd
new pairs to the object.

Whenfailure hasoccurred,Marvin musttry anotherway of Þndingthesolutionby backtracking.It
scans down the control stack, looking for a concept which still has some alternatives left.

backtrack
while  CSP "  0 do

node:= ControlNode[CSP]
if  node.alternatives = nil  then

CSP:= CSP - 1
CurrentFrame:= node.frame

else
clear_trail(node.TrailPoint)
CurrentFrame:= node.frame
D:= Þrst alternative of node
make QVARs for D
node.alternatives:= rest of node.alternatives
return  D

If a conceptwith alternativesis found, a new executionenvironmentmustbe setup. All the QVARs
which whereassignedvaluesin the conjunctionsthat failed mustbe cleared.The QVARs werestored
on the trail. The binding environmentpointer,CurrentFrame,mustbe resetto the new bindings.The
next conjunction to execute is obtained from the alternatives and its quantiÞed variables are initialized.

5.6  Performing Experiments

Being able to constructan eventfrom a conceptdescriptiondoesn'tmeanthat Marvin canperforma
valid experiment.As was seenin Chapter3, Marvin must ensurethat if the trial is inconsistent,the
constructedeventmust not be recognizedby the target.To do this, the statementswhich havebeen
removedfrom thetrial by a replacement(i.e. state" 0) andwhich arenot implied by statementsstill in
the trial, must be false.

Beforesearchingfor aneventto beusedasanexperiment,Marvin performssomepre-processing.
First it simpliÞesthe trial andthenit determineswhich of the statementsremovedmay be madefalse
(or denied). The overall design of the experiment is as follows:
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experiment(trial)
T:= simpliÞed(trial)
Out:= statements to be denied.
repeat

execute(T)
if  denied(Out)  then

output event that has been constructed
else T:= backtrack

The simpliÞedtrial is executedto constructan training event.Denied is thencalledto makesurethat
the statementsin Out areall false. If one is not then the systemmustbacktrackto constructan new
event.Note thatwhenthesystembacktracks,it changesthevalueof T so that it pointsto thegroupof
statements with which it will resume execution again.

A backtracking point is created when a call is made to a concept which has alternative
conjunctions.The procedurebacktrack returnsto the point most recentlyplacedon the control stack.
However, it may be that choosingthe most recentalternativewill not changethe property which
causedthe failure. At presenta very simple (but not very efÞcient)method is used to solve this
problem.Supposea statement,S, in Out is true, that is, execute failed to producean eventwhich the
learning algorithm can use.Another attemptis madeto constructeda useful example.If S is true
following the secondattemptthen Marvin did not backtrackfar enoughsincethe alternativechosen
was not onewhich changedthe propertythat madeS true. ThereforeMarvin must backtrackfurther
and try again.

The procedure denied is quite simple:

denied(Out)
for  each statement  in  Out,

evaluate statement
if  statement is TRUE  then

return  FALSE
return  TRUE

A statement is evaluated by executing it as a simple boolean expression.
A trial is simplified by removingstatementswhich areimplied by otherstatementsof thetrial. For

example,theremay be two statements:less(X0, X1) andnumber(X0). The Þrststatementimplies the
second.If less(X0, X1) is true then number(X0) must be true. Thereforethere is no needto prove
number(X0). Eliminating redundant statements also makes the job of the proof procedure easier.

simpliÞed(Trial)
     for  each statement, S  in  Trial,

 if  ∄ statement, S'  in  Trial: S'.args + S.args  then
    place S in list T

     return  T

StatementS is in the simpliÞed trial, T, if there is no statementS' whoseargumentscontain the
arguments of S as a subset.

A removed statement, S, cannot be made false if:

¥ S is an implicant of a statement,S', in the trial andS' refersto a conjunctiveconcept.S' speciÞes
only one set of values for its arguments, there can be no alternatives.

 
¥ Thestatement,S, is implied by statementsin thetrial. If theimplicantsaretruethenS mustbetrue

also. S is implied by statements in the trial if:

¥ the implicants of S are a subset of the trial.

¥ there is a statement, S' whose arguments contain the arguments of S.
 

¥ S may be a memberof every conjunctionin a conceptwhich is called from the trial. Therefore
there is no conjunction which can be true while S is false. (Case 1 is a special case of this).

 
The procedure ToBeDenied scans the removed statements looking for occurrences of cases 1 and 2.
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ToBeDenied(StmntsOut)
Out:= copy of StmntsOut
for  each statement removed,

if  statement implies conjunctive concept
or  statement is implied by statements in Trial
or  (  a statement which gives a more speciÞc description of event
then  delete statement from Out
return  Out

Sincethe last conditionoccursinfrequently,andis time consumingto detect,an ad hoc approachhas
beenusedto dealwith theproblem.It is ignored!However,if theprogramis incapableof producinga
result becausea statementcould not be falsiÞed- the offendingstatementis assumedto Þt the third
category and is removed from Out.

A complete description of experiment is now:

experiment(Trial)
T:= simpliÞed(Trial)
Out:= ToBeDenied(StmntsOut)
repeat

set up environment for executing T
repeat

execute(T)
if  successful  then

if  denied(Out)  then
output constructed event

else T:= backtrack
until  successful  or cannot backtrack any more
if  not  successful  then

delete statement which caused failure from Out
until  successful

The inner repeat loop representsthe Þrstversionof experiment. If this loop fails to producea result
because of one statement in Out then the statement is removed from Out, and the process is repeated.

Note that the control and variable stacksand the trail remain in the statethey were in at the
completionof execute, by backtrackingand resumingexecute, the programcan continueto Þnd the
next alternative solution.

5.7  Remembering Concepts

When a conjunctionhasbeenlearned,it must be storedin Marvin's memory.Before doing so, the
description of the concept must be cleaned up.

All the removedstatementsare disposedof, and a proceduresimilar to simplified is called to
remove redundant statements.

simplify(description)
for  each statement  in  description

if  state of  statement "  0 
or  statement implied by another statement  in  Trial
then  remove statement permanently

Once the Þnal form of the conjunctionhas beenestablished,the conjunctionmay be storedin the
memory by calling index to update the statement index.

remember(description)
for  each statement  in  description,

index(statement)

This completesthelearningprocessfor oneconjunction.Controlreturnsto learn andtheentireprocess
is repeated until the trainer has no more concepts to teach Marvin.
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6

Performance Evaluation

This chapterpresentsthe resultsof testsperformedduringa numberof learningsessionswith Marvin.
Thetaskshavebeenchosenfrom severaldifferentdomains,includinggeometricconcepts,grammatical
inference, and automatic programming.

The measurements made were:

¥ The total time taken to learn the concept.

¥ The proportion of the total time spent in generating  training examples to show the trainer.

¥ The number of hypotheses formed while learning a concept.

¥ The number of hypotheses which were incorrect.

In addition, the programwas proÞledwhile learning the 'number'conceptsof Chapter4. ProÞling
yields the numbertimes eachprocedurewas called.This allows us to determinewherethe program
spent most of its time and where its performance could be improved.

During this discussionwe will try to answerthe following questions:What conceptscanMarvin
learn and when will it fail? How efÞcient are the various algorithms? How efÞcient is the
implementation of those algorithms? How does it compare with other concept learning programs?

6.1  Learning Geometric Concepts

6.1.1  Blocks World

At the beginningof this work, we speculatedabout the way in which a child might learn spatial
relationshipsbetweenphysicalobjectsundertheguidanceof anadult.Marvin canlearnconceptssuch
as 'on-top-of' in much the same way as we expect the child to perform the same task. 

Beforebeingableto learnthecircumstancesin which oneobjectmaybeplacedon top of another,
Marvin mustÞrst learnaboutsomepropertiesof physicalobjects,suchascolour andshape.Marvin
learns by rote (i.e. without generalization) that the values red, green and blue are colours:

is-colour =
[X0: X0.value = red ' X0.value = blue '  X0.value = green]

and the values 'box' and 'table' are 'ßat'.

ßat = [X0: X0.value = box ' X0.value = table]

A value is a shape if,

is-shape =
[X0: X0.value = sphere ' X0.value = pyramid '  ßat(X0)]

In Chapter1 we assumedthatanadultshowedthechild a redsphereon a greenbox.Fromthis instance
of 'on-top-of',he learnta generaldescriptionof theconceptby experimentingwith theconÞgurationof
the objects. 

Marvin, the program, was also shown a red sphere on a green box: the object E1,

E1 = <top: S1; bottom: B1>
S1 = <shape: SPHERE; colour: RED>
B1 = <shape: BOX; colour: GREEN>

This instance was generalized to the description:

on-top-of =



[X0:
[(  X1, X2, X3, X4, X5, X6:

X0.top = X1
X1.shape = X2
X1.colour = X3
X0.bottom = X4
X4.shape = X5
X4.colour = X6
is-shape(X2)
is-colour(X3)
ßat(X5)
is-colour(X6)

]
]

That is, thetop canbeanyshapeandanycolour,thebottomcanalsobeanycolour,but its shapemust
be ßat. 

TheÞvequestionsthatwereaskedby thechild in Chapter1 were,in fact, thoseaskedby Marvin
when it performed this task.

6.1.2  Winston's Arch

No work dealing with concept learning would be completewithout some referenceto Winston's
famousARCH (Winston,1970).Thereadermayrecall thatWinston'sprogramwascapableof learning
the descriptionof an arch from examplessuppliedby the trainer in the form of line drawings.The
training instancesillustrated both arches and non-arches.The description of an arch may be
paraphrased in English as

TherearethreeobjectsA, B andC. A andB areblockswhich arestandingup. A is
left of B andtheydo not touch.A supportsC andB supportsC. C maybeanyshape,
but it is lying on top of A and C.

