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Abstract

Marvin is a programwhich is capableof learning conceptsfrom many different
environmentslt achieveshis by usinga 3exible descriptionlanguagebasedon brst
order predicatelogic with quantiPersOncea concepthasbeenlearnt, Marvin treats
the conceptdescriptionas a programwhich can be executedto producean output.
Thus the learning system can also be viewed as an automatic program synthesizer.

The ability to treat a conceptas a program permits the learning systemto
constructobjectsto show a humantrainer. Given an initial exampleby the trainer,
Marvin createsa conceptintendedto describethe classof objectscontainingthe
example.The validity of the descriptionis testedwhenMarvin constructsaninstance
of the conceptto showthe trainer.If heindicatesthatthe exampleconstructedy the
programbelongsto the conceptwhich is to be learnt,calledthe 'target',thenMarvin
attemptdo generalizehe descriptionof its hypothesizedonceptlf theexampledoes
not belongto the targetthen the descriptionmust be mademore specibcso that a
correctexamplecan be constructedThis processs repeateduntil the descriptionof
the concept cannot be generalized without producing unacceptable examples.

Marvin hasan associativanemorywhich enablest to matchthe descriptionsof
objectsit is shownwith conceptghatit hasstoredin memory.Complexconceptsare
learntby Prstlearningthe descriptionf simpleconceptsvhich provide Marvin with
the knowledge necessary to learn the more complex ones.

A conceptmay representa non-deterministicprogram,that is, more than one
outputmay resultfrom the sameinput. Not all the possibleoutputsof a conceptare
acceptablaastraining instancesThus,Marvin musthavean 'instanceselectorwhich
is capable is choosing the best objects to show the trainer.

Marvin hasbeentestedon a numberof learning tasks. Extensiveperformance
measurementseremadeduringthesesessionsvith the program.Theresultsindicate
that Marvin is capable of learning complex concepts quite quickly.
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1
Generalisations and Experiments

Marvin is a youngchild playing with sometoy blocksin his nursery.He seeshis motherbuilding ob-
jectswith the blocks. Trying to imitate the adult, Marvin makesan attemptat building somethinghim-
self, say,a stack.The prsttry fails becauséhe hasdonesomethingwrong. But eventually,he will be
successful as he learns from his mistakes.

By playingwith the blocks,Marvin learnsaboutthe attributesof blockswhich enablehim to build
stacksHe learnsto form a categoryof objectscalled'stacks'sothe nexttime hewantsto build a stack,
hewill notneedto makethe samemistakeshe did the brsttime. Categoriesormedthis way arecalled
concepts.

SciencehasformalizedMarvin'strial-and-erromethodof learninginto a processcalled 'The Sci-
entibc Method'. Using this method,a scientistobservesa natural phenomenorand forms a theory
which is an attemptto explainthe observedevent.In formulating the theory, the scientistmay have
drawnon his pastexperienceandknowledgeof theworld. Oncethetheoryhasbeenformed,it mustbe
testedby performinga carefully designedexperimentlts outcomemay conbrmthe hypothesisor dis-
prove it. If disproved, the scientist must modify his theory and develop a new experiment to test it.

This thesisdescribes programwhich usesthis approacho learningconceptsHaving seena par-
ticular instanceof a concept.the programdevelopsa hypothesidor its descriptionby trying to relate
the eventsit observedo conceptghatit haslearnedbeforeandarestoredin its memory.A hypothesis
is testedby performingan experiment.That is, the hypothesiss usedto constructwhat the program
thinks is a new instanceof the concept.If the objectreally is a correctinstancethenthe programre-
qguiressomefeedbackirom the environmento tell it so.In the presentsystem,a humantrainersuper-
visesthe programandanswers/esor no to the program'sattempt.This is somethindike playingtwen-
ty questions with a computer.

1.1 Inthe Nursery

As anintroductionto the way in which the learningsystemworks, let usreturnto Marvin andhis toy
blocks.Sincehe doesnotyet havea goodunderstandingf how physicalobjectsinteract,whenhetries
to imitate his mother,who built a stack,he may makesomemistakesbeforehe succeeds-or example,
he may not understandhat the baseobjectmustbe Ratin orderto supportanotherblock on top. Let's
follow Marvin's learning sequence:

Suppose Marvin sees a red ball on top of a green cube.

Red

Green

At his young age, Marvin may not realize it, but to understandthe scene,he must have some
descriptionin mind of what on fop of means.Usually, sucha descriptionconsistsof specifyingthe
values of certain attributes, or properties of the objects. A description of this scene may be:



The scene consists of a top object supported by a bottom object.
The shape of the top is a sphere.

The colour of the top is red.

The shape of the bottom is a box.

The colour of the bottom is green.

The problemfacedby Marvin is: What doesthis instanceof on rop of havein commonwith other
instances®nce he knows this, he will havesometestwhich will enablehim to form a categoryof
scenes which can be labelledrop of.

In orderto discoversomethingaboutthe objectsheis seeingMarvin maytry to associatelements
of the scenewith conceptshe knows already.Let's assumehat he knows aboutthe different colours
and shapes that objects can have.

The secondstatementn the descriptionaboverefersto the shapeof the top object. SinceMarvin
knowsaboutdifferentshapeshe cantry his brstexperiment!lf | changehe shapeof thetop object,is
the newscenestill aninstanceof on top of?' Marvin'snewhypothesidor the descriptionof the concept
is:

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.

The colour of the top is red.

The shape of the bottom is a box.

The colour of the bottom is green.

Now Marvin mustbndoutif his generalizatioris correct.Thatis, canthe top really be any shapeat
all? He can bnd out by trying to place, say, a red pyramid, on top of a green block.

Red

Green

In responseo this action, Marvin's mothermay smile and conbrmthat he hasdonethe right thing.
Flushedwith success,Marvin proceedsto generalizemore of the description.Now he tries to
generalize the colour of the top object:

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.

The colour of the top is any colour.

The shape of the bottom is a box.

The colour of the bottom is green.

This is tested by constructing the object:



Green

Green

All the possibilitiesfor the top object have beenexhaustedso the bottom can be examinednext.
Marvin noticesthatthetop of the bottomobjectis Rat,soit is reasonabléo ask,will anyRatobjectdo?
A new hypothesis for the concept description is formed,

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.

The colour of the top is any colour.

The shape of the bottom is a any Rat shape.

The colour of the bottom is green.

This can be tested by replacing the block on the bottom with a table.

Green

In the same way, the colour of the bottom is generalized by allowing it to be any colour.

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.

The colour of the top is any colour.

The shape of the bottom is any Rat shape.

The colour of the bottom is any colour.

This change is tested by making the table on the bottom green.

Now Marvin has generalizedall the values of the attributesof the objects.Is it possibleto
generalizeevenmore?lt is reasonabléo ask,'if the bottomcanbe any Ratobject,canit be any shape
at all?'

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.

The colour of the top is any colour.

The shape of the bottom is any shape.

The colour of the bottom is any colour.
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The object he tries to construct should have a base which does not have a RRat top.

Green

Green

Marvin hasgonetoo far in generalizinghe shapeof the bottomobject,sincethe pyramidfalls off the
ball. He must backtrackto his previous correct hypothesis.Since there is nothing left to try, the
generalizations end here. Marvin's Pnal conceptadp of is:

The scene consists of a top object supported by a bottom object.
The shape of the top is any shape.

The colour of the top is any colour.

The shape of the bottom is any Rat shape.

The colour of the bottom is any colour.

This exampleis not entirely realistic becauseMarvin was more systematid¢hana young child would
normally be. Whenhe wantedto makea generalizationMarvin wasvery conservativechangingonly
onepropertyat atime. Using a conservativestrategy if a generalizatiorfails, it is clearthatthe range
of valuesof the property cannotbe enlarged.However,if more than one propertyis changedthen
Marvin would not know which property value had been over-generalized.

The'Conservativé-ocusingStrategywas brstdescribedoy Brunerer al (1956)aspart of a study
of human conceptformation. Since then this work hasinspired a numberof computermodels of
knowledge acquisition.

1.2 A Computer Program that Performs Experiments

As well asbeingthe nameof a clever child, Marvin is the nameof a computerprogramwhich is
capable of learning concepts by performing experiments in much the same way as its namesake.

The program'stask is to createa descriptionof a conceptbasedon an exampleshownby the
humantrainer.Like the child, the programstartswith a very specibadescriptionwhich includesonly
thetraining instancelt generalizeshis descriptionby usingknowledgethatit haslearnedbefore,just
as Marvin used his knowledge of colours and shapes.

The learning processcan be characterizedas follows: A conceptdescriptiondescribesa set of
objects.The initial descriptionspecibes setconsistingof only one object, the training instance By
generalizinghe conceptwe describea newsetwhich includesnewobjectsaswell asthe objectsin the
old set. That is, we make the category of objects broader.

Figurel.1lillustratesthis processTherarget is the conceptwhich the trainerwantsthe programto
learn.Learningmeansexpandingheinitial setuntil it containsall the objectsin the target.But aswe
saw when Marvin tried to placea pyramid on top of a sphere,it is possibleto createa description
which includesunwantedobjects. This kind of generalizationis saidto be inconsistent. In orderto
discoverif a generalizationis inconsistent,the program performsan experiment. Like Marvin, it
constructs on object to show the trainer.



Universe Universe

Inconsistent

OTrial

Target Target

Consistent

OTrial

@ (b)

Figure 1.1 Generalizing concepts

Somecaremust be takenwhen choosingan objectto show. Remembemwhen Marvin wantedto
testthat the bottom could be any shapeHe tried to constructan objectwhosebasewas not Rat. In
otherwords,if anincorrectgeneralizatioris made the objectshownmustbelongto the shadedegion
of Figurel1.1b,thatis, containedn the hypothesisut notin the target.Finding suchan objectis quite
a difbcult task and will be dealt with fully in this thesis.

When an inconsistentgeneralizations made,the programtries to modify its descriptionof the
conceptsothatit containsfewerobjectsthanthe hypothesighatfailed. If the newdescriptionturnsout
to be consistenthenthe programcantry to generalizet. Sowe canthink of thelearningprocedureas
oscillating around the correct concept description, coming closer and closer until the target is reached.

1.3 Concept Description Languages

JustasMarvin, the child, hassomerepresentatiof a scenein his mind, Marvin, the program,must
also have some means of representing concepts.

The descriptionsin English of pyramids and blocks were 'structural' representation®f the
observedevent.Eachobjectwas describedby specifyingthe valuesof propertiessuchas colour and
shapeor whetheroneobjectwassupportedy another Thesevaluescanbe consideredasthe resultsof
measurementperformedby the sensesThe eye can detectdifferencesin hue, Pnd boundariesand
reportpositionalinformation.In the caseof a computerwe mustassumehatit hascamerasandrange-
Pnders attached to give it this information.

One of the problems encounteredin pattern recognition is trying to decide what sensory
informationis sufpcientto be ableto distinguishobjectsin the universe.If too few measurementare
made perhapsve will not haveenoughinformation.On the otherhand,if too manymeasurementare
made, there is the possibility of being swamped by too much information.

If alargenumberof measurementaremade,it may be possibleto detectpatternsn the data.By
attachinga nameto that pattern,we may simplify the descriptionof a conceptFor example,f Marvin
hadnot knownthatblocksandtablesare 3at objects,his descriptionof on top of may haveincludeda
statemensuchas'The bottomis a block or the bottomis a tableor the bottomis a...." Insteadthe same
idea can be simply expressed as 'The bottom is 3at'.

A recognitionsystemthat can uselearnedconceptsin this way is saidto be capableof growth
(Banerji, 1977), since the descriptive power of the system increases as it learns more concepts.

Oneof the main designgoalsof the program,Marvin, wasthatit shouldbe capableof growth. It
usesa languagebasedon brstorderpredicatelogic to describeconceptsWhena conceptsuchasflat
hasbeenlearned,its descriptionis rememberedso that it may be usedin the descriptionsof other
concepts.



6

1.4 Concept Descriptions and Programming Languages

Whena personis askedto write a programfor a computerhe oftentold by his client: 'l wantto getthis
kind of informationout of the program,giventhesedataasinput.' The brstthing thatthe programmer
mustdo is createsomekind of high-leveldescriptionof whatthe programis supposedo do. He must
understand, form a concept, of the relationship between the input data and the output.

In fact, when we write programsin Prolog (Roussel,1972), we are writing the relationship
betweeninput and outputin the form of a statemenin brstorder predicatelogic. A Prolog program
consistof a setof clausewf theform P :- Q, R, S. Thisis readas'P is trueif Q andR andS aretrue.'
For example, the program to append two lists producing a third, in Prolog is:

append([], X, X).
append([A | B], X, [A | B1]) :- append(B, X, B1).

This stateghattheresultof appendingany list, X, to theemptylist is X itself. The resultof appending
X to alist whoseheadis A andwhosetail is B is the list whoseheadis alsoA andwhosetail is B1,
obtained by appending B and X.

This programis a group of predicatesvhich describethe relationshipbetweenthe input lists and
the output. Wheninterpretedby a theoremprover,the outputcanactually be constructedf the input
lists are given. So a description language can also be a programming language.

In the sameway, Marvin's conceptdescriptionlanguagecan be considereda programming
languageWhena conceptis learned Marvin is not only ableto recognizean objectwhich belongsto
that concept.It can also executethe descriptionto constructan instanceof the concept.This is the
method used to construct training examples to show the trainer during learning.