Marvin canalso learn to describearches.Onedifferencebetweenthis programandWinston'sis that
only one exampleis shown to Marvin by the trainer. After that Marvin showsthe trainer its own
examples.However,the trainer cannotshow a line drawing,he must presentthe training arch as an
object descriptionconsistingof property/valuepairs. It could be assumedthat a front-endprogram
performedthelow-level recognitionof line drawingsandoutputits resultsasobjectdescriptionswhich
Marvin can understand. 

Thereareseveraldifferent waysof representingan arch in the language.We will chosea fairly
simple method:

top = <shape: BRICK; orientation: LYING; supported-by: L1>
L1 = <left: left-side; touches: FALSE; right: right-side>
left-side = <shape: BRICK; orientation: STANDING; supported-by: FLOOR>
right-side = <shape: BRICK; orientation: STANDING; supported-by: FLOOR>

This instanceof anarchis a brick which is lying on top of a groupof objects,L1. L1 consistsof a left
and a right side which do not touch. Both the left and right sidesare standingbricks which are
supported by the ßoor. 

In our representation we will deÞne a physical object as follows:
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phys-obj =
[X0:

[(  X1, X2, X3:
X0.shape = X1
X0.orientation = X2
X0.supported-by = X3
shape(X1)
orientation(X2)
support(X3)

]
'

[(  X1, X2, X3:
X0.left = X1
X0.touches = X2
X0.right = X3
phys-obj(X1)
boolean(X2)
phys-obj(X3)

]
]

This statesthata physicalobjectis a block which hasshapeandorientationandit musthavea support.
An object may also be a group of blocks listed from left to right. It is necessaryto specify if the
componentsof a group are touchingor not. This is doneby giving the property 'touches'the value
TRUE or FALSE. A support may be the ßoor or another object.

support = [X0: X0.is = FLOOR Ú  phys-obj(X0)]
boolean = [X0: X0.val = TRUE Ú  X0.val = FALSE]
shape = [X0: X0.val = BRICK Ú  X0.val = WEDGE]
orientation = [X0: X0.val = LYING Ú  X0.val = STANDING]

The description of arch learnt by Marvin was:

arch =
[X0:

[(  X1, X2, X3, X4, X8, X9:
X0.shape = X1
X0.orientation = X2
X2.val = LYING
X0.supported = X3
X3.left = X4
X3.touches = X8
X8.val = FALSE
X3.right = X9
shape(X1)
phys-obj(X4)
phys-obj(X9)

]
]

Onecriticism of Winston'sapproachto conceptlearningis that the trainermustcarefully choosethe
examplesheshowstheprogram.In particular,Winstonpointsout thatthenegativeinstancesshouldbe
'near-misses'.Theseareobjectswhich arenot recognizedby the targetconceptbecauseonly a small
numberof propertiesdo not have the requiredvalues.The 'small number'is usually one. Thus the
trainer must know quite a lot about the program's learning process in order to prepare the examples. 

Marvin also relies on near-missesto test its hypotheses.However, since theseexamplesare
generatedby the programitself, the trainerneedknow nothingaboutthe algorithmusedto createthe
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concept descriptions. 
An alternativerepresentationfor learningARCH is to useMarvin's languageasa meta-language

for describingapicturedescriptionlanguage.Theinputdataspecifyingthetrainingexamplemight bea
list of objects such as:

<pred: on-top; arg1: X0; arg2: X1>
<pred: left-of; arg1: X1; arg2: X2>
<pred: don't-touch; arg1: X1; arg2: X2>
<pred: orientation; arg1: X0; arg2: LYING>

etc.

This is equivalent to a set of predicates such as,

on-top(X0, X1)
left-of(X1, X2)
don't-touch(X1, X2)
orientation(X0, LYING)

etc.

A conceptwhich describesan object like ARCH would actually specify part of the grammarof the
description language.

6.1.3  East Bound Trains

Michalski (1980)describesan exampleof two setsof trains,east-boundandwest-bound.The taskof
the INDUCE-1.1programdescribedin that paperandby (Dietterich,1978) is to distinguishbetween
the two sets.SeeFigure6.1.The taskwe will setMarvin is this: given theexampleof oneeast-bound
train, learn to distinguish all east-bound trains.

Each car is speciÞed by the following properties:

Car shape: The shapeof a car may be an openrectangle,an opentrapezoid,U-
shaped,an ellipse,a closedrectangle,jagged-toppedor it may havea
sloping top. The ENGINE is a special car.

 
length: The car may be long or short.

 
Number of Wheels:A car may have either two or three wheels.

 
Load: A car containsloads of various shapesincluding: circles, rectangles,

triangles, hexagons.
 

Number of parts: There may be one, two or three parts in the load.

A complete train may be described as a left-recursive list:

<infront: TRAIN; behind: CAR>
Thus the Þrst east bound train is:

car1 =
<

car-shape: open-rect;
length: long;
nr-wheels: two;
load: rectangle;
nrpts-load: three

>
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1. Eastbound Trains

1.

2.

3.
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5.

2. Westbound Trains
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5.
 

Figure 6.1. East and West Bound Trains

car2 =
<

car-shape: sloping;
length: short;
nr-wheels: two;
load: triangle;
nrpts-load: one

>

and so on.

engine = <car-shape: ENGINE>
T3 = <infront: engine; behind: car1>
T2 = <infront: T3; behind: car2>
T1 = <infront: T2; behind: car3>
train1 = <infront: T1; behind: car4>
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The INDUCE-1.1 programis alsosuppliedwith ruleswhich describethe problemenvironment.This
domaindependentinformation may be usedby the programwhile learningthe concept.Suchrules
include the fact that hexagons,trianglesand rectanglesare polygons.Cars whoseshapesare open
rectangles, open trapezoids or U-shaped are classed as having 'open tops'. Other cars have closed tops. 

Marvin canalsobesuppliedwith domainknowledgein theform of conceptdeÞnitionsenteredby
the trainer. However, an important feature of Marvin is that it can learn the domain knowledge. 

Other domain knowledge includes the following concepts:

train =
[X0:

X0.car-shape = ENGINE
'

[(  X1, X2:
X0.infront = X1
X0.behind = X2
train(X1)
car(X2)

]
]

A train is anengineor a carwith a train in front. A caris in a train if it is thehindmostcaror it is in the
train infront of the hindmost car.

in-train =
[X0, X1:

[(  X2:
X1.infront = X2
X1.behind = X0
train(X2)
car(X0)

]
'

[(  X2, X3:
X1.infront = X2
X1.behind = X3
car(X3)
in-train(X0, X2)

]
]

When shown the Þrst east-boundtrain as an example,Marvin replied by showing the trainer 20
different trains until it determined that an east-bound train could be distinguished by the description:

east-bound =
[X0:

[(  X6, X9, X10, X11, X12, X13:
X9.car-shape = X10
X9.length = X11
X11.val = SHORT
X9.nr-wheels = X6
X9.load = X12
X9.nrpts-load = X13
number(X6)
closed-top(X10)
number(X13)
is-load(X12)
in-train(X9, X0)

]
]
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This statesthat thereis a carX9 in train X0. The lengthof X9 is SHORTandit hasa closedtop. The
type of load, the number of wheels and the number of parts in the load may be any value. 

This conceptwaslearntin approximately14 secondsCPUtime on theVAX-11/780.Of that time,
58% wasspentin generatingthe 20 examplesto showthe trainer.Marvin createdmore intermediate
hypothesesin learningthis conceptthanin any othergiven to it. However,of the twenty hypotheses,
only four wereinconsistent.Thereasonthatsomanytrials wereproducedis thata largeamountof data
is present in the examples.

6.2  Learning Grammar

6.2.1  Winograd's Grammar

Marvin is capableof learningsimplegrammars.For example,Winograd(1972)usesa simplecontext
freegrammarto demonstratetheuseof systemicgrammarsin his programSHRDLU. This exampleis
quite interestingsinceit demonstratesMarvin'sability to partially learna concept,leaveit temporarily,
learn a new conceptand then return to the original concept to complete its description.This is
necessary since several of the concepts describing the grammar refer to each other. 

The grammar to be learnt is:

S  NP VP
NP  Pnoun
NP  DET NOUN
Pnoun  John
Pnoun  Mary
DET  a
DET  the
NOUN  apple
NOUN  giraffe
VP  IVERB
VP  TVERB NP
IVERB  sleeps
IVERB  dreams
TVERB  dreams
TVERB  eats

Some typical sentences which may be generated are:

John dreams.
John eats the apple.
A giraffe eats the apple.
The giraffe sleeps.

A sentenceis madeup of a nounphrase,followed by a verbphrase.Thenounphrasemayconsistof a
proper noun or a determinerfollowed by an ordinary noun. A verb phrasemay contain a single
intransitive verb or a transitive verb followed by another noun phrase. 

Note that the meaningsof the words are completelyignoredso that 'The appleeatsa giraffe' is
considereda valid sentence!To teachMarvin this grammarwe will representa sequenceof wordsasa
list, terminated by STOP. Part of the data supplied is:

np1 = <head: JOHN; tail: STOP>
np2 = <head: THE; tail: np3>
np3 = <head: APPLE; tail: STOP>

vp1 = <head: SLEEPS; tail: STOP>
vp2 = <head: EATS; tail: np2>

sent1 = <head: A; tail: L1>
L1 = <head: GIRAFFE; tail: vp2>

Marvin mustknow thepartsof speechof eachof thewordsabove,so conceptsclassifyingthemmust
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be learnt or suppliedas part of the 'dictionary'.Ratherthan give the full conceptdeÞnitions,we list
below the dictionary.