The programis not limited to learningsimple conceptsuchason top of. It canlearnto sortlists,
Pndthe maximumnumberin alist or parsesentencesf a simple context-freegrammar Although not
designedhsanautomaticprogrammingsystemMarvin is capableof generatingorogramsthatcompare
with thoseof specialpurposesystemsvhich useinput/outputpairsto describethe program.Figure1.2
shows how Marvin may be used to synthesize programs.

Input

v
I/O Pair —— Learning ——— Prover/Interpretel

v
Output

Figure 1.2 Schematic diagram of system

1.5 Obijectives of the Research

In this section,we will list the objectivesof the researctto be describedlt wasintendedto developa

concept learning program which has the following characteristics.

¥ The programshouldbe capableof learningconceptdrom manydifferentdomains.It would achieve
this by using a Rexible description language based on brst order predicate logic with quantibers.

¥ Oncea concepthasbeenlearnedthe learningsystemshouldbe ableto treatthe conceptdescription
as a programand executeit. Thus the learning programmay also be an automaticprogramming
system.

¥ The ability to treatconceptsasprogramspermitsthe learningsystemto constructobjectsto showto
thetrainer. The systemhasgreatercontrol over its searchfor a suitableconceptdescriptionsinceit
canproposeits own training examplesjndependentlyof the trainer. This alsorelievesthe trainer of
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additionalwork and providesa more convenientand understandablavay of interactingwith the
program.
¥ Thelearningalgorithmshouldbe ableto useits pastexperiencei.e. conceptst haslearnedbefore)
to guidethe formationof new conceptsComplexconceptanay be learnedin stageseginningwith
easy ones and building up to the more difbcult concepts.
Marvin is signibcantin a numberof respectsTo my knowledge,no other generalpurposelearning
systemis capableof generatingits own training instance.However, some special purposelearning
programshave beendevised,for example,Popplestone'$1967) noughts-and-crossgsogram.Some
natural languageacquisition systemsalso learn by trying to 'say' a meaningful sentence Special
purposesystemshavesomein-built model,evenif elementaryto usein constructingexamplesNone
of these is as Rexible as Marvin.

It will be seenthat Marvin can learn complex conceptswhose descriptionsinvolve existential
guantibersThe descriptionsmay be disjunctive and recursive.This enablest to learn programming
concepts and simple language concepts.

Marvin'slearningalgorithmcanusethe conceptsalreadyknownto guidethe searchfor the target
conceptdescription. This was also a goal of Cohen'scoNFucius (Cohen, 1978). Marvin is the
successor afONFuclusand carries this aspect of the research further.

1.6 Structure of the Thesis

Chapter2 providesanintroductionto currentresearchn conceptearning.lt discusses numberof the
problems encountered and how various researchers have attempted to solve them.

Chapter3 givesanoverviewof the entiresystem.t containsa formal descriptionof Marvin'slanguage
and the algorithms it uses.

Chapter 4 contains an extended example of Marvin at work on a difpcult learning task.
Chapter 5 describes the implementation of the program in detail.

Chapter 6 describes the results obtained from performance measurements on the program.
Chapter 7 suggests ways of improving Marvin and points out directions for future research.

Chapter 8 is the conclusion.



2
Introduction to Concept Learning

This chaptercontainsan informal discussionof somecurrentresearchin conceptlearning.It is not

intendedto be a comparativestudy, sinceseveralsuchworks alreadyexist (Banerji,1977;Banerjiand

Mitchell, 1980;Dietterich andMichalski, 1977;Smith, Mitchell, ChestekandBuchanan1977).There

area numberof programsn existenceodaywhich arebroadlyclassedas'conceptiearningprograms'.

Thereare signibcantdifferencesamongthem sincethey were eachdesignedo meetdifferent goals.

We will examine the decisions which a designer must make in attempting to achieve those goals.
First let us debne, in general, the task which a concept learning program is to perform.

2.1 The Problem

Supposehereis a universeof objects.The objectsare asyet unspecibedbut they may be physical
objectssuchastablesand chairsor more abstractoneslike numbersand lists. When namessuchas
'table'areusedto referto anobject,thenthatobjectis classibPedsbelongingto a specibcsubsebf the
universe.ln objectrecognition,an observerappliesa previouslyestablishedule in orderto decideto
which classan objectbelongs.Thatis, the observethassomemethodfor determiningwhatis a table
and what is not.

The problemof conceptlearningis: Given samplesof objectsof known classmembershipthe
observer must develop the classifying rule.

The practicalimportanceof rule inductionhasbecomeclearin recentyearswith the development
of knowledge-baseaxpert systems.Theseare programswhich have achievedexpert statusin a
specibcdomain, such as medical diagnosisor symbolic algebra.Such programsare are difbcult to
write, particularlyasthe programmerrequiresthe cooperatiorof a humanexpertto developthe rules
which guidethe problemsolver.Very oftenthe humanexpertcannotdescribehis own problemsolving
process.Thus programswhich are capableof learningto solve problemshave provedvery valuable.
An exampleof this is Meta-DENDRAL (Buchananand Feigenbaum,1978) which is capableof
learning to interpret the results of mass-spectrograms and nuclear magnetic resonance tests.

A more long-termgoal of this researchis to try to understandhe learning processin general.
Sometimeghis is linked to a studyof humanlearningabilities. Howeverevenprogramswhich arenot
restrictedto a specibPcdomain, as DENDRAL is, may be designedwithout referenceto human
behaviour.

The classifying rules which describea conceptmust must have some representatiorin the
computer. Thus the brst decision which the designermust face is, how should a conceptbe
represented?

2.2 Choosing a Representation

The basicproperties which the learningmachine'ssensorscan measureand their inter-relationships
constitutethe language of the machine.Thereare two ways of approachinganguagedesign.If the
learningsystemis intendedto work in a specibadomainthenthe choiceof alanguageo representhe
conceptss dictatedby the type of objectthatbelongsto the domain.A goodexampleof this is Meta-
DENDRAL again.

2.2.1 Special Purpose Languages

Meta-DENDRAL (Buchanarand Feigenbaum1978)wasdesignedo form rulesthatcharacterize
the bondsof moleculeswvhich breakwhenthe moleculesareplacedin a massspectrometemMolecules
arerepresentedby graphs.The nodesof the graphare non-hydrogeratoms.Arcs betweenthe nodes
representhe bondsbetweenthe atoms.Eachrule describesa substructureén which certainbondsare
distinguishedIf the substructureoccursin a molecule,thenthe correspondindyondsare predictedto
break in the mass spectrometer.



Non-Hydrogen | Hydrogen Unsaturated
Node | Atom Type Neighbours neighbours Electron

1 C 2x__) any number 0
2 N (1x) 1 0

Bonds that break: bond between atoms 1 and 2.
Figure 2.1 A Typical Meta-DENDRAL Rule

Therule shownif Figure2.1indicatesthatwherethereis a carbonatomwith any numberof hydrogen
atoms,attachedo a Nitrogenatomwith one Hydrogenatom,thenthe bondbetweenthe Carbonatom
and the Nitrogen atom will break.

It canbe seenthatthe structureof the languageelectshe structureof the objectsin the domain.
However,if the programis intendedto operaten arangeof environmentsthentherecannotbe sucha
direct correspondenceThe languagemust be Rexible enoughto describevery different kinds of
objects.A numberof generalpurposeconceptlearning systemshave usedlanguagesasedon brst
order predicate logic.

2.2.2 General Purpose Languages - Predicate logic

A simplepredicateis an expressiorlike colour(top,red) The namesof constantsuchas'top'and'red’
areparameters. Colour(top,red)s calledaninstantiated form of thevariable form colour(X,Y) (Hayes-
Roth, 1977). X and Y are variables which may represent any constant. In an expression such as,

[X: colour(X, red)]

when X is treatedas a universally quantipedvariable then this expressiordebPneghe set of all red
objects. This is the description of the concept 'red object'.
If the language allows conjunctions of predicates, say

[X: colour(X, red)! shape(X, sphere)]

thenthe setdescribeds theintersectiorof the setdescribedy the atomicpredicatesn the expression.
Similarly, a disjunction (logical OR) describes the union of the sets debPned by the predicates.

As we will seetherearemanyvariationsonthe purepredicatecalculuslanguageThesevariations
arise from the particular emphasis of the learning system.

2.2.1.1 Parameterized Structural Representations

Hayes-Roth(1977) has developeda languagewhich is equivalentto predicatelogic, but has some
advantagesver it. Training instancesand conceptsare representecby ParameterizedStructural
RepresentationPSRs).A PSRconsistsof a setof parameteranda setof relations.For example to
describe the scenes in Figure 2.2 (Hayes-Roth and McDermott, 1978) the PSRs are,

El: {{TRIANGLE: a, SQUARE: b, CIRCLE: c},
{LARGE: a, SMALL: b, SMALL: ¢},
{INNER: b, OUTER: a},

{ABOVE: a, ABOVE: b, BELOW: c},
{SAME-SIZE: b, SAME-SIZE: c}}

E2: {{SQUARE: d, TRIANGLE: e, CIRCLE: f},
{SMALL: d, LARGE: e, SMALL: f},
{INNER: f, OUTER: e},

{ABOVE: d, BELOW: e, BELOW: f},
{SAME!SIZE: d, SAME!SIZE: f}}
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An expressionsuchas {INNER: b, OUTER: a} is calleda case relation. It consistsof properties
INNER and OUTER ancbarameters a and b.

Figure 2.2 SPROUTER example

Why shouldthis methodof representatiome choseninsteadof the conventionalpredicatelogic?
Consider this example:

A predicate logic description of this could be:
line(a, b)! line(b, a)! line(c, d)! line(d, c)

Note that someduplicationis necessarpecausdhe parametersiboveare consideredo be ordered
pairseventhoughno orderingis wanted.Thatis, two predicatesrerequiredto representhe symmetry
of the objects. A PSR representation might be:

E3: {{ENDPOINT: a, ENDPOINT: b} , {ENDPOINT: ¢, ENDPOINT: d}}

Here the symmetry is obvious. However, this representations still complete.Here is a second
description of two lines:

E4: {{ENDPOINT: w, ENDPOINT: x} , { ENDPOINT: x, ENDPOINT: y}}

Thelines sharea commonendpoint.Implicit in thesedescriptionss the assumptiorthatthe endpoints
arethe sameonly if they are labeledby the sameparameterThe fact that thereare four points (not
necessarily distinct) cannot be obtained from the case relations above.

To avoidthis problemthe PSR'saretransformednto uniform PSR'sHere,distinctparametersire
usedin each caserelation, and new relations are addedto establishthe equivalenceof variables.
Similarly, new relationsare addedto distinguishdifferent objects.The uniform representatiorof E4
becomes:

{{endpoint:x1, endpoint:x2},
{endpoint:x3, endpoint:x4},
{DP:x1, DP:x2},

{DP:x1, DP:x3},
{DP:x1, DP:x4},
{SP:x2, SP:x3},
{DP:x3, DP:x4}}
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'X" in the Prstdescriptionhasbeenreplacedby x2 andx3 which are put into a new relationindicating
that they arethe Same ParameterThe othervariablesmustbe distinguishedas Different Parameters.
E3 would have a similar uniform description except that x2 and x3 would be different parameters.

As we will seewhenwe discussvariouslearning strategiesthis representationvill allow usto
discoverconceptswhich could not be found using ordinary predicatelogic. However,the language
doeshaveits disadvantagedt is not capableof growth, althoughit may be extendedto allow this.
PSR'scan only representconjunctive concepts,and the NOT connectiveof predicatelogic hasno
equivalent here.

2.2.1.2 Relational Productions

Vere'swork is concernedwith developingformal induction algorithmsfor expressionsn predicate
calculus(Vere, 1975).Originally this work was seenas creatinga dual for deductivetheoremproving
(Plotkin, 1970).In Vere'slanguagea literal is a list of termslike (ON.X1.X2). An identiPerpreceded
by a period is a variable. Other terms, such as, ON are constantsfi: is a conjunction of literals:

(COLOUR .X1 RED) (SHAPE .X1 SPHERE)

This languagdormedthe basisfor a numberof extensionsvhich haveincreasedhe descriptivepower
of the system. One extension was the developmewtiwional production.

Relational productionsbear someresemblancdo STRIPStype productions(Fikes, 1972). For
example the following productiondescribeghe changewhich takesplacewhena block, a, is moved
from on top of another block, b, to a third, c.

A A
—>
B C B c
7. T e S —
(clear a) (on ab) (onac)
(ontable b) _
(ontable c) (clear c) (clear b)

Figure 2.3 Before and after pair

Theleft-mostgroupof predicatesrethe context or invariantconditionswhich arenot changeddy the
operation(on ab) and(clearc) which aretrue beforebecomédalseafter. (on a c) and(clearb), initially

false, become true after the bring of the rule.

First order predicatelogic is not very well suitedto describingchangeof state.However,in robot
planning,it is essentiato be ableto do this easily. Relationalproductionscan extendthe descriptive
power of ordinary predicatelogic so that changesof state can be expressedn a concise way.
Productionsystemsarealsocommonin manyknowledgebasedexpertsystemsgconsequentlya system
capable of learning productions can be used to build an expert's knowledge base.

Note that the productionabove only describesthe way in which a block is taken from one
supportingblock to anotherIn orderto describethe rangeof differentoperationswvhich cantakeplace,
adisjunctive concept is necessaryThis is representethy a setof productionsgachof which describes
one type of operation.
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Transformation Picture
P1
(clear X) Y X
(ontable X) (clear x) —
(clear Y) » (on X'Y) < P ’ M
XY (ne XY) Voo
(ne X) £ N
P2
« ) X Y
clear x —
(clear X) —p» (ontable X) Y —> : ‘ ”
(on XY) (cleary) Do
N e
P3
(clear X) (clearY) X
(on XY) (clear x)
(clear 2) ’ (on X 2) M ‘ z | ’ M | -
(ne X Z) (ne X Z) SR S

Sometimest is necessaryo specifyexceptiongo arule. For example analmostuniversalcriterionfor
establishingthat an animal is a bird is that it RBies. However,there are some exceptions.Bats are
mammals,but they Ry. To expressthis it is hecessanto introducelogical negation.For example,
(Ries.X) ~(bat.X) could describethe concept'bird'. Vere's THOTH programis capableof learning
expressions of the form,

P~(N~(N2~..))

P is aproductwhich representshe concept/V; is a productwhich describesinexceptiorto P, Nz is an
exceptionto the exception efc. The negativeproductsare called counterfactuals. [Of coursethereare
some birds which do not By; they would go into a separate disjunct of the concept].

Vere'slanguagecontainsfeaturessuchas disjunctionand negationwhich Hayes-Roth'sanguage
doesnot have.lt alsointroducesthe relationalproduction.However,someof the problemsassociated
with variable bindingsin predicatelogic, which Hayes-Rothtried to solve, still occurin THOTH.
RecentlyVere hasreportedfurther work associatedvith variablesbindings(Vere, 1981). At present,
THOTH is still incapable of adding to its descriptive power by growing.

2.2.1.3 Variable Valued Logic

VariableValuedLogic is the namegivenby Michalski (1973)to anaugmentedorm of predicatdogic.
Oneof the mainreasondor developingthis classof languagesvasto makeconceptdescriptionamore
readablefor humans.To achievethis, accordingto Michalski, the numberof disjunctionsshouldbe
minimized, the numberof predicatedn a conjunctionshouldalso be kept small. Recursionmust be
avoided if possible.

The basic elements of VL languages are calégtrors. Some examples are:

[colour(box1) = white]
[length(box1) >= 2]
[weight(box1) = 2..5]
[blood-type(P1) = O, A, B]
[on-top(box1, box2)]
[weight(box1) > weight(box2)]
[type(P1).type(P2) = A, B]

Oneof the mosteffectivewaysof simplifying a descriptionis the useof the internal disjunction. The
expressior?..5 representa rangemeaningthat the weight of the box may be between2 and5 units.
The blood-typeof personP1maybeanyof O or A or B. Thelastrule abovestateghatbothP1andP2
may have blood-types A or B.
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Variable Valued Logic is intendedto be a generalpurposedescriptionlanguageln orderto allow a
program using VL to operatein a specibcdomain, the user suppliesthe systemwith domain

knowledge Thisis doneby specifyingthetype andrangeof thedescriptorghatwill beused.Thetypes
are,

Unordered There is no structure in this domain (e.g. blood-type)
Linearly Ordered ~ The domain is a linearly ordered set (e.g. weight)

Tree Ordered Elementsare orderedin a tree wherea superiornoderepresentsa concept
which is more general than its descendents. For example:

Plane Geometric Figure

Polygon Oval

Triangle Rectangle Pentagon Ellipse Circle

Among the other environmentspecibcationsthe user may describethe propertiesof predicate
functions such as

' X1, X2, X3 ([Ieft(xl, x2)|[left(xz, x3)] [left(xa, )(3)])

which states that ifixis left of x and x is left of s then X is left of x.

The ability to add domainknowledgeis one way of tailoring a generalpurposelanguageto the
requirement®f a specibenvironmentThis avoidsthe necessityof build anentirely newlanguageor
each new problem and still provides descriptors that are appropriate for describing concepts succinctly.

2214 CODE

Banerji (1969) suggestedhat it would be possibleto createeffective descriptionsby learning the
domainknowledge.This is the approachtakenby Cohen(1978)in his program,CONFUCIUS.The
description language, called CODE, becomes more powerful as more knowledge is acquired.
Simple expressions are of the form:
colour(X) =red
X # setl
setl$ set2

For eachoperatorthereis alsothe negation,~, efc, enablingthe representationf exceptionsThereis
also anotheroperator,contained-in which is true when an objectis containedin a conceptthatis in
CONFUCIUS' memory. Thus,

(X, Y) contained-in connectedff
neighbour(X) = Yand
neighbour(Y) = X

recognizes points X and Y which are connected by a line segment.

(X, Y, Z) contained-in triangleiff
(X, Y) contained-in connecte&nd
(Y, Z) contained-in connectecnd
(Z, X) contained-in connected

recogniseshetriangle describedvy theverticesX, Y andZ. Notice thatsriangle usedconnected in its
description A knowledgeof trianglesrequiresa knowledgeof straightlines,asonewould expect.This
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demonstrateshe way in which CONFUCIUSlearnsto understandnore aboutits world asit learns
more concepts.In many ways this models the behaviour of humans. We develop a greater
understanding of our world by a long process of acquiring gradually more sophisticated concepts.

Disjunctiveconceptxanalsobe expresseih CODE. Thelanguagealsoallowsrecursionwhichis
essential for describing abstract concepts of among other things, numbers and lists.

The main goal inBuencingthe designof CODE is the ability of one conceptto refer to another;
CODE is a growing language Eachdescriptionlanguagehasits merits and its faults. Which oneis
chosendependn the designgoalsof the learningsystem However,the choiceof representatioalso
profoundly affects the design of the learning strategy.

2.3 LEARNING STRATEGIES

As we demonstratedn the toy blocks example,the kind of learningwe are investigatinginvolves
generalizinghe descriptionof a particularobjectto a moregeneraldescriptionof a classof objects.In
this sectionwe will discusssomedifferent generalizationproceduresput brst, we must give some
informal dePnitions of a few frequently used terms.

Definitions

1. We will assumehe the sensorypre-processorsf our learning machinereport the resultsof its
measurementss predicatessuch as colour(X,red). This expressionis true when the object
representetly X hasa propertycalledcolour andthevalueof colouris red. Thereis anequivalent
representatiorior sucha statemenin all of the generalpurposelanguagesiescribedn the last
section.

2. Basic predicates may be combined with ANDs and ORs in the usual way.

3. If aconceptC, is describedy alogical expressionP(X), thenwe sayCrecognizes the object,Obj
if P(Obj) is true.

4. A concept,Cy is more generalthan anotherconceptCs if everyobjectrecognizedby C; is also
recognized by €

5. In many learningalgorithms,it is necessaryo be able to match expressionsn different concept
descriptions. Suppose, for example, that we want to match

colour(box1, red) size(box1, big) (Py)
and
colour(X, red) size(X, big) (P2)

We saythat P; matchesP, underthe substitution, %= {box1/X} or P; = P> % TheexpressiorP; %
is obtained by substitutingpx/ for every occurrence &f in P».

6. For conjunctive concepts (conceptswith no OR operation) we can give a debnition of
generalization in terms of the description language. If there exists a subsfitgtich that

Ci&

thenC; is moregeneralthanC; (Vere, 1975). For example less(1,Y)which representshe setof
all numbers greater than 1, is more general than

less(1, X)! less(X, 5)

If a conjunctionis consideredasthe setof its componentiterals then, given the substitution{X/
Y}, the brstexpressioris a subsebf the second Therearefewer constrainton the variablesand
so it specibes a larger set.

The problemnow facedby the designeris to choosea learningstrategythat will enablea programto
developa usefulgeneralizatiorefpciently.Learningalgorithmsaresometimeslividedinto two classes
according to the approach they use.
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2.3.1 Data-Driven Methods

If 1 showyou two examplef the sameconceptandask'whatis the concept?your reactionmight be
to study the examplesto seewhat they hadin common.Given two expressiorEl and E2, we may
considerthat a generalizatiorderivedfrom them should containthe featuresthat E1 and E2 hold in
common. For example,
colour(X, red)! size(X, big)! shape(X, cube)
and
colour(Y, red)! size(Y, small} shape(Y, cube)
generalizes to
colour(Z, red) shape(Z, cube)

Soin asensewe arebndingtheintersectionof setsof predicateslf therearea numberof expressions

from which we may produce a generalization then we bnd the intersection of all of them:
((E1*E2) *E3) *E4) ...

*' representghe operationof pPnding the intersection or maximal common subexpressiorof two

expressions.

Finding common generalizationsisn't as easy as it may Prst appear. To bnd common
generalizationsf two conceptsywe haveto matchpredicatesThis entailsbndingconsistenparameter
bindings betweenthe concepts.In realistic examplesiit is usually possibleto bPnd more than one
substitution. Consider the objects in Figure 2.4 from the example by Dietterich and Michalski (1981).

A

D

Figure 2.4 Finding the Maximal Match Between Two Examples
These may be described by the following expressions:
El: circle(a)! square(b) small(a)! small(b)! ontop(a, b)

E2: circle(e)! square(d) circle(c)
I small(e)! large(d)! smali(c)
I ontop(c, d) inside(e, d)

If the programbeginsby trying to Pnda matchfor a thenit maynoticethatcircle(a) matches:ircle(e).
Furthermoresmall(a) matchessmall(e). Thusa substitution{ a/e} is possible.Howeverthis will not
lead to the mostobviousgeneralizationnamelythat thereis a small circle abovea square We may
therefore, state our goal as a search for a maximal match of literals and parameter bindings.
The problemof Pndinggreatescommonsubexpressions NP-complete Therefore, enumerative
searchmethodswill be very costly unlesssomeheuristicsare usedto prunethe search.The systems
developed by Hayes-Roth and McDermott (1978) and by Vere (1975) fall into this category.

2.3.1.1 SPROUTER

Hayes-Roth(1977) has developedan algorithm, called interference matching, for extracting the
commonalitiesfrom examplesThe comparisonof PSR'sis likenedto Pndingthe intersectionof the
setsof caserelations.For example,an abstraction obtainedfrom the descriptionsof E1 and E2 in
Figure 2.2 earlier in this chapter, is:
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{{ABOVE:1, BELOW:2} ,
{SAME!SIZE:2, SAME!SIZE:1}
{SMALL:2}, {SQUARE:1}, {CIRCLE:2}, {TRIANGLE:3}, {LARGE:3}}

Thereare three objects:a small circle, a small squareand a large triangle. The squareis abovethe
circle.

Sinceany subsebf the setof commonrelationsis alsoanabstractionit is importantto distinguish
betweenthe set and its proper subsets.An abstractionwhich is properly containedin no other
abstraction is aaximal abstraction.

Thealgorithmto Pndthe maximalabstractiorof two PSR'srandomlyselectsa caserelationfrom
one PSR and putsit in correspondenc&ith one from the other PSR. Parametersiaving identical
properties are identibed as equivalent and the resulting case relation becomesthe (primitive)
abstractiorassociateavith thatsetof parametebindings.Thenotherpairsof primitive caserelations,
one from each of the two exemplarPSR's,are out into correspondencelf the new comparison
producesbindingswhich are consistentith previousbindingsthenthe new caserelationis addedto
the abstraction Otherwise,a new abstractionis formed with the commoncaserelation as primitive.
Thusa numberof competingabstractionsnay be produced Sincemanyunwantedabstractionsnay be
produced heuristics are used to prune the search.

A problemwhich is encounteredisingthis matchingalgorithm(andmostothers)canbeillustrated
by the following example:

E5: {{SMALL: x}, {SQUARE: x}, {RED: x}}
E6: {{SMALL: v}, {SQUARE: vy}, {SQUARE: z}, {RED: z}}

In both E5 and E6 thereis a small squareanda red square However,in E5 they arethe sameobject.
Thusa methodis requiredthatwill allow the singleinstanceof SQUAREIn E5 to matchtwo instances
in E6. Many-to-onebinding algorithmsare currently under investigation.An essentialpart of the
solution proposedHayes-Rothand McDermott (1981) is the transformationof a PSR representation
into a uniform PSrepresentatiorBy introducingSameParameteand Different Parameterelationsit
would be possibleto bndan abstractionwhich insistedthat the parameter®f SMALL and SQUARE
are the same,and the parameterof SQUARE and RED are the same,but it doesn'tcare if the
parameters of SQUARE and RED are different.

23.12 THOTH

In a PSRrepresentatiolnf a conceptthe memberf a caserelationare unorderedRelationsmustbe
matched according to correspondingproperty namessuch as ABOVE and BELOW. In Vere's
representatiothereare no specialpropertynamesjnsteadthereareliterals which are orderedlists of
terms. Although the two languageshave much in common, their internal representationgre quite
different; consequently the matching algorithms are also different. To illustrate Vere's matching
algorithm, we will use one of his own examples (Vere, 1975).

We wish to Pnd a maximal common sub-expression of,

R1 = (B X2) (W X3) (C X2 R) (S X3 X2)
R2 = (W X6) (B X5) (S X6 X5) (D X6 E)

Literals from R1 and R2 which are the samelength and containat leastonetermin commonin the
same position are paired.