Nouns GIRAFFE, APPLE
Proper Nouns JOHN, MARY
Determiners THE, A
Intransitive Verbs DREAMS, SLEEPS
Transitive Verbs DREAMS, EATS

The description of the grammar as learnt by Marvin is:

list =
[X0:

X0.val = STOP
'

[(  X1: vp(X0, X1)]
]

np =
[X0, X1:

[(  X2:
X0.head = X2
X0.tail = X1
pnoun(X2)
list(X1)

]
'

[(  X2, X3, X4:
X0.head = X2
X0.tail = X3
X3.head = X4
X3.tail = X1
det(X2)
noun(X4)
list(X1)

]
]

vp =
[X0, X1:

[(  X2:
X0.head = X2
X0.tail = X1
X1.val = STOP
iverb(X2)

]
'

[(  X2, X3:
X0.head = X2
X0.tail = X3
X1.val = STOP
tverb(X2)
np(X3, X1)

]
]

sent =
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[X0, X1:
[(  X5:

np(X0, X5)
vp(X5, X1)

]
]

The conceptsnp (noun phrase)vp (verb phrase)and sent (sentence)have two arguments.These
conceptsattemptto parsea list of words.TheÞrstargumentrepresentsthebeginningof the list which
will be recognizedand the secondargumentis the remainderof the list which is left over when the
words recognized are removed. 

Note that vp refersto np and np refersto list. list in turn refersto vp. Thesecircular references
preventMarvin from learningthe deÞnitionof vp and list independently.It is necessaryto learn the
Þrstdisjunctof list, thentheÞrstdisjunctof vp. Sincevp is now known,theseconddisjunctof list may
be learnt.Both disjunctsof np canbe learnttogether.Now thedeÞnitionof vp canbecompletedsince
np is known. Having completed the circle, Marvin can Þnally learn sent. 

Although the grammarusedhereis very simple, it is possibleto teachMarvin rules that ensure
that, for example, only animate objects may perform actions.

6.2.2  Active-Passive Transformations

The problemof learningthe rulesfor transforminga sentencein the activeform to onein the passive
hasbeensolvedpreviouslyby Hayes-RothandMcDermott (1978)andVere (1978).The problemis:
Given the descriptionof pairs of sentencesin a transformationalgrammar,Þnd a set of rules which
determine the relationship
between the two sentences. 

One example given by Hayes-Roth is

The little man sang a lovely song
'

A lovely song was sung by the little man.

A graphical representation of this pair is shown in Figure 6.2.

The equivalent representation for Marvin is:

noun11 = <nst: man; number: singular>
noun2 = <nst: song; number: singular>
np11 = <det: the; adj: little; noun: noun11>
np22 = <det: a; adj: lovely; noun: noun2>
verb11 = <number: singular; vst: sing; tense: past-part>
aux11 = <auxst: have; tense: present; number: singular>
vp1 = <aux: aux11; verb: verb11; np: np22>
s1 = <np: np11; vp: vp1>

s2 = <np: np22; vp: vp2>
vp2 = <aux: aux11; pb: pb1; verb: verb11; pp: pp1>
pb1 = <pbst: BE; number: singular; tense: past-part>
pp1 = <prep: by; np: np11>

In orderto learnthetransformationrules,Marvin mustÞrstunderstandthata nounconstructconsistsof
a nouninstanceandthenumberof thenoun.A verbhasassociatedwith it a numberanda tense,andso
on. As in the previouslearningtask, the deÞnitionsof noun phrasesand verb phrasesmust also be
known. 
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Figure 6.2. Active and Passive forms of a sentence

After generating 18 pairs of sentences to show the trainer, Marvin produced the following rule:

act-pas =
[X0, X1:

[(  X2, X7, X8, X9, X12, X13, X14,
     X15, X16, X17, X18, X21, X22, X23:

X0.np = X2
X0.vp = X8
X8.aux = X9
X8.verb = X12
X12.number = X7
X12.vst = X13
X12.tense = X14
X8.np = X15
X15.det = X16
X15.adj = X17
X15.noun = X18
X1.np = X15
X1.vp = X20
X20.aux = X9
X20.pb = X21
X21.pbst = BE
X21.number = X7
X21.tense = X14
X20.verb = X12
X20.pp = X22
X23.isprep = BY
X22.np = X2
is-number(X7)
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aux(X9)
is-verb(X13)
is-tense(X14)
is-det(X16)
is-adj(X17)
noun(X18)
np(X2)

]
]

After a carefulexaminationit canbe seenthat this is equivalentto the rule learntby Hayes-Rothas
shown in Figure 6.3.

Marvin required40 secondsto learn this concept.80% of this time was spentin generatingthe
training examples.For this task, SPROUTERrequired30 minuteson a DEC KA-10 processorand
THOTH took 30 seconds on an IBM 370/158. 

This learningtaskdemonstratesthatMarvin is capableof learninga varietyof complexproduction
rules that might be used in an expert programming system.
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Figure 6.3. Active-Passive Transformation Rule

6.3  Automatic Programming

In Chapter4 we saw that Marvin can learn conceptswhich may be executedas programs.These
includeda programto Þndthemaximumnumberin a list. This sectiondescribesa setof list processing
programlearntby Marvin. Among themare:append,list reversal,deletingnegativenumbersfrom a
list, and a simple insertion sort. 

Obviously,Marvin mustÞrst learnwhat a list is. Throughoutthis section,only lists of numbers
will be considered.Given the examples[] and [1], that is the empty list and the single elementlist
containing the number 1, Marvin learns that a list is,
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list =
[X0:

X0.val = nil
'

[(  X1, X2:
X0.head = X1
X0.tail = X2
number(X1)
list(X2)

]
]

Theconceptapppend requiresthreearguments,X0, X1, X2. X2 is theresultof appendingX1 to X0. In
theÞrstcase,if X0 is nil thenX2 is thesameasX1. In thesecondcase,theÞrstelementof X2 is the
same as the Þrst element of X0 and the tail of X2 is obtained by appending X1 to the tail of X0.

append =
[X0, X1, X2:

[(  X3:
X0.val = nil
X2 = X1
list(X1)

]
'

[(  X3, X4:
X0.head = X3
X0.tail = X4
X2.head = X3
number(X3)
append(X4, X1, X2.tail)

]
]

This is theÞrstexamplein which an identity suchasX2 = X1 hasappeared.This wascreatedbecause
thesamesampleobjectwasusedfor bothX1 andX2. Thusthe trainingevent([], L1, L1) whereL1 =
[1] waspresentedin orderfor Marvin to learntheÞrstdisjunct.For theseconddisjunct([1], [1], [1, 1])
would be adequate. 

In orderto learnreverse,it is necessaryto learnappend1 which appendsa singleelementrather
thana completelist asis doneby append.Oncethis hasbeenlearntthe following deÞnitionof reverse
may be learnt:

reverse =
[X0, X1:

X0.val = nil
X1.val = nil

'
[(  X2, X3, X4:

X1.head = X2
X1.tail = X4
append1(X3, X2, X0)
reverse(X4, X3)

]
]

This was learnt in 2.45 seconds after asking 7 questions. 
A problem which Biermann posedfor the InternationalWorkshop on ProgramConstruction

(Biermann,1980)wasto producea programwhich would deletethenegativenumbersfrom a list. For
example,if the Þrst argumentis, X0 = [-6, 3, -7, -2, 1] then the secondargument,X1 = [3, 1]. A
numberis representedasanobjectof theform: N = <sign:S; mag:M>. S maybe'+' or '-' andM is an
unsigned cardinal number which is the magnitude of N. The concept learnt was:
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delete =
[X0, X1:

X0.val = nil
X1.val = nil

' 
[(  X2, X3, X4:

X0.head = X2
X2.sign = '-'
X2.mag = X3
X0.tail = X4
cardinal(X3)
delete(X4, X1)

]
'

[(  X2, X3, X4, X5:
X0.head = X2
X2.sign = '+'
X2.mag = X3
X0.tail = X4
X1.head = X2
X1.tail = X5
cardinal(X3)
delete(X4, X5)

]
]

This statesthatif X0 is empty,thenX1 is alsoempty.If theheadof X0 is negativenumber,thenX1 is
obtainedby deletingthe negativenumberfrom the tail of X0. If the headof X0 is positive then the
headof X1 is thesamenumberandthetail if X1 is obtainedby deletingthenegativenumbersfrom the
tail of X0. 

The Þnal examplewe will give in this chapteris a simple insertion sort. First the conceptof
insertionmustbe learnt.This is a threeplacepredicate.X0 is a numberto be insertedin to the list X1
such that the resulting list, X2 is correctly ordered.

insert =
[X0, X1, X2:

X1.val = nil
X2.head = X0
X2.tail = X1
number(X0)

'
[(  X4, X6:

X1.head = X4
X1.tail = X6
X2.head = X0
X2.tail = X1
list(X6)
less(X0, X4)

]
'

[(  X3, X6, X7:
X1.head = X3
X1.tail = X6
X2.head = X3
X2.tail = X7
insert(X0, X6, X7)
less(X3, X0)

]
]
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If X1 is emptythenX2 is the singleelementlist containingX0. If X0 is lessthanthe Þrstelementof
X1 thentheÞrstelementof X2 is X0 andthetail is X1, i.e. X0 is placedat thefront of thelist. If X0 is
greaterthanthenÞrstelementof X1 then,the Þrstelementof X2 is the Þrstof X1 andX0 is inserted
into the tail of X1 to produce the tail of X2. 

An insertionsortworksby takingeachelementfrom its Þrstargument,X0, andinserting it into the
secondargument,X1. WhenX0 is empty the entiresortedlist will be in X1. X2, the third argument
which returns the result will have the Þnal value of X1 assigned to it.

sort =
[X0, X1, X2:

X0.val = nil
X2 = X1
list(X1)

 '
[(  X3, X4:

X0.head = X3
X0.tail = X4
X4.val = nil
insert(X3, X1, X2)

]
'

[(  X3, X5, X6:
X0.head = X3
X0.tail = X5
insert(X3, X1, X6)
sort(X5, X6, X2)

]
]

Whenchoosingexamplesto showMarvin, the trainershouldlook for thesimplesteventspossible.By
minimizing the amount of data that must be processed, he makes Marvin's task much easier. 