P1 = (B X2) (B X5)
P2 = (W X3) (W X6)
P3 = (S X3 X2) (S X6 X5)
Terms in the pairs which do not match are replaced by variables producing the generalization,
W.Y)(B.2)(S.Y.2)

In this example,only one set of pairs could be produced,but as we saw in Section1.4.1, some
matchingproblemsmay resultin severalpossiblewaysof pairing literals. In this casethe pairswhich
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give the longest generalization are chosen.
If the conceptbeinglearnedis conjunctive,thenit is sufbcientto Pndthe intersection of all the
products to produce the generalization. Generalizing disjunctive concepts poses a few problems.
It is not possibleto simply matchdescriptionsof instancesany more. If two instanceshelongto
different disjuncts,thenthe matchingdescriptionswill producean empty or incorrectgeneralization.
Therefore Vere (personal communication) adopts the following modibcation:

Supposehe instanceshownto the programarell, 12, 13, 14, 15, 16. The procedure
beginsby trying to generalizell andI2 to bPnd a maximal commongeneralization
(mcg). Supposealsothat 11 and 12 are successfullygeneralizednto mcg G1. We
thentry to generalizeG1 and 13. Supposehis attemptfails becausd3 belongsto a
differentdisjunctto 11 and12. We jump over |3 andtry to generalizeéG1 andl4. This
succeedgiving mcgG2. Now we try to generalizeé52 and|5. Thisfails. Thenwe try
to generalizeG2 and16. This succeedgjiving mcg G3. The procedurethen begins
anothemassthroughthe remaininginstancesthatis, throughthelist 13, I5. Suppose
I3 and I5 can be successfullygeneralizednto G4, then we obtain the disjunctive
generalization G3 G4.

THOTH is also capable of performing other learning tasks. These will be described only briel3y here.
In manylearningtaskstheremay be informationrelevantto the problembut which is not supplied
explicitly. This may bein the form of domainknowledgeor asVere callsit background information.
To illustrate this situation, Vere (1977) usesthe exampleof teachingthe programpoker hands.To
teachyfull house it is sufbcientto showthe programtwo handsboth of which havethreecardswith the
samenumberandthe remainingtwo with a different number.No informationis requiredbeyondthat
presentin the descriptionof the examplesHowever,to learnthe conceptstraight, the programmust
know somethingaboutthe orderingof cardsin a suit to recognizethat the handsshownas examples
contain a numerical sequence. This background information may be represented as:

(next 2 3) (next 3 4) ... (next K A)

Whena handis shownas an instanceof straight the programmust be able associatehe description
with the background information.

THOTH is capableof learningcounterfactuals. Taking anotherof Vere'sexamplegVere, 1980),
thetaskof thelearningsystemis to Pnda descriptionwhich discriminatedetweerthe setof objectson
the right and and the set on the left in Figure 2.5. It is not possibleto producesucha description
without making exceptionsThe objectson the right are describedas havingan objectX on top of an
object Y. Y is a green cube. X must not be blue except if it is a pyramid.

Recently Vere hasdevelopeda newalgorithmfor constrained N-to-1 generalizations. At thetime
of writing, complete details of the algorithm were not available.

2.3.2 Model-Driven Methods

Model-drivenlearningmethodsusuallybeginwith a singlehypothesisvhich is usedasa startingpoint
for a search. Generally these methods can be characterized as follows:

Create initial hypothesis

while hypothesis ! target concepb

Apply a transform which will produce a new hypothesis which is either
more general or more specibc, depending on the search strategy.

Herewe havea situationwhichis, in someways,similar to gameplaying or problemsolving. Thereis
an initial stateand a goal state.By generalizingthe description,the programperformsan operation
which is part of a searchfor the goal. The differencebetweenplaying chessand learningis that the
chess program knows when it has reached the goal state, a learning program does not.

The spaceof the searchis the setof all sentence# the languagewhich canbe derivedfrom the
initial hypothesisy the applicationof the transformsMitchell (1977)calls this the Version Spaceof
the concept formation task. Three things must be decided when developing the search algorithm:

1. What is the starting point?
The program may begin with a hypothesisfor the conceptwhich is very specibc,being the
descriptionof asingleobject.It maythenproceededo generalizehis descriptionuntil it describes
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a sufpcientlygeneralclass.Alternatively, the programmay choosea startinghypothesiswvhich is
too general. It then tries to produce new hypotheses which are more specibc.

2.  What transformation rules should apply?
In eachlanguagetheremustbe a way of determiningwhich of two descriptionss more general
than the other. This meansthat the spaceof conceptdescriptionsis partially ordered(Mitchell,
1977). The transformations rules must use this ordering to produce a new hypothesis.

3.  What search strategy is appropriate?
The designer must choose a search strategy such as depth-brst or breadth-pbrst etc.

POSITIVE INSTANCES NEGATIVE INSTANCES
(ONT1T2) (ONT10 T11)
(SPHERE T1) (SPHERE T10)
(GREEN T1) (BLUE TO)
(CUBE T2) (CUBE T11)
(GREEN T2) (GREEN T11)

rl nl
(PYRAMID T3) (SPHERE T12)
(BLUE T3) (GREEN T12)
(CUBE T4) (CUBE T13)
(GREEN T4) (BLUET13)
r2 n2
(ONT5T6) (ON T14 T15)
(CUBE T5) (ON T15 T16)
(YELLOW T5) (CUBE T14)
(CUBE T6) (YELLOW T14)
(GREEN Té) (CUBE T15)
(BLUE T15)
(CUBE T16)
r3 (GREEN T16)
n3
(ONT7T8)
(ONT8T9)
(CUBE T7) (ON T17 T18)
(GREEN T7) (CUBE T17)
(CUBE T8) (BLUE T17)
(RED T8) (CUBE T18)
(CUBE T9) (GREEN T18)
(GREEN T9)
r4 n4

Figure 2.5 Vere's Introductory problem

2.3.2.1 Meta-DENDRAL

When presentedwith a large numberof training instance,how doesMeta-DENDRAL generateits
rules?The searchis general-to-specific. Thatis, it beginswith the mostgeneralpossiblehypothesis,
then uses a breadth brst search to bnd a more specibc rule which is acceptable.

The most general rule is that any bond between any molecule will break.
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N-C*C-C
X-C*C-X
X
X-X*X X-X*X-X C*N
X
X*X

Figure 2.6 Portion of a Meta-DENDRAL Search

Thisis representetly X*X in Figure2.6.In onestepof the searchgachattributeof a nodeis changed.
This resultsin a numberof alternativeruleswhich mustbe evaluatedo determinewhich aresuitable.
The criterion used is as follows,

If arule matchesfewer positive instanceghan its parent(that is, the rule is more
specibc)but matchesat least one positive instancein at leasthalf of the training
molecules(that is, it is not too specibc)then this rule is 'better'. The searchmay
continuealongthis path.If this conditionis not metby any of the descendentef a
rule, then the parent is output as the most acceptable rule.

Meta-DENDRAL illustrates anotherproblem which must be faced by the designerof a learning
program.Someinput samplesmay be incorrectly classibPed Suchinput is called 'noise'.In orderto
avoid being misled, the program uses a probabilistic evaluation function for guiding its search.
Anotherpoint to noteis that whenthe problemdomainis well understoodthe designercantake
advantageof specializedknowledge.For example,the searchprocedureusedin Meta-DENDRAL
would be unacceptable in an environment which had a greater branching factor than this problem.

2.3.2.2 VL-Systems

Michalski recognizedthe importanceof domain knowledgein learning. However, his aim was to
designa generalpurposemodel-drivenlearningprogram.Thereforethe VL 2 systemsdevelopedat the
University of Illinois, allowsthe humanuserto describethe domainin the descriptionlanguagerather
than have the domain knowledge bxed in the structure of the learning program itself.

The problem which the lllinois group deals with is this: Given,

¥ A set of data rules which specify the input (training samples).
¥ A set of rules to debPne the problem environment
¥ A preference criterion which, for any two symbolic descriptions specibes which is preferable
determine a set of rules to describe the input, which is more general than the data rules.
The purposeof the preferencecriterionis to give the usersomecontrol overthe program'ssearchlt is
envisagedhat the programwill be usedby humanexpertsinteractivelyto rePneknowledgeabouta
particularproblem.Thereforean importantgoal is to producerulesthatare easilyreadby people.The
preference criteria allow the user to tell the program what form of rule to look for.

The learningalgorithmusedin the program,INDUCE-1.1is describedby Dietterich (1978) and
Michalski (1980).Briefy, the programbeginsby augmentinghe datarulesinput by the user,by using
theinferencerulesin the domainknowledgeto producenewrules.For examplejf anexampleincludes
atriangle,thefactthatit is alsoa polygonis alsoadded Whenall the inferredruleshavebeenadded,
the program begins a breadth brst searchfor the most specibcgeneralizationsvhich satisfy the
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preferencecriteria. Throughoutthe searchthere are a numberof mechanismgo limit the branches
which are pursued.

The searchproceedsas follows: The algorithm builds a sequenceof setscalled partial stars,
denotedby P.. An elementof a partial staris a product(i.e. conjunctionof selectors)Theinitial partial
star (P)) consistsof the setof all selectorsg, from the descriptionof the training example. Theseare
consideredsingle elementproducts.A new partial star Pi+1 is formed from an existing partial star P;
suchthatfor eachproductin B;, a setof products is placedinto P+1 whereeachnew productcontains
the selectorof the original productplus onenew selectorof the e which is notin the original product.
Beforea new partial staris formed, P is reducedaccordingto a userdebnedptimality criterionto the
'best’ subset before a new partial star is formed.

2.3.2.3 CONFUCIUS

Well before the current group of learning systemswere under development,Banerji (1964) had
proposeda predicatelogic descriptionlanguagewhich could 'grow'. Thatis, conceptdearnedduring
onetraining sessiorarestoredin memoryandmay be useby the programin the future to simplify the
description of a new concept to be learned. Thus domain knowledge could also be learned.

The original learningalgorithmusedin CONFUCIUSwasderivedfrom the work of Pennypacker
(1963).This, in turn, wasderivedfrom the Conservativéd-ocusingAlgorithm describedcby Bruneretal
(1956). The algorithm developed by Cohen (1978) for CONFUCIUS is:

1. Aninstance is presented to the program by the trainer.

2. The programgeneratesall the true statementst can to describethe exemplar.This includes
statements describing containment in previously learned concepts.

3. CONFUCIUSthen proceedgo removestatementgrom the description.Remembethat a subset
of a description is a more general description.

4. The new hypothesisobtainedby the removalis testedto seeif it is moreor lessgeneralthanthe
target concept. This may be done in either of two ways:

¥ by showingthe descriptionof the hypothesisto the trainer and askingif it is part of the
concept to be learned

¥ orif negativeexampleshavebeensupplied,by seeingif the hypothesigecognizesany of the
negative instances.

In implementing this search method there is one major obstacle to overcome. Suppose the statements
colour(X) =red colour(Y) =red colour(X) = colour(Y)

arein the hypothesislf only oneof the statementss removed thenthe hypothesids no moregeneral
thanit wasbefore,becausthe removedstatements implied by the remainingtwo. ThusCONFUCIUS
must be able to keeptrack of implicationsand removesetsof statementsn orderto generalizethe
concept.

The internal representatiorof a concept,called a GRAFT, was designedto ensurethat the
recognitionof objectsis performedquickly. CONFUCIUScontainsanassociativenemorywhich bnds
the concepts which are most likely to recognize an object.

2.4 Marvin

In manyrespectdVarvin is the successoof CONFUCIUS.Its generalapproacho learningis the same
as describedfor the model-drivensystems.The main featurewhich setsit apartfrom otherlearning
systems is the fact that it can generate its own training examples.

Some of the problemsdiscussedn this chapterhave not been consideredalthough they are
important.Marvin cannotlearnconceptsvhich involve many-to-onevariablebindings,nor canit learn
exceptions.
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An Overview of Marvin

In this chapter we will give a formal description of Marvin. The major components of the program are:

1. Alanguage for describing objects and concepts.

2. Aninterpreterfor the languageThis mustprovidethe ability to recognizeobjectsbelongingto a
given concept.It must also be able to constructan instanceof a concept,that is, ‘perform an
experiment'.

3. An associativeanemorywhich storesconceptdescriptiononcethey havebeenlearnedandenables
them to be accessed quickly by the learning procedure.

4. A generalizationprocedurewhich, given a conceptdescription,can output a more general
description.

5. A learningstrategywhich startswith aninitial hypothesisandrepeatedlappliesthe generalization
procedure in a search for the target concept description.

The lastcomponentthe learningalgorithm, links the whole systemtogether.The main stepsinvolved
in the algorithm are:

Initialize The examplepresentedy the traineris describedy a form of First OrderPredicate
Logic. This descriptionforms the brst hypothesisfor describingthe conceptto be
learned.

Generalize Marvin tries to generalize the hypothesis.If it is not possible to create a
generalization, the learning process stops.

Test The generalizations testedby constructingan objectbelongingto the hypothesised

concept.The objectis shownto thetrainer.If he agreeghatthe objectis recognized
by the concept to be learned theneralise.

Restrict If the hypothesisedconceptrecognizesobjectsnot belongingto the conceptto be
learnedthen a new, more specibchypothesisis created.Test the more specibc
hypothesis.

To understand how Marvin works it is necessary to know the language it uses to represent concepts.

3.1 The Description Language

As we havealreadyseen,Marvin operatesn a universeof objects.In orderto differentiatebetween
them, the universeis partitionedaccordingto the valuesof an object'sattributesor properties.For
example Theredball ontop of agreenblock which we sawin Chapterl canberepresentedsalist of
property/value pairs:

E1l = <top: S1; bottom: B1>

Top andbottom arethe namesof the propertiesof the objectE1l. They may be thoughtof asthe bpeld
namesof a Pascalrecord(Wirth, 1972).S1andB1 arethe valuesof thosepropertiesin this casethey
are the names of other objects,

S1 = <shape: SPHERE; colour: RED>
B1 = <shape: BOX; colour: GREEN>

RED, GREEN, BOX, SPHERE also name other objects. One such object is,

RED = <value: red>

This time,red is simply a word, and stands for no other object.

A conceptdescriptionis a booleanexpressiorwhich describesa classof objects.Ultimately, all
conceptdescriptionsspecify the properties(and their rangeof values)associatedvith eachobjectin
the class.

To describe the concepit rop of Marvin constructs the concept:
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[XO:

[( X1, X2, X3, X4, X5, X6:
X0.top = X1 !
X1.shape = X2!
X1.colour = X3!
X0.bottom = X4 !
X4.shape = X5!
X4.colour = X6'!
any-shape(X2)
any-colour(X3)!
Rat(X5) !
any-colour(X6)

]

This canbeinterpretedasspecifyingthe setof all X0 suchthatthetop of X0 is X1 andthe bottom of
X0 is X4. The shapeof X1 is X2, which may be any shape the colour of X1 is X3, it may be any
colour, and so oMny-shape, any-colour andflat are the names of other concepts stored in memory.
To Pndout if E1 is aninstanceof on top of, Marvin would executethe statemenbn-top-of(E1).A
usefulanalogyfor a conceptdescriptionis the booleanfunction of ordinary programminglanguages.
Whena function of this kind is called, the actualparameter®f the call are substitutedfor the formal
parametersn the body of the function. The booleanexpressionwhich constitutesthe body is then
executedandreturnsa resultof true or false.If theresultis true thenthe objectspassedo the concept
as parameters are instances of the concept.

Concept descriptionsdiffer from booleanfunctions when a variable is passedas an actual
parametemlandthe variableis not boundto any value.A booleanfunction would normally fail in this
case However,whena concepts 'executed'it creates a valuefor the unboundvariablewhich satisbes
the concept description.

The interpretationof the languageis describedfully in the next section.Iln the remainderof this
section we will give a complete specibcation of the syntax of the language.

¥ An object is an elementof the universe.lt is representedy a list of property/valuepairs. A
property is a word which has no interpretation, but may be considered as a label.

A value is a number or a word or another object or object name.

An event is a sequence of values (v, ...). For example, (S1, B1).

A term is a value, or a variable, or a selector.

Variables are written as X0, X1, ...

A selector

KK K K K

<variable> . <property name>

Thus, Xi.prop is interpretedasthe value associatedvith property,prop, in the objectrepresented
by Xi. The value of1.colour is RED.
¥ A statement is a predicate of the form

Cty, .., v
whereC is the nameof a conceptwhich recognizes the event(ty, .., tn). Thet; areterms.Theterm

recognize 1S usedhere as debPnedin Section2.3. For conveniencethe predicateequal will be
written as

ti=bk
butits internalrepresentatioiis the sameas'equal(t, t2)'. Equal is the only conceptwhich is built

into the language. Thus it is possible to say

S1.colour = red

However other predicates (concepts), such as Rat(B1), must be learned by Marvin.
¥ A conjunction is an expression of the form
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[( X0, X1, ...: ST S2! ...]

whereXO0, X1, ... areexistentiallyquantibedsariablesandS1,S2, ... arestatementsvhich contain
references to X0, X1, ... For example,

[( X1, X2: X1.shape = X2 X1.value = spheré ... ]

¥ A concept, C has the form
C=[X0, X1,...: D> D2' ..]

where X0, X1, ... are universally quantibed variables and D1, D2, ... are conjunctions which
contain references to X0, X1, ... The debnitiofifgiven in Chapter 1 may be expressed as,

[X0: X0.value = boX XO.value = table]

3.2 Interpreting the Language

In the on top of learningtask, we sawthat to testa generalizationa new object was shownto the
trainer. To show an appropriateobject, Marvin musttreatthe generalizedconceptdescriptionas the
specibcatiorof the objectto be created.The objectis constructedas a side-effectof an attemptto
‘prove’ the conceptdescription.This is very similar to the methodusedby Prolog to interpretits
programs.

As an example,considerthe conceptwhich describesa list, X2, obtainedby appendinghe list,
X1, onto another list, X0 (cf. Prolog debnition Section 1.4). This may be described as:

append =
[X0, X1, X2:
X0.value = nill X2 = X1! list(X1)
[( X3:
X0.hd = X3
I X2.hd = X3
I number(X3)
I append(XO0.tl, X1, X2.l)

]

If X0 is nil thenX2 is the sameaslist X1, otherwisethe headof X0 is the sameasthe headof X2 and
the tail of X2 is the result of appending X1 to the tail of XO.
The concept 'list’ describes a list of numbers and may be debned as,

list =
[XO:
XO0.val = none

number(X0.hd) list(XO0.tl)
]

Marvin hasno in-built knowledgeof numbers.For this example let's assumehat it haslearnedthe
concept 'number’ already. We will see how this is done in Chapter 4.
Suppose x is the list [1, 2] and y is [3]. If we assert that

[( z:append(x,y, 2)]

thenMarvin will try to provethatthis expressions true. Thatis, it mustprovethatthelist, z, exists.It
is a proof by construction since if such a z can be found the assertion is obviously true.
Assuming that the dePnition of append is known to Marvin, the 'proof' procedure is as follows:
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1. Marvin retrievesthe debnitionof appendfrom its memoryand calls it asif it were a boolean
function. The quantibedvariable, z, is representedy a 'dummy value' which is passedas the
actualparameterAs the conceptis entered X0 is boundto [1, 2], X1 is boundto [3] and X2 is
bound to z's dummy value.

2. Now anattemptis madeto prove eachconjunctionin appenduntil oneis foundto betrue. Since
X0.value ! nil the brst conjunction fails, an attempt is made to prove the second.

3. Encounteringhe expressiorn( X3: .., the programcreatesa dummyvaluefor X3. The statement
X0.hd = X3 is interpretedasreplacingthe dummyvalueof X3 by arealvalue,i.e. thevalueof the
headof X0. RemembethatX2 is boundto z'sdummyvalue.WhenMarvin seesanexpressiotike
X2.hd, it assumeshatthe dummyvalue mustrepresentin objectwhich hasa head.The value of
the headis boundto thevalueof X3. Thuspartof a newlist hasbeencreatedsuchthatthe headof
the list is the same as the head of XO.

X0 = <head: X3; tail: ...>
X2 = <head: X3; tail: *>

4. Next, an attemptis madeto prove append(XO0.tl,X1, X2.1l). Since X2 representsa list ‘'under
construction',X2.tl is the dummy value, *, representinghe tail of the list. This value will be
passedas the actual parameterto the next call of append.So the remainderof the list will be
constructed by this call.

5. 'append' will be called recursively until
X0.value = nil! X2=X11! list(X1)

is reached At this point, X2 is boundto the dummy value, *, representinghe tail of the list
constructedby the calling concept.This can now be replacedby the value of X1. By now the
entire list will have been constructed and the proof terminates.

Whenwe introducedthe booleanfunction asan analogof conceptdescriptionswe saidthatthe actual
parametergay, .., an) weresubstitutedor the formal parametergps, .., pn) in the body of the function.
In practice the function would not be physicallychangedInstead the correspondencketweenactual
and formal parameterss recordedas a set of pairs{ai/p, .., a/pn}. This will be referredto asthe
binding environment of the concept.Similar associationswill appearthroughoutMarvin. Another
exampleof suchbindingsoccurswhena propertybelongingto an objectis boundto a specibcvalue.
The property/value list can be regarded as a special set of bindings associated with an object.

Let usnow describenow thevalueof atermis found. The valuecanonly be specibedvith respect
to a particularbinding environmentA function'value(TermEnv)'will be debnedIt returnsthe value
associated with term, Term, in binding environment, Env.

value(X, Env) = Xif constant(X).

value(X, Env) = Yif
variable(X)and
member(X/V, Enviand
Y =value(V, Env).

If X is a variable then the value of X is the value of the term bound to X in the current environment.

value(X, Env) = Yif
Obj = value(X, Envand
member(P:Y, Obj).

The value of the selectorX is the valueassociateavith the property,P in the object,Obj, represented
by X. If Obj is beingconstructecandthe property,P doesnot yet existin Obj, thena new property/
value pair, P:* is added, where * is a dummy value.

Now we canspecifythe semanticof the statement®f Marvin'slanguageA statements saidto
be true if the function 'prove'is successfulA proof canonly be describedwith respectto a binding
environment.

prove(X = X, Env) is always true.



25

prove(X =Y, Env)if

number(X)and

number(Y)and

X and Y are numerically equivalent.
prove(X =Y, Env)if

word(X) and

word(Y) and

X and Y are alphabetic equivalents.
prove(X =Y, Env)if

object(X)and

object(Y)and

for each pair p:v, in X there isa pair p:yin Y

such thatprove(y, = v,, Env).

prove(X =V, Env)if

Y = value(X, Env)and

prove(Y =V, Env) is true.
prove(X =Y, Env)if

variable(X)and

X =value(Y, Env).

If X is anunboundquantibedrariablerepresentethy adummyvalue,thenthe dummyis replacedand
X is bound to value(Y, Env).

prove(X =Y, Env)if

variable(Y)and

prove(Y = X, Env).
prove(P' Q, Env)if

prove(P, Envpr prove(Q, Env).
prove(P! Q, Env)if

prove(P, Envand

prove(Q, Env).

P andQ mustbe provedto be true simultaneouslylf the proof of P createshindingswhich preventQ
from being provedthen Marvin musttry to bnd an alternativeproof for P. This may be doneif P
represents a disjunctive concept and there is more than one disjunct which may be true.

prove(P(<args>), Envj
P is the name of a concept [<formal>: <expan
<actual> are bound to <formal> to create a new environment Neafthv
prove(<expr>, NewEnv) is true.

Whena statementike P(x, Y, z) is to be proved,the actualparameters, y andz mustbe boundto the
formal parametersof P. This createsa new binding environment,NewEnv, for the proof of the
expression which describes P.

prove([ <exvars>: P(<exvars>)], Enif)
<exvars> are represented by dummy vakresprove(P(<exvars>), Env) is true.

Dummyvaluesarecreatedo represeneachquantibedrariable. Thedummyvalueswill bereplacedoy
real values during the execution of P.

The specibcationgiven aboveis similar to that given in (Banerji, 1978). The most important
differenceis that in this system,expressiongmay contain referencego other concepts.And since
concepts may be disjunctive, we must consider the possibility of backtracking as discussed above.

Cohen(1978) also proposedan object constructionprocedurewhich could be usedin a concept
learning system like CONFUCIUS.
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3.3 Pattern Matching and Memory

Marvin's memory consists of two parts:

1. The set of all concepts learned so far.
2. Anindex to the learned concepts.

Theindexconsistf asetof pairs<Stmnt,List> whereList is thelist of all the conceptsvhich contain
statementsvhich match Stmnt.GivenanotherstatementS, theindexenablesusto Pndall the concepts
which containstatementsvhich matchS by looking up the correspondingstmnt,which alsomatches
S.

While performinga memorylookup and during other partsof the learningprocessMarvin must
compareor match statementsThe matchingprocedurds a simple unibcationalgorithmvery muchas
onewould Pndin atheoremprover(Robinson,1965).Two expressionX andY maybe matchedusing
the following algorithm:

unify(X, Y)
if X is a variablghen
if X is bound to value thenreturn unify(v, Y)
elsebind v to Yand return TRUE
if Y is a variablghen return unify(Y, X)
if X and Y are both objects or atothen
return TRUE if X is identical to Y
if X and Y are both numbetisen
return TRUE if the numerical values are the same
if (X = Obj1.Prop) and (Y = Obj2.Prothen
return unify(Obj1.Prop, Obj2.Prop)
if X and Y are both statemeriten
if the predicate names are the same
and corresponding arguments of X and Y unify
then return TRUE
elsereturn FALSE

As in the objectconstructiorprocedureunibcationalsobindsvaluesto variables althoughthe purpose
is now slightly different. If anattemptis madeto matchan unboundvariablewith a valueor variable,
thenit becomesbound.In this way, the unibcationalgorithm builds up substitutions. Following the
practiceof resolutiontheoremproving literature,we obtaina substitutioninstanceof an expressiorby
substitutingtermsfor variablesin thatexpressionA substitutionis a setof orderedpairs{ti/v1, to/vz,
...}. To denotethe substitutioninstanceof an expressionE, usinga substitution % we write E% Thus
C(XO0.colour, X1) = C(X1, X24 where%= { X0.colour/X1, X1/X2} .