The simplestexamplethat satisÞesthe last disjunctof sort is ([1], [], [1]). The primary statement
generated by this event are:

X0.head = X3
X3.left = none
X3.right = X4
X4.val = 1
X0.tail = X1
X1.val = nil
X1.head = X3
X2.tail = X1

Thereare not enoughvariablespresentin this set of statementsto constructthe concept.[When the
event is being recognized, the same object is bound to more than one variable]. 

There is a way of avoiding this problem in sort. The more generalcasewill be consideredin
Chapter7. If the event ([1, 1], [], [1, 1]) is shownas the trainer'sexample,the primary statements
generatedwill containenoughvariables.However,anotherproblemarises.Insert and sort mustboth
recognizecomponentsof theeventsothat thestatementsinsert(X3,X1, X6) andsort(X5,X6, X2) can
be created. Thus insert(1, [1], [1]) must be true and sort([1], [1], [1, 1]) must be true. 

This is the reasonthat a redundantdisjunct must be learnt. The seconddisjunct is Þnally
unnecessarybecausethe caseit coversis also coveredby the more generalthird disjunct. But the
second one must be learnt in order to learn the third.
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6.4  Concepts that Marvin cannot learn

ThedifÞcultyof learningsort leadsusto discussa limitation of Marvin. Thatis, existentiallyquantiÞed
variablesareonly createdwhenthey representsomepart of the training example.Thereareconcepts
where this is insufÞcient. 

A simple example is the ordering of decimal digits. Suppose the following concept is known:

lessd =
[X0, X1:

X0.val = 0 !  X1.val = 1
' X0.val = 0 !  X1.val = 2

........
' X0.val = 8 !  X1.val = 9
]

This describeswhich digits areadjacentto eachotherin numericalorder.However,it doesnot give a
complete ordering. Marvin must learn the additional disjunct:

[(  X2: lessd(X0, X2) !  lessd(X2, X1)]

That is, X0 is lessthanX1 if thereis an X2 suchthat X0 is lessthenX2 andX2 is lessthanX1. The
trainer only showsthe argumentsX0 and X1. For example,(0, 2) may be shown resulting in the
primary statements:

X0.val = 0 !  X1.val = 1

There is insufÞcientinformation in the exampleto instruct Marvin to createthe additionalvariable
which would allow the two lessd's to be inferred. 

Possible solutions to this problem will be discussed in Chapter 7.

6.5  Summary of Results

Table6.1 containsresultsobtainedfrom themeasurementof Marvin'sperformancewhile learningthe
examples described above. 

Thetotal time requiredto learna conceptwasmeasured.Theobjectgenerationprocedureaccounts
for a signiÞcantamountof the total time so the percentageof the time devotedto generatingobjects
wasobtained.We cangetsomeideaof how easilyMarvin learnta conceptby countingthenumberof
questionsit had to ask the trainer beforeit discoveredthe targetconcept.Another indication of the
difÞculty of the conceptis the numberof times the trainer answered'no' to a question.This is the
number of times Marvin generated an inconsistent trial.

In columns3 and4, separateÞguresaregiven for eachdisjunctin theconcept.Theproportionof
time spentgeneratingobjectsfor vp is given as two Þguresbecausethis conceptwas learnt in two
steps.

Absolutetimesarenot necessarilya goodindicationof a program'sperformancebecausetheywill
vary greatlydependingon thehardwareandtheprogramminglanguageusedto implementthesystem.
However, the important thing to note from the times given is that Marvin providesrapid real-time
responseto thetrainer.This is essentialif thelearningsystemis to beusedto acquireknowledgefor an
'expert' programming system. In this case the program must provide a comfortable working
environment for the human expert who may not be familiar with computers.The times also
demonstratethatasystemsuchasMarvin is capableof learningquitecomplexconceptsin a reasonable
time. Thus it seemslikely that the techniquesusedin Marvin may be useful in developingpractical
systems such as knowledge based expert programs. 

Thenextpoint to notefrom theÞguresin Table1 is thattheobjectgenerationprocessaccountsfor
a very largeproportionof the learningtime. Thereis considerablevariationin the percentageof time
becausethe complexityof the objectsvariesfor the different tasks.However,the performanceof the
program can obviously be improved if the theorem prover in Marvin were to be speeded up. 

One measureof the efÞciencyof a conceptlearning systemwas suggestedby Dietterich and
Michalski (1977).That is to Þndtheproportionof generalizationsproducedwhich areconsistentwith
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the target.That is: how manytimesdid the traineranswer'yes'comparedwith thenumberof timeshe
said 'no'. On the average60% of the generalizationsmadeby Marvin are consistent.This compares
very well with otherlearningprograms.Partly, this is dueto the fact that the generalizationsmadeby
Marvin are fairly conservative.That is, small partsof a trial conceptare changedat any time. If a
mistake is made, Marvin usually does not have to look very far before a consistent trial is found. 

From theseresultswe seethat the basicideasbehindthe learningalgorithmaresound.The next
question is how efÞciently have these ideas been implemented.

Table 1: Summary of Marvin's performance on test cases.

Task Total Time %Object.Gen. Questions Inconsistent
 

Lessd 0.08 27.3 2 2
Less 4.80 17.9 4:6:3 2:2:1
Max 5.83 35.5 1:5:5 0:1:1
List 0.18 27.3 0:2 0:0
Append 1.82 37.6 3:8 1:3
Reverse 2.45 44.9 2:5 2:3
Delete 1.45 48.7 0:3:3 0:1:1
Insert 7.27 35.5 6:3:4 0:1:1
Sort* 47.35 76.1 10 6
EastBound 14.18 58.0 20 4
Arch 6.33 46.3 11 5
On-top-of 0.63 60.5 5 1
vp 1.3 16+27.1 1:5 0:1
np 0.57 41.1 2:3 0:0
word-list 0.24 45.6 0:3 0:1
sentence 6.30 24.3 9 1
Active-Passive 40.52 80.3 18 3

* Measurements for sort are given only for the Þnal disjunct.

6.6  EfÞciency of Implementation

A goodmethodfor discoveringwherea program'sweaknesseslie is to countthenumberof timeseach
procedureis called.This allowsusto Þndout if time is beingwastedin somepartsof theprogram.The
Berkeley Pascalcompiler running under UNIX/32V on VAX computersprovidesthis information
when a programis proÞled.This was done while Marvin learnt the numberconceptspresentedin
Chapter 4. Some of the results are presented in this section. 

Five conceptswere learnt ranging from the very simple deÞnitionof digit to the rather more
complex concept, maximum. In all 11 training exampleswere shown to Marvin, one for each
conjunction.Table6.2showsthenumberof timesthemajorproceduresin Marvin werecalled.Thebar
graphin Figure6.4 showsmoreclearly which proceduresdominatethe Marvin's time. Obviouslythe
statement matching procedures are the most used procedures. 

The learningalgorithm usesa relatively inefÞcientmethodfor generatinga new statement.The
programscansthrougha trial descriptionin linearorder,usingeachstatementasa focusfor its search
for new concepts.Sincea conceptusually containsmore than one statement,it is possiblethat the
conceptwill be tried severaltimes. In fact, almost50% of the attemptsto generatea new statement
resultedin a statementthat had already been tried before. [This can be seenfrom the fact that
TriedBefore wascalled60 timesbut prove, which is calledafter TriedBefore returnstrue, wascalled
only 29 times]. 

Anotherreasonfor the excessiveuseof the patternmatcheris the fact that a depthÞrstsearchis
used to try to match statements in a stored concept with statements in the trial. 

The next highest frequencyin the histogramis due to the object generationprocedureprove.
Rememberthat in order to generatean objectwhich is useful to the learningalgorithm,the program
createsanobject,thenteststo seeif anyof the removedstatementsaretrue. If oneis true, thena new
object must be created. In fact 60% of the objects generated are rejected in this way.
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Table 2: Requency of Procedure Calls

Count Procedure

1 marvin
29 prove
1391 addtrail
121 clearq
284 SaveEnv
2463 unbound
3903 valofq
1269 get
8361 valueof
568 equal
1018 equiv
298 mkbind
499 mkqvars
284 call
126 backtrack
238 succeed
14 eval
273 falsiÞed
96 denied
96 execute
29 ToBeDenied
363 simpliÞed
11 primary
44 describe
67 MakeStatement
2129 bind
9940 isbound
2129 RecordSubst
21368 ForgetSubst
28403 unify
21356 match
13 newassoc
43 index
87 lookup
1485 restore1
1423 replace
1413 restore
11 generalize
29 contained
87 TryConceptsWith
116 CheckConcept
60 TriedBefore
129 Þndargs
31 NewStatement
31 OccursIn
73 CanNotRemove
49 NoOtherRef
47 ParentIn
55 NoSpec
60 CreateStatement
31 FindRemovable
31 restricts
31 NotRelaxed
1694 Contains
29 qualiÞed
1 relax
23 TryUnRemoved
1 restricts2
31 MoreGeneral
109 simplify
11 create
11 remember
11 cleanup
11 LearnConj
5 LearnedCons
5 learn
1 init
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Figure 6.4. Frequency of Procedure Calls

6.7  Comparisons with other systems

Marvin is the only generalpurposeconceptlearningprogramthat is capableof generatingits own
training examples.Somedomain speciÞcprogramsdo have this ability (Popplestone,1970; Lenat,
1977). Cohen(1978) and Mitchell (1978) have both proposedmethodsfor a learning programto
generateits own traininginstances.Themainadvantageof beingableto do this is thattheprogramcan
control its focusof attentionwithout relying on the trainer.This is alsoof importancein Lenat'sAM
systemwhich discoverstheoriesin mathematicsby proposingits own 'agenda'of interestingthingsto
be explored.