Unify enablesisto build anindexto memorywhich hasthe propertythatfor everystatemeng'in
every concept C, there exists a pair <S, L> such that SsfoSsome%and C# L.

Thelearningalgorithmwill ensurethatconceptsarelearnedin disjunctivenormalform. Thatis, if
a conceptconsistsof a numberof conjunctionsthen one conjunctionis learnedat a time. And one
conjunctionis storedat a time. Part of the storing routine ensureghat the assertionaboveis always
true.

3.4 Generalisations

In Chapter2 we debnedhe meaningof 'generalisationfor a simple predicatelogic languagelLet us
now do the same thing for Marvin's language, but in more detail.

Definition 3.1: The cover of a concept,C, (written cover(C))is the set of all eventswhich are
recognized by C.
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Definition 3.2: If there are two concepts:
Ci=[X: P(X)] and G = [X: Q(X)]

C1 debneghesetof all events(X) suchthatP(X) is trueandC, debPnesll (X) suchthatQ(X)
is true. The cover of concept which is the conjunction of P and Q:

[X: PX) ! Q(X)]

is cover(G) ) cover(Q).

Definition 3.3: Similarly the cover of a concept which is the disjunction of P and Q:

[X: P(X)" Q(X)]

is cover(G) U cover(G).

Definition 3 .4: A concept @ is more general than a concept Qf
cover(G) & cover(G)

That is, G recognizes all the events which @cognizes and possibly others as well.

An importantpart of the learningalgorithmthatwe aregoingto developis a methodfor transforming
an expressionwhich represents conceptinto an new expressiordescribinga more generalconcept.
Thereforewe mustdebnegeneralizationsn termsof the constructsof the language Severalauthors
have previously proposeddebnitionsof generalizationfor Prst order predicate logic languages
(Reynolds1970;Plotkin, 1970;Vere, 1975).1t will be usefulto recallVere'sdebnition:A conjunction
of literals Dy is ageneralization of conjunction D if

( % D2%& D1
This follows from debnition3.2 which statedthat the coverof a conjunctionis the intersectionof the
covers of the individual literals.

Definition 3.5: Cyis aproper generalization of Cy if

1. ( % D2%$ D1
2. ( % D2 %& D1 but %is not an alphabeticvariant substitution.Expressionsare alphabetic
variants if they only differ in the names of variables.

Definition 3.6: An expressionCy, in disjunctive normal form (a disjunction of conjunctions),is a
generalization of anotherdisjunctiveexpressionC; if for eachconjunctionin Cy thereis a
conjunction in @ which is more general. That is:

[" Do# Co: [( Di# C1: D" Dz]]

The symbol " is used to indicate tha 3 a generalization of D
Now let's seehow thesedebnitionsapply to Marvin. In Chapterl when Marvin, the child, tried to
generalizehis hypothesisedconcepts,he replaceda statement(or group of statementspy a more
general statement. To illustrate this, consider the description of E1, the original training example:

[XO:
[( X1, X2, X3, X4, X5, X6:
X0.top = X1
I X1.shape = X2
I X2.value = sphere
I X1.colour = X3
I X3.value =red
I X0.bottom = X4
I X4.shape = X§1)
I X5.value = box (2)
I X4.colour = X6 3)
I X6.value = green 4)
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This might be Marvin's brst attempt at producing a description of the concept. It will be callegl trial T

When, say, the shapeof an objectis generalizeda specibcshape suchas X2.value= sphereis
replaced by any-shape(X2)Most learning algorithms, such as CONFUCIUS, would remove any
referenceto shaperatherthan replaceit. In Marvin's case,removalis not appropriatebecausehe
generalizatiorwill betestedby constructingan objectto showthe trainer. Supposehe objectis to be
displayedon a colour graphicsterminal, thenit musthavea shape;hencethe policy of replacement
rather than removal.

Let us now try to describe this replacement process. Let a concept, P, be stored in memory:

P=
[XO:
[( X1, X2:
X0.colour = X1
I X1.value =red
I X0.shape = X2

I X2.value = sphere

]

[( X1, X2:
X0.colour = X1 (P3)
I X1.value = green (P4)
I X0.shape = X2P1)
I X2.value = box (P2)

]

P(X) is trueif X is ared sphereor a greenbox. Underthe substitution%= {X0/X4, X1/X5, X2/X6}

the numberedstatementén the descriptionof E1 matchall the statementén the seconddisjunctof P.
Sinceall the statementén a disjunctof P canbe matched P(X4) mustbe true. Thus,we obtaina new
concept T by replacing the matched statementsdiyl the statement P(X4).

[XO:
[( X1, X2, X3, X4:
X0.top = X1
I X1.shape = X2
I X2.value = sphere
I X1.colour = X3
I X3.value =red
I X0.bottom = X4
I P(X4)

]

Now, | claimthatT1 is moregenerathanTg. To maybesplitinto two setsT =M U M', whereM is the
setof statementseplacedby the new statementS, and M' is the setof remainingstatementsn To.
Since S refersto a disjunctive conceptand M matchesone of the disjunctsof the concept,M must
represent a subset of the objects described by S. Thus, cover(£8}er(M). Therefore,

cover({S} U M") & cover(MU M")

andthereforeT1 " To. Thereplacedstatementin M aresaidto directly imply the newstatementS. To
the previous debnitions of generalization we can add the following:

Definition 3.7: If Cy andC; aretwo conceptsandthereis a subsebf statementsM, in C, suchthatM
implies a new statement, S, then
Ci=CGb MU {S}
is a generalizatiorof Ca. If, S, refersto a disjunctiveconceptthenCy > C,. Also, if C1" C;
and G" Csthen G" Ca.
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This debnes a replacement transform, R, such that

R(To, M, S)=Trand T1" To

Of course,at any time theremay be a numberof replacementpossible asis the casewith on top of.
Choosing which ones and the order in which they are done is the task of the learning strategy.

3.5 The Learning Strategy

The learningalgorithmis a combinationof the generalizatiorand objectconstructionproceduresOur
aim is to beginwith aninitial hypothesisor the concept,calledtrial To, andusingthe generalization
procedurecreatea successiormf newtrials Ti. Eventuallytherewill be a T, suchthat any attemptto
producea further generalizationTn+1 Will resultin aninconsistent generalization. A generalizations
saidto beinconsistentif theresultingtrial recognizegventsthatthe conceptto belearneddoesnot. T
is called thearget.

A newtrial canbe createdin eitherof two ways:If the currenttrial, T is consistentthenTi+1 is
createdby applying the generalizatiorprocedurewhich replacessomestatementdy a single, more
generalone.However,if T; is inconsistenthenwe do not wantto generalizehetrial. Insteadwe must
createa Ti+1 which is more specibcand doesnot recognizethoseeventswhich the targetdoesnot. A
more specibctrial may be createdby adding new statement®r returningremovedstatementso the
description.Rememberfrom debnition3.2 that by increasingthe numberof statementsthe cover of
the trial becomes smaller.

If astatementS, refersto a conceptwhich hasonly a singleconjunctionandS is usedto replace
its implicants,thenthereplacemenill resultin a newtrial which is equivalento the old one.SinceS
describesexactly those eventswhich are describedby its implicants, the new statementwill not
increasethe cover of the trial. Before a new trial is created,Marvin checksthat it will be a proper
generalization, if it is not then this trial is ignored.

The learningprocesseginswhena training instanceis shownto Marvin. First, the descriptionof the
eventis transformedinto a conceptdescription,To. This will be the brst hypothesisused by the
learning algorithm.

The algorithm for this transformation is quite straightforward:

for each objectin event
create a variable, X, to represent object
for each pair p:vin object
if v is an objecthen
Y:= new variable representing v
elseY:=v
create statement X =Y
if v represents an objettten
create statements to describe it as well

An exampleof theway in which this transformatiorworks wasgivenin the previoussectionwhenthe
description of E1 was converted from property lists to a logical description.

During this initial descriptionprocessa list of the variablesis kept alongwith the objectswhich
they representSo at the end we have a substitutionwhich recordsthe correspondenceetweenthe
objects shown and the variables used.

The statementgeneratedy this procedurearecalledprimary statements. Thetrial atthis pointis
not a generalizatiorbecausét describesaneventidenticalto theinstancewhich the trainerhasshown.
All generalizationswill be obtainedby matching statementsn the trial with conceptsstored in
memory.The proceduranay be appliedrepeatedly Statementfound by generalizatiorof the primary
statementsnay be addedto thetrial. Thesenew statementgpgethemwith the primariesmay be usedto
match against other concepts to produce new generalizations which are in turn added to the trial.

As we sawin Section3.4,if thereis a subsetM, of thetrial which matchesa disjunctof a concept,
P whichis in Marvin'smemory,thenwe may replacethe statementin M by oneof theform P(Xn, ..,
Xm). If Pis a conjunctiveconceptthatis, thereis only one conjunction,thenthe newtrial is exactly
equivalentto the old one.However,if P is disjunctivethenthentrial is a propergeneralizatiorbecause
the cover of the trial has been enlarged.
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The learning algorithm begins by scanning down the list of statements in the trial.

generalize(Trial)
for each statement, in Trial,
TryConceptsWith(t)

Thevariable,Trial, is a globalvariableknownto all the proceduresn the program.TryConceptsWith
usesthe statementt, to look for a concept,P, which might be a replacemento generalizeTrial. If it
Pndsa P which containsa matchfor t, it checksP to Pndoutif all its statementhavea match.Thatis,
P recognizes some part of the training event.

Next, the programdeterminesif replacingthe matchedstatementM, by a referenceto P will
produce a proper generalization. If so, the new statement is addedrat tiehe new trial.

TryConceptsWith(t)
for each concept R memorysuch that
( adisjunct Dn Pand D contains a match for t:
for eachsubset M, Tria$f M such thatM = D%
make new statement S = P(Xn, .., Xm)
if adding S will make a proper generalizatiban
create new Trial = Trial - MU {S}
if not qualibed(Trialthen
remove S from Trial and restore M,
i.e. return to old Trial
elseignore P
if no M can be founthen return FALSE

%is the substitutioncreatedvhenthe disjunct,D is matchedwith M. The parameterXn, .., Xm in the
new statement are obtained frém

It is possiblethat the replacemenhasproduceda trial which recognizesventswhich the target
doesnot. Thisis aninconsistengeneralizationMarvin performsan experimento testthe consistency
of the generalization.If the new trial is consistent,the program continuesto searchfor more
replacementsn order to generalizethe new trial. Note that a statementwhich has already been
removedmay still be allowedto matchpartsof a conceptin memory.lt is only necessaryhat at least
one of the replaced statements still be in the trial.

If the newtrial is inconsistenthenit mustbe madesufbcientlyspecibchatit is containedn the
target.A conceptis mademorespecibdy adding statementsWhenthe statementén M arereplaced
by a more generalstatementsS, we lose someinformation containedin M. If the generalizatiorwas
consistentthenthe informationlost was not important.However,if the generalizatioris inconsistent
thentoo muchinformation hasbeenlost. This suggestghat by re-examiningthe implicantsin M we
can determinewhich statementshouldbe addedto makea more specibctrial, thatis, to returnthe
relevant information to the description of the concept.

qualiped(Trial)
if experiment with trial failethen
for eachiin M, (M is inherited from TryConceptsWith)
put i back into trial
if TryConceptsWith(ithen return TRUE
elseremove(i)
else return TRUE

The procedurequalibed searchedor the statementsavhich will makethe trial sufbcientlyspecibc.
Qualipedtakesanimplicant,i, of the newstatementS andreturnsit to thetrial. It immediatelyuses;,
to look for new referencedo conceptgo add. This is doneby calling TryConceptsWith recursively.
When further statementsare addedthey too must be qualibed.This continuesuntil the experiment
succeeds or there are no more concepts to try.

The experiment which Marvin performsinvolves showingthe traineran instanceof the newtrial.
Supposewe havethe situationshownin Figure 3.1, wherea consistentrial To is generalizedo an
inconsistent trial k1.
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Figure 3.1 Inconsistent Trial

Marvin mustproducean objectwhich will tell it if the generalizatioris consistenbr not. Supposehe
object, X, in Figure3.1is shown.X satisbedTi+1 butit alsosatisbpeghe target.If X is shownto the
trainer, he will answer 'Yes, this is an example of the concept’, even thpughificonsistent.

The object constructionroutine must producean examplefrom the shadedregionin orderto be
useful. Thatis the objectmustbe recognizedy Ti+1 but not by the target.How canthis be doneif the
description of the target is not known?

Although the targetdescriptionis not known, we do, at least,know a set of statementavhich
containthetarget.SupposeA is the setof all statementsvhich canbe inferredfrom the primaries,To.
Thetargetwill eventuallybe obtainedby replacingsomestatementby otherswhich theyimply. Sothe
target, T, must be a subset of A.

AS$ TirandA$ T,

Ti+1 differs from T; in thatsomesetof statementsiV, hasbeenreplacedby a statemenS whereM S
(M implies S).
T = Ti D MU {S}

Let T'i+1 = A BTi+1. Ti+1 cannotcontainall of the statementén Ty, otherwiseTn " Ti+1. ThereforeT'i+1
contains some statements of T

T'+1 may contain some statementswhich are implied from within Ti+1. Let theseimplied
statementgorm the set Q. Let N = T'+1 B Q. N must contain statementsn T, otherwiseevery
statement in Tis implied by T+1. Thatis T " Ti+1 which is a contradiction.

Thus,if anevent,E, is generatedsuchthat Ty, is true but no statemenin N is true (denotedby
Tn ~ N) thenE cannotbelongto T, becausesomestatementn T,, hasbeenmadefalse. Thusif the set
A is generatedt is possibleto guaranteainderany circumstanceshat the exampleshownwill be a
useful one.

Marvin usesa method of creating exampleswhich avoids generatingevery statementin A.
However,thisis doneat somecost,aswe will see. Whena statements removedfrom thetrial it must
be falsibed by the object constructionprocedure,experiment, unlessthat statementis implied by
statementstill in thetrial. If the latteris true, it would be impossibleto falsify. For example,if any-
shape(X) has been removed, this cannot be falsibed if Bat(X) is still in the trial.

Supposéhata consistentrial, Tj, is generalizedo aninconsistenbneTi+1 by addinga statement
whichrefersto theconceptP. Let usfurthersupposehatP consistf threedisjunctsD1, D2, Ds. D1 is
the disjunct which matchesa subset,M, of Ti. The problemis, will falsifying M producea useful
training example?

If M mustbe false then the object constructionprocedurewill choosean objectwhich satisbes
eitherD2 or Dz in P. SinceTi+1 is inconsistentpne of thesedisjunctsmustmakeTi+1 describeanevent
which will be outsideTn. Let usassumehat D3 is thatdisjunctand D3z producesaneventin Th. If the
object construction procedure choosegdh#n the training example will not be acceptable.

To avoidthis problem,we insistthat Marvin's memorymustbe partially orderedaccordingto the
following criteria:

1. If C1and G are two concepts in memory angd'CC2 then G must contain a reference ta.C
2. If there are two conceptsi@nd G such that:
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cover(G)) cover(G)! *
and there is a third concept Such that

cover(G) = cover(G) ) cover(G)

then C1 and C; mustrefer to Cs. In other words, if two conceptsdescribea common set of

instances then, this intersection should be separated out as a third concept referred to by both.

Conceptsarestoredin a hierarchywith the moregeneralconceptsat the top. If C1 " C; thensinceCy
mustcontaina referenceo Cp, C1 will not be usedin a generalizatioruntil a statementeferringto C;
hasbeenintroducedinto the trial. [This is so becauseaall of the statementsn a conjunctionmustbe
matchedbeforea replacemenis madeandoneof thosestatementsnustlook like, Cx(x, vy, z, ...)]. Thus
the learning algorithm uses a specibc-to-general search strategy.

In the exampleabove,if T, " D3 thenthe secondorderingrequiremenbf the memorywould be
violated.The trainermustteachD3z asa separateonceptbrstsinceit is commonto P andthetarget.If
this is donethen Marvin will be ableto generatecorrecttraining examplesby ensuringthat only the
statementsemovedso far arefalse. Thereis no needto generatell the statementén A providedthat
the memory is 'well structured'.

The methodused here placesthe responsibility of maintaininga well orderedmemory on the
trainer. This is necessanonly if we do not wish to generatethe set A. In Chapter7 a methodis
proposed that will allow Marvin to maintain the ordering automatically.

The procedurexperiment creates training examples:

experiment(Trial)
Simplify Trial
F:= statements to be made false
repeat
Generate a new training instance by proving Trial
until all the statements in F are false
return last instance generated so that it can be shown to the trainer

Sincethe proof procedureusedto generateobjectsis fairly primitive, it is easyto createconceptsor
which the proof will not terminate.To avoid this somepre-processindnasto be done.The Trial is
simplipedby removingredundanttatementsFor exampleif one statementS;, implies another,S;,
then there is no need to provesice S must be true anyway.

The program must show an examplewhich has not beenseenbefore. To do this, it chooses
statement$rom amongthosethat havebeenremovedand makessurethatany objectit producesdoes
not satisfy the statements in F.
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A Complete Example

Many of the ideasintroducedin Chapter3 may becomeclearerby observingMarvin performinga
complex learning task.

We havealreadyseenthatMarvin hasno knowledgeof numbersA charactestringsuchas'12'is
no morethananidentiber,it receivesmo specialinterpretation.Therefore jf we wantto teachconcepts
which requirea knowledgeof numbersthenprstwe haveto teachMarvin aboutnumbersThis process
will bedescribedn this chapter First Marvin will needto know how to representumbers)aterit will
learnto comparethem using the 'lessthan' relation and bPnally, Marvin will learn how to bnd the
maximum number in a list.

A binary numberis a string of digits suchas,100110.Leadingzeroswill not be allowed, so the
numberzeroitself will not be allowed. The string '100110'may be representeds the left recursive
binary tree shown in Figure 4.1.

nil
Figure 4.1 Representation of 100110

In fact, numbersaspresentedo Marvin areobjectsof the form <left: X; right: Y> whereX is another
number and Y is a digit. The number 'one' is

<left: nil; tail: <val: 1>>

where the left hand side of the tree is nil and the right hand side has a value of 1.

The remainderof this chapterconsistsof an annotatedprintout producedby Marvin. Marvin is
instructedto 'learnnumbers'!Numbers's the nameof a ble which containsthe debnitionsof objects
which the trainerwill showastrainingexamplesFor exampledo, is the nameof the digit 0. 'Two'is
the nameof the objectrepresentin@. 'el’.. 'e4' are the namesof lists which will be usedto teach
Marvin about 'Maximum'. The contents of 'numbers' is:

do = <val: 0>

d1l =<val: 1>

one = <left: nil; right: d1>
two = <left: one; right: dO>
three = <left: one; right: d1>
four = <left: two; right: dO>
bve = <left: two; right: d1>
six = <left: three; right: d0O>
seven = <left: three; right: d1>
el = <head: one; tail: none>
e2 = <head: two; tail: e1>
e3 = <head: two; tail: none>
e4 = <head: one; tail: e3>



34

What is the name of the concept? digit

Marvin promptsthe trainer,askingthe nameof the conceptto be learned.ts brsttaskis to learnwhat
are valid binary digits. At this stage the memory is completely empty; no concepts are known.

Show me an example of digit: (dO)
This disjunct is:
X0.val =0

Whenthe digit d0 is shown,Marvin rememberst without questioningthe trainerat all. Sincethereis
nothing in memory that it can refer to, no generalizations can take place, so it learned by rote.

Show me an example of digit: (d1)
This disjunct is:
XO.wval =1

Similarly, the descriptionof d1 doesnot matchanythingin memorysoit is alsorememberedvithout
guestion.

Show me an example of digit: no

Since0 and1 arethe only binary digits, the trainerrefusego showany furtherexamplesAt this point
Marvin displays the concept it has learned.

Description of digit is:
[Xo:
X0.val =0

X0.val =1
]

Learned in 0.03 secs

Notethatonedisjuncthasbeencreatedor eachexampleshown.The descriptionstateghata digit has
the value 0 or the value 1.

Do you want to teach me another concept? yes
What is the name of the concept? number
Show me an example of number: (one)

Again Marvin promptsthe traineraskingto learnmore. This time the conceptbinary number'is to be
learned. The brst example is the number 'one': <left: nil; right: d1>

Testing:
X0.left = nil
X0.right = X1
==> Xlwval=1
digit(X1)

Marvin brstgeneratesll the primary statementsthat is, the statementavhich exactly describethe
example.lt thenattemptsto matchthe statement®f the the brsttrial conceptwith the statement®of
conceptghatarein memory.In this caseX1.val = 1' matcheghe secondlisjunctof digit. The program
replacesXl.val = 1 by the new statementdigit(X1),' thusproducing a generalizatiorof the brsttrial.
The '==>' preceding a statement indicates that it has been removed from the trial.

Is
X0 = <left: nil; right: <val: 0>>
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recognized by the concept? no

In orderto testits hypothesisMarvin usesthe trial conceptto generatdts own exampleto showthe
trainer. Thus it shows,

<left: nil; right: <val: 0>>

In orderto createthis object,Marvin ensuredhatthe removedstatementvasfalse. Thatis, no object
whoseright part was 1 would be allowed. Since,for this example,we do not wish Marvin to know
aboutzero,thetraineranswerghatthis is not a valid exampleof number.The programthenattemptgo
Pnd someway of making the trial more specibc.In this case,the only way this can be doneis by
abandoning its generalization. Thus 'digit(X1)' is removed and 'X1.val = 1" is restored.

This disjunct is:

XO0.left = nil
X0.right = X1
Xlwval=1

Since no more generalizationan be made,Marvin entersthis descriptionas the brst disjunct of
number.

Show me an example of number: (two)
To learn the second disjunct the trainer shows Marvin the number 'two'.

Testing:

X0.left = X1
==> X1.left = nil
==> X1.right = X2
==> X2.val=1

XO0.right = X3

X3.val=0

number(X1)

The programcan matchthreeof the primary statementsvith the brstdisjunctof number,so they are
removedand replacedby 'number(X1).'This illustratesthe importanceof the ordering of examples
shownby thetrainer.It is essentiathat'one'be shownprst,otherwisethe recursivenatureof number

would not be apparent.

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>

recognized by the concept? yes

The newtrial is usedto showthe traineran exampleof Marvin's currentideaof whata numbershould
look like. Sincethe left part of X0 cannotbe the number'one’(this is precludedby insistingthat the
removedstatementsre false) number is called recursivelyto createthe number4. Note that Marvin
has never seen a 4 and yet it can still create one.

Testing:

X0.left = X1
==> XZ1.left = nil
==> X1.right = X2
==> X2.val=1

XO0.right = X3
==> X3.val =0

number(X1)

digit(X3)
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Since4 is an acceptablenumberMarvin can continueto generalizethe trial. It matchesX3.val = 0'
with the brst disjunct of digit and makes the generalization digit(X3).

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>

recognized by the concept? yes
The new trial also produces a valid number, 5.

This disjunct is:
X0.left = X1
X0.right = X3
number(X1)
digit(X3)

Since Marvin cannotmake any more generalizationsjt concludesthat it has learnedthe second
disjunct.

Show me an example of number: no
The trainer indicates that there are no more disjuncts to learn.

Description of number is:
[Xo:
[( X1:
XO0.left = nil
X0.right = X1
Xlwval=1
]

[( X1, X3:
X0.left = X1
X0.right = X3
number(X1)
digit(X3)

]
Learned in 0.25 secs

The Pnaldescriptionof 'binary number'is: X0 is a numberif its left partis nil andits right partis 1 or
the left is a number and the right is a digit.

Do you want to teach me another concept? yes
What is the name of the concept? lessd
Show me an example of lessd: (d0, d1)

Beforewe canteachMarvin how to recognizehatonenumberis lessthananotherwe mustprstteach
it the orderingamongdigits. The purposeof learninglessd is simply to tell Marvin thatO comesbefore
1.

Testing:

==> X0.val =0
Xlval=1
digit(X0)

Is

X0 =<val: 1>
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X1 =<val: 1>

recognized by the concept? no
Testing:
X0.val =0
==> Xlwval=1
==> digit(X0)
digit(X1)
Is
X0 = <val: 0>
X1 =<val: 0>

recognized by the concept? no

SinceMarvin hasseendigits before, it triesto generalizdessd. However thetraineranswersio to both
generalizations.

This disjunct is:
X0.val =0
Xlval=1

Show me an example of lessd: no
Description of lessd is:
[X0, X1:
XO0.val =0
Xlwval=1
]

Learned in 0.08 secs

Marvin learnsthatif therearetwo objectsandthe brstoneis the digit 0 andthe secondis the digit 1
then this is dessd event.

Do you want to teach me another concept? yes
What is the name of the concept? less
Show me an example of less: (two, three)

Now Marvin is ready to learfess. The brst example it will be shown is the pair (2, 3).

Testing:

X0.left = X2
==> X2.left = nil
==> X2.right = X3

X3.wval=1

X0.right = X4

X4.val =0

X1.left = X2

X1.right = X3

number(X2)

The brstgeneralizatiorillustratesan importantfeature.Although threestatementéncluding 'X3.val =
1' matchedthe brstdisjunctof number,only two wereremoved.The digit 1 occurselsewheren the
descriptionof (2, 3). It is referredto by the statemeniX1.right = X3. Therefore,a descriptionof X3
mustremainin the trial. However,this hasnot preventedthe descriptionof X2, the left part of X0,
from being generalized.
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X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>

recognized by the concept? yes

The programshowsthe trainerthe pair (4, 5) which is a valid exampleof less.So Marvin knowsthat
the generalization was consistent.

Testing:
XO0.left = X2
==> X2.left = nil
==> X2.right = X3
=> X3wval=1
X0.right = X4
X4.val =0
X1.left = X2
X1.right = X3
number(X2)
digit(X3)
Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 1>>; right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 1>>; right: <val: 0>>

recognized by the concept? no

However the nextgeneralizatiorthatit makess not. WhenX3 is generalizedo anydigit, the program
constructthe pair (6, 6). This is obviouslynot aninstanceof less so Marvin mustmakethe trial more
specibc.