SinceMarvin is a descendentof CONFUCIUS,the two programssharecertaincharacteristics.
Amongthemis theemphasisplacedon 'growing' descriptionlanguages.Sinceconcepts,oncetheyare
learnt,arestoredin memoryandmay be usedin future conceptdescriptions,the descriptivepowerof
the languagegrows with time. Indeedthis ability is necessaryif recursiveconceptsare to be learnt.
Recursionis alsoa featurewhichdistinguishMarvin andCONFUCIUSfrom systemssuchasINDUCE
(Larson,1977) and Thoth (Vere, 1978). Michalski (1980) claims that it shouldbe avoidedbecause
recursivedescriptionsaredifÞcult for humansto read.However,to learnabstractconceptsconcerning,
for example, lists or numbers, recursion is necessary.

Dietterich and Michalski (1977) havesuggesteda numberof characteristicsof learningsystems
which serveas points of comparisonbetweenthe programs.Let us list thesecharacteristicsas they
apply to Marvin.

Intended Application:
general.
Marvin is not restrictedto any particulardomain. It can learn conceptsin a wide
variety of environments.

Language:
Marvin'sdescriptionlanguageis Þrstorderlogic with quantiÞers.Connectivesin the
language include conjunction and disjunction.

Generalization Rules:
A numberof different typesof generalizationsrulesareproposedby Dietterichand
Michalski.

Dropping Condition: 
This rule involves removing statementsfrom conjunctions. In
Marvin's casethe dropping rule must be modiÞedslightly to a
'replacement rule'. This is the main generalization method used.
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Turning constants into variables:
WhenMarvin seesa descriptionof an objectasa list of property/
value pairs, it constructsa logical descriptionin which the object
names are replaced by variable names. The values of these
variables can then be generalized by the replacement procedure.

Climbing Generalization:
 This is thesortof rule which enablestheprogramto deducethat if

anobjectis a triangle,thenit alsobelongsto theclassof polygons.
Beinga polygon,it is a planegeometricÞgure,etc.Thisis achieved
in Marvin by learning the various classiÞcationsabove as
concepts.Atriangle would then be recognizedby all of those
concepts.

EfÞciency:
 This is the most difÞcult comparison.Aswe havealreadymentioned,the measure

usedby DietterichandMichalski comparesthenumberof generalizationsmadewith
the number that were actually used in the Þnal concept.On the average,in the
programsthey analyzed,about30% of the generalizationsmadewere useful. The
nearestcomparisonthat can be madewith Marvin is the ratio of the numberof
training examplesgeneratedto the numberof exampleswhich were found to be in
the targetconcept.The averageover the variouslearningtasksdescribedindicates
that about 60% of the trial concepts produced are consistent.

Extensibility:
¥ Applications: Marvin has not been used to develop any conceptsfor expert

programs,althoughwe expect that the techniquesusedwill be applicableto
developing knowledge based programs.

¥ Marvin can learn disjunctive as well as conjunctive concepts.
¥ No specialmechanismhasbeenincludedto dealwith noisy data. However,bad

data are placed in separate disjuncts.
¥ DomainKnowledge:This canbelearntaspreliminaryconcepts,which maythen

be used to describe other concepts.
¥ ConstructiveInduction:According to DietterichandMichalski, mostprograms

producedescriptionswhich involve the samedescriptorswhich werepresentin
the initial data.Suchprogramsperform non-constructiveinduction. A method
performsconstructiveinduction if it includesmechanismswhich can generate
new descriptorsnot presentin the input data.To a certainextentMarvin is able
to do this since knowledge stored in its memory is used to augment the
descriptionof a training instance.However, there is no meta-languagewhich
would beableto performtruefeatureextraction.This problemwill bediscussed
further in Chapter 7.

6.8  Conclusion

Marvin can learn conceptswhich can be describedin Þrst order predicatelogic with quantiÞers.It
cannotlearn conceptswith the logical negation.It cannotlearn conceptswhich requireexistentially
quantiÞed variables which cannot be derived directly from the training instances. 

Thepresentimplementationhasshownthatthelearningalgorithmworksvery well consideringthe
experimentalnatureof theprogram.Therearea numberof deÞciencieswhich couldbeovercomein a
new implementation.
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7

Future Directions

In Chapter1 we deÞneda setof objectivesfor the researchdescribedin this thesis.From the results
given in Chapter6 we canseethatMarvin hassatisÞedtheseobjectives,but of course,thereis always
morework to bedone.This chapterdeÞnessomenewgoalsfor furtherwork in conceptlearning.Some
of the suggestionswill be aimedat improving the presentimplementationof Marvin. Othersindicate
waysof extendingthe programso that it will be capableof learningmorecomplexconceptsin more
complex environments.

7.1  The Language

Expressionsin Marvin's descriptionlanguagespecifya classof objectsin the universe.An object is
distinguished by the values of its properties.

In the currentlanguagean object is input by listing its propertyvaluepairs.This is not alwaysa
convenientform of description.For example,to describea relationshipsuchas'father',we might use
the following:

Jack = <age: 38; son: Bill>
Bill = <age: 12; father: Jack>

An alternativemethodfor presentingthe object descriptionsis to entera seriesof predicateswhich
correspondto what are now the primary statements.In this examplethe single predicatefather(Bill,
Jack) would eliminatethe needto specifythe valuesof two propertiesin two different objects.Note,
however,thatwe still considertheobjectsasbeingcharacterizedby thevaluesof certainproperties,so
the theoreticalbasis for this languageis consistentwith Banerji (1969) and Cohen(1978). These
changes bring the language nearer to the notations used by Vere and Michalski.

Let us take the description of ARCH as a further example:

supports(side1, top)
! supports(side2, top)
! left-of(side1, side2)
! ~ touch(side1, side2)
! shape(top, BRICK)
!       ...

The identiÞerstop, side1 and side2 are the namesof objectsand BRICK is an atom. It is up to the
learningprogramto substitutevariablesfor thosenamesso that the valuesmay be generalized.An
advantageof this notationoverthepresentoneis that it is moreconvenientfor expressingrelationships
betweenobjects. This can be seen by comparing the description of ARCH given here and the
description in Chapter 6.

If we assumethatMarvin hasa pre-processorattachedto it to performbasicpatternrecognitionof
a scene,then the input to Marvin will be the resultsof the measurementsperformedby the pre-
processor.Theprimarystatements,suchassupports(side1, top), maybeconsideredasdescribingthose
results. Setsarenot strictly necessaryin a descriptionlanguage,sincethey canbe simulatedby list
objects.However, they are useful becausethey allow eventsconsistingof a number of parts to
described very succinctly. It is possible to represent sets implicitly. This is illustrated by the example,

son(Mary, Fred) !  son(Mary, Bill)

This expression describes a set { Fred, Bill}  which is the value of Mary's property son.
In this versionof thelanguage,thereis no longeranexplicit representationof objects(andsets),so

how canthe learningprogramshowthe traineran example?Supposethe programis trying to build a
number:



number =
[X0:

[(  X1:
   left(X0, null)
! right(X0, X1)
! value(X1, 1)

]
' 

[(  X1, X2:
   left(X0, X1)
! right(X0, X2)
! number(X1)
! number(X2)

]
]

left, right andvalue areall primary statements.When( X1 is encountered,the programmay createa
newsymbol,sayOBJ1 to representthevalueof X1. To executea primarystatementsuchasvalue(X1,
1), the variablespresentarereplacedby their values,giving value(OBJ1, 1). The result is thenplaced
on a stack.All theexpressionson thestackrepresentthedescriptionof theobjectbeinggenerated.The
description on the stack must always be consistent; thus there must not be two expressions such as

value(X1, 0) !  value(X1, 1)
present simultaneoulsy. On the other hand it is acceptable to construct two statements such as,

son(Mary, Fred) !  son(Mary, Bill)
Thedifferenceis thatthevalueof thepropertyvalue is expectedto bea singlevalue,whereasthevalue
of the propertyson is a set.The type of the value of a propertymust be suppliedby the trainer as
domainknowledgeso that the interpreterknows how to maintainthe consistencyof the stack.This
methodof generatingobjectscan be comparedwith the implementationof the WARPLAN problem
solver (Warren, 1974).

Note that the equivalencerelation '=' hasbeeneliminatedfrom the language.This is no longer
necessaryasa built in relation.It is possibleto determinethesimilarity of objectsby learningan'equal'
concept for each type of object.

7.2  Generating Statements

In the presentimplementation,the patternmatcher(i.e. the statementgenerationprocedure)and the
searchstrategy(the learningalgorithm)arecombined.As could be seenfrom the proÞledprogramin
the previouschapter,a greatdeal of redundantpatternmatchingis performed.In fact, 50% of the
statements generated had been generated at least once before.

Marvin's performancecan be improvedif the patternmatcherand searchstrategyare separated
into co-routinesanda discriminationnet is usedto speedup the statementindexing.The structureof
the discrimination net and how it is used will be described in this section.

Currently,whena completeconjunctionhasbeenlearnt, its statementsareenteredinto an index
which is representedby a linear list of associations.The associationsarebetweenstatementsandthe
conceptsin which theyappear.A fairly obviousway of improvingthesearchtime is to replacethat list
with a moresophisticatedmechanism.Insteadof maintaininga singlelist, we will keepa list for every
constantknown to Marvin. The list for constant,X, will contain the associationsfor all statements
which containX. Whenwe wantto look up a statement,we takeeachconstantin thestatementandÞnd
the intersectionof all the lists associatedwith them.This resultsin a small setof statements(usually
only one) which will make Þnding a match much easier.

For example, let's create an index for the statements:

colour(X0, red) (S1)
colour(X1, green) (S2)
size(X0, big) (S3)
size(X1, big) (S4)
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The result is the set of associations below.

colour: S1, S2
red: S1
green: S2
size: S3, S4
big: S3, S4

If we want to look up a statementcolour(X, green) we Þnd the entriesfor the constantscolour and
green which appearin thestatement.We thenÞndthe intersectionof { S1,S2} and{ S2} which are
the lists associatedwith the colour andgreen. This resultsin the setof statementswhich could match
colour(X, green). Thesetis { S2} . We havejust discussedindexingfor thestatementsof conceptsin
memory.This index is permanentsincedatacanonly beaddedto it. Marvin doesnot, at presenthave
anyform of indexingon thestatementsin thetrial concept.Sincethetrial is searchedregularlysuchan
indexwould bevery useful.This indexwould only be temporary.Oncea conjunctionhasbeenlearnt,
its index may be removed.

Rememberthat the goal of the statementgeneratingprocedureis to Þnd conjunctionsstoredin
memory which are subsetsof the trial. The datastructurewe proposeto use will containa list of
referencesto the candidateconjunctions.Associatedwith eachconjunctionwill be the statements
containedin it. Associatedwith eachof thestatementsin theconjunctionwill bea list of thestatements
in the trial which match it, along with the  bindings resulting from the match.

Consider the following example:

digit =
[X0:

value(X0, 0) (D1)
' 

value(X1, 1) (D2)
]

number =
[X0:

[(  X1: (D3)
   left(X0, null)
!  right(X0, X1)
!  value(X1, 1)

]
' 

[(  X1, X2: (D4)
   left(X0, X1)
! right(X0, X2)
! number(X1)
! digit(X2)

]
]

The labelsD1 .. D4 refer to the disjunctsof eachconcept.If the primary statementsin a trial include
the following:

left(X0, X2)
left(X2, null)
right(X2, X3)
value(X3, 1)
right(X0, X4)
value(X4, 0)

then the index built up will be:
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D4 left(X0, X1) left(X0, X2) { X0/X0, X1/X2} 
left(X2, null) { X0/X2, X1/null} 

right(X0, X2) right(X2, X3) { X0/X2, X2/X3} 
right(X0, X4) { X0/X0, X2/X4} 

D3 left(X0, null) left(X2, null) { X0/X2} 
right(X0, X1) right(X2, X3) { X0/X2, X1/X3} 

right(X0, X4) { X0/X0, X1/X4} 
value(X1, 1) value(X3, 1) { X1/X3} 

D2 value(X0, 1) value(X3, 1) { X0/X3} 
D1 value(X0, 0) value(X4, 0) { X0/X4} 

The index tells us that thereare four statementsin the trial which havematchesin D4, the second
disjunctof number. This givesus reasonto think that somepart of the trial may be recognizedasa
number.However,only two statementsin number matchthe four statementsin the trial. The second
column indicateswhich statementsin D4 were matched.Column three shows the corresponding
statementsin the trial. Both left(X0, X2) andleft(X2, null) matchthesamestatement.Thesubstitutions
resulting from each match are shown in the last column.

Sinceonly two of the four statementsin D4 canbe matched,this disjunctcannotbe true.On the
otherhandall thestatementsin D3 havebeenmatched- oneof themtwice. If we canÞnda consistent
substitutionamongthe matchedstatements,then D3 is true. By 'consistent'we meanthat a variable
mayappearonly onceon theleft handsideof a substitutionandonly onceon theright. Our problemis
which of the two right predicatesdo we want to match?The statement,value(X3, 0) createsa
substitution,{X1/X3} . This conßictswith the substitution{X1/X4} presentfor right(X0, X4). The
substitutionsfor left(X0, null), right(X2, X3) and value(X3, 0) can be combinedwithout conßicting.
Therefore, these statements are the implicants of D3 with the substitution {X0/X2, X1/X3} .

Sincea completedisjunctof number is satisÞed,number(X2) is a newstatementthatcanbetested
by replacingits implicants.digit(X3) anddigit(X4) arealsonewstatements.Thereis only onepossible
substitutionin the caseof number(X2); however,it can often happenthat more are possible.The
program must therefore try all combinations.

Sincenewstatementshavebeencreated,thesemayalsobeaddedto theindex.Theywill appearas
new entries for D4.

D4    ...    ...   ...
number(X1) number(X2) {X1/X2} 
digit(X2) digit(X3) {X2/X3} 

digit(X4) {X2/X4} 

With theseadditions,all the statementsin D4 havebeenmatched.The only consistentsubstitutionis
{ X0/X0, X1/X2, X2/X4} . Thus number(X0) can be generatedand also addedto the index and the
processmaycontinue. This methodof generatingstatementshasalreadybeenimplemented,although
it has not beenintegratedinto Marvin. It is signiÞcantlyfaster than the old methodof generating
statements.

7.3  Generating Objects to Show the Trainer

At present,whenMarvin showsa exampleto thetrainer,it generatesa completeobjectandthenchecks
it to ensurethat noneof the removedstatementsare true. If one is true, the interpreterbacktracksto
Þnda new objectthat satisÞesthe trial. Backtrackingonly returnsonelevel on the control stack,so it
may happenthat the property which causeda removedstatementto be true remainsunchanged.
Therefore,the new object will fail again.When two failures in a row are due to the sameremoved
statement,the interpreterbacktracksdeeperinto thestackuntil thecorrectalternativeis found.This is
very inefÞcient.

Beforetrying to generateobjects,Marvin createstwo lists.Oneis thelist of statementswhich must
be true, and the other is the list of statementswhich must be false. To improve the program's
performance, these two lists could be merged.
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Suppose the description of an object, X includes the statements:

colour(X, Y) ! value(Y, red)

The colour may be generalizedby removing the statementvalue(Y, red) and replacingit with any-
colour(X). In the presentsystem,the entireexamplewould be constructedbeforecheckingthat any-
colour did not make X red. Instead Marvin could create a description:

colour(X, Y) ! any-colour(Y) ! ~value(Y, red)

Immediatelyafterany-colour assignsY a value,we execute~ value(Y, red) to makesurethatY is not
red.

The new strategyfor constructingobjectsrequiresthat statementsinvolving a variable,X, which
mustbefalse,will beplacedimmediatelyafterthepositivestatementwhich assignsX a newvalue.The
program must still backtrack, but it will not be the blind backtracking currently being done.

7.4  Learning Logical Negation

Programssuch as Vere's Thoth (vere, 1980) learn counterfactuals(or exceptionsto the rule) from
negativeexamples.WhenMarvin testsan inconsistentgeneralizationit generatesnegativeexamples.
Thus, it may be possible to use these to learn predicates which must not be true.

Whenaninconsistentgeneralizationis made,Marvin triesto makethetrial morespeciÞc.Suppose
the trial,

colour(X, Y) ! any-colour(Y)

is inconsistent.The exampleshown to the trainer may have Y as blue, which the trainer says is
incorrect.Oneway of makingthe trial morespeciÞcis by taking thestatementvalue(Y, blue) which is
in any-colour and negating it:

colour(X, Y) ! any-colour(Y) ! ~value(Y, blue)

Usually, the additionof positiveinformationwill result in a betterrestrictionof the trial. However,if
no positiveinformationis available,Marvin couldtry addingthenegationof thedisjunctof theconcept
referred to by the statement which created an unacceptable example.

This methodhassomeproblemswhich mustbestudiedfurther.For example,to testthe restricted
trial, Marvin may show the trainer a greenobject which is acceptable.This doesnot necessarily
indicatethat the new trial is consistent.Black may alsobe a colour which is not allowed,but Marvin
hasn'ttestedthatyet, so it cannotassumethatblue is theonly exception.This problemis similar to the
onewe discussedin Section3.5 whenwe wantedto generatean instanceof an inconsistenttrial which
did not belong to the target.

7.5 Problems with QuantiÞed Variables

Supposewe wantto teachMarvin theorderingof thedecimaldigits 0..9.TheÞrststepis to learnthat0
comes before 1, 1 before 2 etc.

lessd =
[X0, X1:

value(X0, 0) ! value(X1, 1)
' value(X0, 1) ! value(X1, 2)
' ...............................
' value(X0, 8) ! value(X1, 9)
]

The Þnal disjunct that must be learnt is,

[(  X2: lessd(X0, X2) !  lessd(X2, X1)]
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To teachthis disjunct the trainer might show Marvin the example(1, 3) which would result in the
primary statements,

value(X0, 1) ! value(X1, 3)

Unfortunately,this pair doesnot matchany of the conjunctionsin lessd,so how is it possibleto learn
that there exists a digit in between the two given?

The problem is that the input does not provide enoughinformation to make the connection
betweenthe two digits. Onesolutionis to requirethe trainerto provideadditionalobjectsas'hints' to
guide the program. If the digit 2 is supplied as an extra piece of information then Marvin, as
implementedalreadycould learn the concept.This is similar to Vere's approachwith background
information (Vere, 1977).

In Marvin'scase,this solutionis not verydesirablebecauseit placestoomuchresponsibilityon the
trainer.A secondalternativeis to modify thestatementgenerationprocedure.A newstatementcanbe
introducedonly if all the statementsin one disjunct are matched.However, if we allow partial
matchingthen more statementscan be generated.For example,the primary value(X0, 1) will match
statementsin the Þrst and seconddisjunctsof lessd. In both casesthereis no object which will the
satisfy the otherstatementsin eachconjunction.However,whena partial matchoccurs,Marvin may
postulate the existence of new objects which satisfy the conjunctions. For example,

[(  X2, X3: lessd(X2, X0) ! lessd(X0, X3)]

Whenthe new objects,X2 andX3, arecreatedby a partial match,they mustbe ableto participatein
othermatches.For somevaluesof X3, lessd(X3,X1) will be true. It mustbepossibleto discoverthis
sinceit will resultin the targetconcept.Oneway of allowing X2 andX3 to beusedin furtherpattern
matchingis to generateinstancesof themby executingless(X2, X1) and less(X1, X3) aswasdoneby
thelearningsystem.Thedescriptionsof theinstancesof X2 adX3 maythenbegeneralizedin thesame
way that the descriptions of input objects are generalized.

Thereis onevery difÞcult problemwith thepartialmatchingapproach.Whenlearninga complex
concept,many unwantedstatementswill be generated.To demonstratethis, considerthe concept
quicksort.

sort =
[X0, X1:

value(X0, nil) !  value(X1, nil)
' 

[(  X2, X3, X4, X5, X6, X7, X8:
   head(X0, X2)
! tail(X0, X3)
! head(X4, X0)
! tail(X4, X5)
! partition(X2, X3, X6, X7)
! sort(X6, X8)
! sort(X7, X5)
! append(X8, X4, X1)

]
]

partition =
[X0, X1, X2, X3:

   value(X1, nil)
! value(X2, nil)
! value(X3, nil)
! number(X0)

' 
[(  X4, X5, X6:

   head(X1, X4)
! tail(X1, X5)
! head(X2, X4)
! tail(X2, X6)
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! less(X4, X0)
!  partition(X0, X5, X6, X3)

]
' 

[(  X4, X5, X6:
   head(X1, X4)
!  tail(X1, X5)
!  head(X3, X4)
!  tail(X3, X6)
!  less(X0, X4)
!  partition(X0, X5, X2, X6)

]
]

Thesortedversionof a list, X0 is X1. Sort worksby takingthetail of X0, that is X3, andpartitioningit
into two lists,X6 andX7 suchthatX6 containsall theelementsof X3 which arelessthanX2, which is
theheadof X0. X7 containsall theelementsgreaterthanX2. X6 andX7 arethensortedgiving X8 and
X5 respectively.Finally thecompletelysortedlist, X1, is obtainedby appendingX8 andX4. This joins
the two smaller,sortedlists with X2 in themiddle.ThedeÞnitionof partition is givenwithout further
explanation.

Becausethereareseveralintermediatestepsin sort, quitea few variablesmustbeusedto transmit
information from one predicateto another.No examplegiven by the trainer can provide the the
necessary information to generate these statements unless partial matching is used.

SupposeMarvin is trying to create the two sort predicates.We will assumethat the only
conjunctionof sort which is in memoryat presentis the Þrstonewhich expectsboth argumentsto be
nil. At leastfour emptylists mustbepresentto generatetherecursivecalls to sort. However,sincethe
traineronly showedtwo lists to Marvin therecanonly betwo emptylists in the input. Thesecanform
thebasisfor somepartialmatches.That is, newlists whosevaluesarenil would becreatedin orderto
satisfy the Þrst disjunct of sort. However,thesenew lists may also be usedin more partial matches
producingothersort predicatesandalsonewpartition predicateswhich involve threenull lists.All the
lists created could participate in still more matches, and so on.

The learningprocessis a searchfor the mostappropriatesetof predicatesto describea concept.
While we insiston all-or-nothingpatternmatchingthesearchspaceremainsbounded.However,when
partialmatchingis introduced,thesearchspaceis potentiallyinÞnite.If partialmatchingis goingto be
used then some means of directing the search must be found.

Whenstudentsin ComputerSciencearetaughtthequicksortalgorithm,theyalreadyknow whata
sortedlist is. They probablyalsoknow a simplesortingalgorithmsuchasan insertionsort.Sincethe
goalof thequicksortis clear,it shouldbeeasierfor themto understandthereasonfor thevarioussteps
involved. Perhapswe shouldnot expectthe machineto learn complexand efÞcientdescriptionsof
conceptson the Þrst attempt.If a naive deÞnitionis learnt Þrst, this may provide Marvin a way of
restrictingits search.With theadditionalinformationprovidedby someprior knowledgeof theconcept
it may be possibleto evaluatewhich matchesare more likely to be useful in building the target
concept.

7.5  Learning Universal QuantiÞers

Supposewe showMarvin thetrainingexample,(5, { 4, 1, 3, 2}). Partof a trial which maybegenerated
is:

value(X1, 5)
member(X2, X1)
less(X1, X0)
member(X3, X1)
less(X3, X0)
............
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For each element of the set X1 there is a matching set of statements,

member(X, X1) ! less(X, X0)

Thus it is possible to generalize the trial by replacing all of those statements by

["  X: member(X, X1) ! less(X, X0)]

To do this, the patternmatcherusedin statementgenerationmay be askedto look for matcheswithin
thetrial aswell aswithin conceptsin memory.If a numberof matchescanbemade,all with consistent
bindings, then the forall statement may be attempted.

Discovering which statementimplies the other within the forall statementmay presentsome
problemsto the objectgenerator.If the two predicatesin the exampleaboveareswapped,thenwhen
executedleft to right, Marvin may startproducingan inÞnitesetof numberslessthanX0 andtesting
themfor membershipin X1. In fact it shouldselectthe elementsof X1 andthenperform less(X, X0).
Both predicatesspecifya rangeof valuesfor X, but member(X, X1) describesa subsetof less(X, X0).
Thus member(X, X1) implies less(X, X0).

If a setA is a subsetof anotherset,B, thenB mustcontainobjectsnot in A. To determinewhich
statementshouldimply the other,Marvin canuseonepredicateto try to generatean objectnot in the
other, just as it does already when it creates training example to show the trainer.

7.6  Feature Extraction

Oneweaknessof Marvin is that it still must trust the trainer to teachit conceptsin an order that will
ensurethat the memory is well structured.Let us see if there is a way of making Marvin more
autonomous.

We havediscussedhow partialmatchingcanbeusedbetweenstatementsin the trial andmemory
to learnsort. Partialmatchingcanalsobeperformedbetweenstatementsin the trial andthemselvesto
learn forall statements.Now let consider matching conceptsin memory with other conceptsin
memory.

Although Marvin hascontrol over its own training examples,it hasno control over the order in
which conceptsarelearnt.Thepresentalgorithmis sensitiveto this order,soMarvin mustrely on the
trainerto choosetheordercorrectly;otherwisethememoryorganizationwould become unstructured.
An algorithmcanbe designedwhich is insensitiveto the fact that the memoryis not well structured,
however,a bettersolutionmight beto provideMarvin with a mechanismfor reviewingits memoryand
restructuring it if necessary.

A partial matching procedurewould allow Marvin to compareconceptsit has learnt. If two
conceptscontaina commonsubsetof statements,thenthis subsetcanbemadeinto a newconcept.The
statements in the Þrst two concepts can be replaced by a single statement referring to the third concept.

For example,when Marvin was taughton-top-of, we assumedthat flat would haveto be learnt
before any-shape. This time let's do it in reverse order. Marvin Þrst learns that any-shape is

value(X, red)
' value(X, table)
' value(X, sphere)
' value(X, pyramid)

and later it learns that flat is,

value(X, ßat) ' value(X, table)

Beforeflat is storedin thememory,Marvin performssomepatternrecognition.It discoversthatpartof
any-shape matches flat, so matching statements are replaced by a reference to flat.

ßat(X) ' value(X, sphere) ' value(X, pyramid)

If the new conceptdid not completelymatchanotherconcept,but had somestatementsin common,
then thosecommonstatementscould be extractedto form a third concept.This processensuresthat
Marvin's memory is always well structured.
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7.7  Learning to Learn

A criticism that may be levelled at Marvin is that its generalizationsare too conservative.If it is
learninga conceptwhich involvesquitecomplexobjects,manypropertiesof theobject,suchascolour,
maybeirrelevant.Yet Marvin mustgeneralizecolourbeforemovingon to higherlevel generalizations.
This is attributableto the speciÞc-to-generalnatureof Marvin's searchstrategy.That is, the initial
hypothesisdescribesonly a limited set of objects,and the cover of the conceptis very gradually
expanded.In contrast,Meta-DENDRALusesa general-to-speciÞcsearch(Mitchell, 1978)which starts
with the mostgeneralconceptthat canbe generatedandthenproceedsto makethis descriptionmore
speciÞc.

Whena humanlooks at an objecthe usuallyfocuseson the importantdetailsÞrstbecausehe has
learnt that someproperties,say its colour or texture,arenot likely to be distinguishingfeatures.The
searchstrategyof the learningalgorithmmay be madeextendedso that it canlearn,over a periodof
time, which properties should be tested and which ones it can generalize without testing.

If Marvin hasoften found that the speciÞccolour or textureof an objectcould be generalizedto
any colour or texturethen the next time it seesan objectwhich hasthoseproperties,it immediately
introducestheconcepts'any-colour'and'any-texture'without testingthem.This couldbedoneusinga
relatively simple mechanism.Eachconceptmay haveassociatedwith it a 'score'for the numberof
timesit couldhasbeenintroducedinto trial conceptwithout beingrestricted.That is, if a replacement
duringthelearningprocessintroducesa statementwhich resultsin a consistentgeneralization,thenthe
conceptreferredto by thatstatementis givenahigherscore.If thegeneralizationwasinconsistent,then
the score is decreased.

Supposethe trainershowsMarvin an objectwhich hascolour andshape.Becauseit hasalready
learntin on-top-of that thecolourcouldbegeneralizedto anycolour it mayassumethat thesamecan
bedoneimmediatelyfor thenewconcept.Sincetheshapeof objectshadto berestrictedin on-top-of, it
is reasonable to assume that the shape will have to be tested in the new concept as well.

If Marvin's assumptionsare correct then the scoresfor colour and shape can be adjustedto
reinforcethe idea that shapeis a more importantdistinguishingfeaturethan colour. However,if the
assumptiondid not work, thenthescorefor 'colour'would haveto bedecreased,andthecolourof the
object must be tested.

Notethat this strategyinvolvesrisks.If theconceptto belearntconformsto Marvin'sassumptions
about the world then the concept will be learnt more quickly than if it had used the present,
conservativealgorithm.However,a consequenceof thenewmethodis thatmorethanonepropertywill
be changedwhena new exampleis shownto the trainer.If the exampleis a negativeinstance,more
work will haveto be doneto makethe trial morespeciÞcbecausewe don't know which propertywas
responsible for the inconsistent generalization.

The bestcasefor the new algorithm gives a performancewhich is substantiallybetter than the
conservativeversion.However,the worst casemay result in a worseperformance.Bruner,Goodnow
andAustin (1956)describea Focus Gambling algorithmusedby someof the humansubjectsin their
tests. This method corresponds closely to the suggestions made here.

7.8  Summary

No researcheffort is evercomplete,sincetherearealwaysmanymoreproblemsthatneedto besolved.
Among them are:

¥ The descriptionlanguageusedby Marvin is limited in a numberof respects.Sometimesit is
difÞcult to neatly expressrelationaldescriptions.There is no built in set conceptwhich would
reduce the complexity of some descriptionsconsiderably.At present,sets must be learnt.
Constructs such as logical negation and universally quantiÞed variables do not exist.

 
¥ The pattern matching and statement generation procedures can be made more efÞcient.

 
¥ Theobjectgenerationprocedurescanalsobe improvedby dealingwith negativeinformationin a

more intelligent way.
 

¥ If the not connectiveis to be addedto the language,thereought to be a procedurefor learning
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concepts with counterfactuals (Vere, 1980).
 

¥ At present,patternsin a trial descriptionarematchedin an 'all-or-nothing'mannerwith concepts
storedin memory.A partial matchingproceduresimilar to thosedevelopedby Hayes-Rothand
McDermott(1977) and Vere (1975) will enable Marvin to attempt more complex concepts.

 
¥ The partial matching algorithm should also enable Marvin to detect 'forall' relationships.

 
¥ Onelimitation thatmustbe imposedon thetraineris thathemustpresentconceptsto Marvin in a

speciÞcorder,simpleconceptsÞrst, followed by largerconceptswhich containthe simpleones.
This is necessarybecauseMarvin hasrelatively little control over the structureof its memory.A
further applicationof the partial matchingalgorithm is to give Marvin the ability to compare
conceptsits hasstoredin memoryandextractcommonfeatures.This would allow theprogramto
ensure that memory is always well structured.

 
¥ The learningalgorithmcurrentlyin useis very conservative.If a complexobject is shown,every

property is the subjectof a generalization.A Focus Gambling algorithm may be usedwhich
selectsthemostpromisingpropertiesfor generalization,thusreducingthetime requiredto learna
concept.

Someof theproposalslistedabovearerelativelystraightforwardimprovementsto the implementation.
Others are, in themselves, complete research topics for the future.
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8

Conclusion

When researchin ArtiÞcial IntelligenceÞrst beganin the 1950's,emphasiswas placedon creating
programswith generalintelligence.That is, they should not be limited to working in a particular
domain.However,aftera decadeof work in theÞeld,opinionschanged.Researchersrecognizedthatto
perform tasks with an acceptablelevel of competence,a great deal of knowledge about the
environmentwasrequired.As a result,a numberof very succesful'expert'problemsolvershavebeen
constructed.

The mostsigniÞcantproblemencounteredby designersof suchprogramshascometo be called
'knowledgeengineering'.In order to developan expert program,the designersmust createa large
knowledgebase,usuallyrequiringthehelpof humanexperts.This processis time consumingandoften
involves ad hoc programming methods.

These difÞculties have led us back to considering a more general approach to ArtiÞcial
Intelligencewhere the generality is moved a level higher than it was before.The specialpurpose
problemsolversremain;however,theknowledgeneededto drive themshouldbeacquiredby a general
purpose learning system.

A numberof very usefulalgorithmshavebeendevelopedfor conceptlearning.Someof thesewere
discussedin Chapter2. Theprojectdescribedin this work wasintendedto addto this 'bagof tools' for
the knowledge engineer.

8.1  Summary

Whena learningprogramexpectsthe examplesit is shownto be carefully selectedby the trainer, it
assumesthat the trainer alreadyknows the deÞnitionof the conceptto be learnt and that he knows
somethingabouthow theprogramworks.Marvin is capableof generatingits own traininginstances,so
a lot of the hardwork involved in learningis shiftedawayfrom the trainer,to the program(Mitchell
and Utgoff, 1980; Lenat, 1977; Sussman, 1975).

Marvin usesa 'generateandtest'modelof learning.Givenan initial example,theprogramcreates
a conceptintendedto describethe classof objectscontainingthis example.It testsits hypothesisby
performinganexperiment.Thatis, it createsits own instanceof theconceptthathasbeendeveloped.If
the exampleshown to the trainer is an instanceof the target concept,Marvin may continue to
generalizeits hypothesis.Otherwiseit must modify the hypothesisso that a correct instancecan be
created.

Conceptsaredescribedin termsof a descriptionlanguagebasedon Þrstorderpredicatelogic with
quantiÞers.An importantability which Marvin hasis that, like Cohen'sCONFUCIUS(Cohen,1978),
thedescriptionlanguageallowstheprogramto describecomplexconceptsin termsof simpleronesthat
have been learnt before.

Thedescriptionof aneventshownto Marvin is convertedto anexpressionin Þrstorderlogic. The
programthenperformsa patternmatchingoperationto Þndassociationsbetweenthe input eventand
theknowledgeit hasstoredin its memory.Thepurposeof this operationis to Þndtheconceptsthatare
alreadyknown to Marvin which recognizepartsof the event.A conceptis true if it is implied by a
subset of the trial description.

A trial is generalizedby replacingthe implicantsof a conceptstoredin memoryby a statement
referingto thatconcept.New trials will continueto begeneralizeduntil onecreatesan instancewhich
is not recognizedby the targetconcept.Whenthis occurs,anattemptis madeto makea trial which is
more speciÞcthan the one which failed. This is doneby addingstatementsto the trial description
without removingany otherstatements.In this way a sequenceof trials is producedwhich 'oscillates'
around the target concept, getting closer for each new trial until the target is Þnally reached.

In orderto beableto createinstancesto showthetrainer,Marvin treatsa conceptdescriptionasa
programin a logic programminglanguagesuchasProlog.During theexecutionof sucha program,any
unboundvariablebecomesboundto a value which will result in the entire conceptbeing true. The
language is non-deterministic since there may be more than one possible set of bindings.



Not all the possibleoutputsof a conceptareacceptableastraining instances.If a trial conceptis
inconsistent,that is, it recognizeseventsnot recognizedby the target, then the object construction
routine must generateone of thoseeventsnot in the target. Thus, Marvin must have an 'instance
selector'which is capableof choosingthebestobjectsto showthetrainer.In Chapter3 we sawthat,as
long as memoryremainswell structured,if an eventdoesnot satisfy any statementwhich hasbeen
removedfrom the trial (andthe removedstatementis not implied by any in the trial) thentheeventis
an acceptable training instance.

In Chapters4 and6 we sawthat Marvin canbe taughta wide variety of complexconcepts.The
trainerdoesnot requireanydetailedknowledgeabouthow theprogramworksandMarvin'sresponseis
usually quite fast. Thus it seemslikely that a systemsuchas this one will prove useful in creating
knowledge bases for intelligent problem solvers.

8.2  Discussion

An interestingaspectof Marvin'sdesignis that it bringsinductionandtheoremprovingtogetherin one
program.Not only are theretwo componentsin Marvin for performingthesefunctions,but also the
procedureshavea greatdeal in commonin their implementations.They both rely very heavily on a
uniÞcation algorithm for pattern matching.

Figure 8.1 contains a schematic representation of a learning system based on Marvin.

Environment

Receptors Effectors

Short Term Memory

Pattern
Matcher

Learning
Strategy

Theorem
Prover

Long Term Memory
 

Figure 8.1. A general purpose concept learning system.

The system'slong term memoryconsistsof the collectionof conceptsthat it haslearntto date.When
somenew object is seen,its representationis enteredinto the short term memorywherethe pattern
recognitiondeviceis ableto accessit andcomparethis descriptionwith the contentsof the long term
memory.

As long asthesystemcontinuesto observetheworld, it triesto maintaina consistentmodelwhich
explainsthe relationshipsamongeverythingit sees.The model is representedby the conceptsin long
term memory. When somethingnew and unexplainedis encountered,the world model must be
modiÞedto takeinto accountthenewphenomenon.Updatinglong termmemoryis theresponsibiltyof
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the learning mechanism.It useswhat it alreadyknows about the world to createa theory which
describesthe new event. It must also proposean experimentfor testing the theory. To do this the
learningstrategyinvokesa theoremproverwhich will attemptto establishthe validity of the theory.
The outcomeof the experimentmustbe observedto discoverif the theorywascorrect.If it wasnot,
then a new theory must be advanced and tested.

Theadvantageof incorporatinga theoremprover(or somekind of problemsolver)into a learning
systemis that it canlearnby doing. Theprogramis not merelya passivesystemanalyzingdataasit is
input.A systemlike theoneproposedin this work canactively searchfor a bettermodelby performing
some actions in the world it it is investigating.

Thereis oneparticularlyimportantpartof this designwhich requiresfurtherattention.Thesystem
shouldbe capableof some'introspection'.It shouldbe ableto examineits memoryto try to discover
new conceptsfrom the knowledgeit alreadyhas(Lenat, 1977). The systemshouldalso be able to
evaluateits learningstrategyso that it canbe adjustedaccordingto the circumstances(Mitchell and
Utgoff, 1980). Undoubtedly these problems will keep us busy for some time to come.
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