Testing:

X0.left = X2
==> X2.left = nil
==> X2.right = X3
==> X3.wval=1

X0.right = X4
==> X4.val =0

X1.left = X2

X1.right = X3

number(X2)

digit(X3)
lessd(X4, X3)

Marvin createdthe statement'digit(X3)' when it was examining X3.val = 1. That is, a call
TryConceptsWith(X3.vak 1) wasexecutedTherearetwo conceptswith matchedor this statement:
digit andlessd. If therewere no preferredorder Marvin might havetried lessdbrst. However,since
lessdis conjunctive,replacingits implicantsby a statementessd(X4,X3) would not havecreateda
trial that was a proper generalization of the old one. Thus lessd was ignored.

Now we seethat lessddoeshave someuse. Since the introduction of digit(X3) madethe trial
inconsistentMarvin looks at the implicantof digit(X3) in orderto makea trial which is morespecibc.
Lessd may now be used for that purpose.

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>

recognized by the concept? yes

In fact thetrial is now consistenbecauseMarvin wasableto show(4, 5) which is aninstanceof less.
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Note that normally Marvin would not askabout(4, 5) againbecauseét canremembethe instancest
has generated before. This part of its memory has been switched off for this demonstration.

Testing:
X0.left = X2
==> X2.left = nil
==> X2.right = X3
=> X3wval=1
X0.right = X4
==> X4.val=0
==> X1.left = X2
==> X1.right = X3
number(X2)
==> digit(X3)
lessd(X4, X3)
number(X1)
Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>
X1 = <left: <left: nil; right: <val: 1>>; right: <val: 0>>

recognized by the concept? no

A further generalizatioris made.This createghe instance(4, 2). Up till now it hasbeenpossibleto
ensurethatall removedstatementsrefalsewhenaninstances constructedHowever,herewe havea
casewhere 'digit(X3)"' has beenremovedbut lessd(X4, X3) insiststhat X3 is, in fact, a digit. A
removedstatementan only be falsibedif it is not implied by statementsn the trial. (4, 2) indicates
that the trial is inconsistent again, since the second element of the pair cannot be just any nhumber.

This disjunct is:
X0.left = X2
X0.right = X4
X1.left = X2
X1.right = X3
number(X2)
lessd(X4, X3)

The inconsistentrial cannotbe mademore specibcwithout going backto the previoustrial, and no
more generalizationgan be made,so the processendsfor the brstdisjunctof less. The description
stateghatif two numbershavethe sameleft part, buttheright partof the brstnumberis lessd thanthe
right part of the second thégss is true.

Show me an example of less: (Pve, six)

To teach Marvin the second disjunct, the trainer shows the pair (5, 6).

Testing:
X0.left = X2
X2.left = X3

==> X3.left = nil

==> X3.right = X4
X4.val =1
X2.right = X5
X5.val =0
X0.right = X4
X1.left = X6
X6.left = X3
X6.right = X4
X1.right = X5
number(X3)
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Is

X0 = <left:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>;
right: <val: 1>>

X1 = <left:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>;
right: <val: 0>>

recognized by the concept? yes
The brst generalization creates a concept which construct the pair (9, 10), thus it is consistent.

Testing:
X0.left = X2
X2.left = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val =1
X2.right = X5
X5.val =0
X0.right = X4
X1.left = X6
X6.left = X3
X6.right = X4
X1.right = X5
number(X3)
digit(X4)
Is
X0 = <left:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 1>>; right: <val: 0>>;
right: <val: 0>>
X1 = <left:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 1>>; right: <val: 0>>;
right: <val: 0>>

recognized by the concept? no

The nexttrial constructg12, 12) which is not consistentand mustbe mademore specibpgust aswas
done in the prst disjunct.

Testing:
X0.left = X2
X2.left = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val =1
X2.right = X5
==> X5.val =0
X0.right = X4
X1.left = X6
X6.left = X3
X6.right = X4
X1.right = X5
number(X3)
digit(X4)
lessd(X5, X4)
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X0 = <left:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>;
right: <val: 1>>

X1 = <left:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>;
right: <val: 0>>

recognized by the concept? yes
The new trial constructs (9, 10) again.

Testing:

X0.left = X2
==> X2.left = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val =1
==> X2.right = X5
==> X5.val =0

X0.right = X4

X1.left = X6
==> X6.left = X3
==> X6.right = X4

X1.right = X5
==> number(X3)
digit(X4)
lessd(X5, X4)
less(X2, X6)
Is
X0 = <left:

<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>;
right: <val: 1>>

X1 = <left:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 1>>; right: <val: 0>>;
right: <val: 0>>

recognized by the concept? yes

Thenexttrial is generatedy a replacementvhich addsa recursivecall to less.This is consistensince
theinstanceshownis (11, 12). Note that'number(X3)waseliminatedby this replacementStatements
which are inferred from the primaries can also take part in statement matching.

Testing:

X0.left = X2
==> X2.left = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val =1
==> X2.right = X5
==> X5.val =0

X0.right = X4

X1.left = X6
==> X6.left = X3
==> X6.right = X4

X1.right = X5
==> number(X3)

digit(X4)
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==> lessd(X5, X4)
less(X2, X6)
digit(X5)

Thereplacementvhich addedless(X2,X6)' to thetrial could notremove'lessd(X5,X4)" becauseX5 is
referredto elsewherdan the conceptso somedescriptionof X5 is required.However,it may now be
possible to relax the restriction on X5 so Marvin tries replacing 'lessd(X5, X4)" in favour of 'digit(X5)."

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 1>>; right: <val: 1>>

recognized by the concept? yes
Since (4, 7) was constructed this relaxation was a good generalization.

MORE SPECIFIC WITH number(X6)
MORE SPECIFIC WITH number(X2)
Testing:
X0.left = X2
==> X2.left = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val =1
==> X2.right = X5
==> X5.val =0
X0.right = X4
==> X1.left = X6
==> X6.left = X3
==> X6.right = X4
==> X1.right = X5
==> number(X3)

digit(X4)
==> lessd(X5, X4)
less(X2, X6)
==> digit(X5)

==> number(X6)
==> number(X2)
number(X1)

As Marvin continuego generalizeit deduceghatX6 andX2 arenumbersHowever,neitherstatement
canbeusedto generalizehetrial. Thisis becausell theirimplicantseitherhavebeenremovedalready
or they cannotbe removedat all. Sinceno statementanbe removed the additionof statementgould
not producea propergeneralizatiorandmay evenmakethe trial morespecibcThus'number(X6)and
‘number(X2)' are Bagged as out of the concept immediately.

Is
X0 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>
X1 = <left: nil; right: <val: 1>>

recognized by the concept? no
'Number(X1)' does make a more general trial. This time it is inconsistent, constructing (4, 1).
This disjunct is:
X0.left = X2

X0.right = X4
X1.left = X6
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X1.right = X5
digit(X4)
less(X2, X6)
digit(X5)

With 'number(X1)'in the trial, no consistentgeneralizationsan be made,so 'number(X1)'mustbe
removed.In fact, no moregeneralizationsre possibleevenafter removingthe statementThe second
disjunctis completelf theleft partof the brstnumberis lessthanthe left part of the secondandboth

the right parts are digits, then the pair is an instanés.of

Show me an example of less: (one, two)

The two disjunctsof less learnedso far coverall the possibilitiesexcept(1, 2). This is the example

which the trainer shows Marvin to complete the descriptidasef

Testing:
==> XO0.left = nil
X0.right = X2
X2wval=1
X1.left = X0
X1.right = X3
X3.val=0
number(X0)

==>
==>

Is
X0 = <left: <left: nil; right: <val: 1>>; right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>

recognized by the concept? yes
The Prst trial constructs (2, 4) which is valid.

Testing:
==> XO0.left = nil
X0.right = X2
X2wval=1
X1.left = X0
X1.right = X3
X3.val=0
number(X0)

digit(X3)

==>
==>

==>

Is
X0 = <left: <left: nil; right: <val: 1>>; right: <val: 0>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>

recognized by the concept? yes
the second trial constructs (2, 5) which is also valid.

Testing:
==> X0.left = nil
X0.right = X2
X2.wval=1
X1.left = X0
X1.right = X3
X3.val=0
number(X0)
digit(X3)
number(X1)

==>
==>

==>
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Is
X0 = <left: <left: nil; right: <val: 1>>; right: <val: 0>>
X1 = <left: nil; right: <val: 1>>

recognized by the concept? no
The last generalization is inconsistent since it constructs (2, 1).

This disjunct is:
X1.left = X0
X1.right = X3
number(X0)
digit(X3)

The Pnaldescriptionof thusdisjunctstateghatif X1 = 2*X0 or X1 = 2*X0+1 thenless is true. Thisis
more general than strictly necessary, but it does the job.

Show me an example of less: no

Description of less is:
[X0, X1:
[( X2, X3, X4:

X0.left = X2
X0.right = X4
X1.left = X2
X1.right = X3
number(X2)
lessd(X4, X3)

]

[( X2, X4, X5, X6:
X0.left = X2
X0.right = X4
X1.left = X6
X1.right = X5
digit(X4)
less(X2, X6)
digit(X5)

[( X3:
X1.left = X0
X1.right = X3
number(X0)
digit(X3)

]
Learned in 4.80 secs

Do you want to teach me another concept? yes
What is the name of the concept? max

Thetrainernow tells Marvin thatit will learnmax. max(X, Y) is trueif X is alist of numbersandY is
the largest number in X

Show me an example of max: (el, one)
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The brst exampleshown by the trainer teachesMarvin about single elementlists. The exampleis
([1], 1). For conveniencdists will be enclosedin squarebrackets(in the text only). The lists are
presented to Marvin as objects with properties 'head' and 'tail' corresponding to ‘car' and 'cdr' in LISP.

Testing:
X0.head = X1
X0.tail = none
==> X1.left = nil
==> X1.right = X2
==> X2.val=1
number(X1)
Is
X0 = <head: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; tail: none>
X1 = <left: <left: nil; right: <val: 1>>; right: <val: 0>>

recognized by the concept? yes
This disjunct is:
X0.head = X1
X0.tail = none
number(X1)

Marvin shows ([2], 2) and thus has learned that if X1 is the only number in X2:thein true.
Show me an example of max: (e2, two)
The next example shown by the trainer is a pair ([2, 1], 2) in which the head of the list is the maximum.

Testing:
X0.head = X1
X0.tail = X2
X2.head = X3
=> X3.left = nil
==> X3.right = X4
==> X4.val =1
X2.tail = none
X1.left = X3
X1.right = X5
X5.val =0
number(X3)
Is
X0 = <head:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>;
tail:
<head: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;
tail: none>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>

recognized by the concept? yes
Marvin proceeds as before, making a generalization and showing an instance ([4, 2], 4) which is valid.

Testing:
X0.head = X1
X0.tail = X2
==> X2.head = X3
==> X3.left = nil
==> X3.right = X4
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==> X4.val =1

==> X2.tail = none
X1.left = X3
X1.right = X5
X5.val =0

==> number(X3)
max(X2, X3)

Is
X0 = <head:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>;
tail:
<head: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;
tail: <head: <left: nil; right: <val: 1>>; tail: none>>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>

recognized by the concept? yes
The next instance shown is ([4, 2, 1], 4). At this point a recursive referemee ttas been introduced.

Testing:
X0.head = X1
X0.tail = X2
==> X2.head = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val =1
==> X2.tail = none
X1.left = X3
X1.right = X5
==> X5.val =0
==> number(X3)

max(X2, X3)
digit(X5)
Is
X0 = <head:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>;
tail:

<head: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;
tail: <head: <left: nil; right: <val: 1>>; tail: none>>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>

recognized by the concept? yes
([5, 2, 1], 5) is the next instance. Marvin is still creating consistent generalizations.

Testing:

X0.head = X1

X0.tail = X2
==> X2.head = X3
==> X3.left = nil
==> X3.right = X4
==> X4.val =1
==> X2.tail = none
==> X1.left = X3
==> X1.right = X5
==> X5.val =0
==> number(X3)
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max(X2, X3)

==> digit(X5)
number(X1)

Is

X0 = <head: <left: nil; right: <val: 1>>;
tail:

<head: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;
tail: <head: <left: nil; right: <val: 1>>; tail: none>>>
X1 = <left: nil; right: <val: 1>>

recognized by the concept? no
It Pnally goes too far with ([1, 2, 1], 1). Now the concept must be made more specibc.

MORE SPECIFIC WITH less(X3, X1)
Testing:
X0.head = X1
X0.tail = X2
==> X2.head = X3
=> X3.left = nil
==> X3.right = X4
==> X4.val =1
==> X2.tail = none
==> X1.left = X3
==> X1.right = X5
==> X5.val =0
==> number(X3)
max(X2, X3)
==> digit(X5)
number(X1)
less(X3, X1)
Is
X0 = <head:
<left: <left: nil; right: <val: 1>>; right: <val: 1>>;
tail:
<head: <left: <left: nil; right: <val: 1>>; right: <val: 0>>;
tail: <head: <left: nil; right: <val: 1>>; tail: none>>>
X1 = <left: <left: nil; right: <val: 1>>; right: <val: 1>>

recognized by the concept? yes

When Marvin learnedless, somereplacementsvere not attemptedoecausehey would not resultin
propergeneralizationsTheintroductionof 'less(X3,X1)' doesnot removeany of its implicantseither,
however since we are now trying to restrict the trial, that doesn't matter.

This disjunct is:
X0.head = X1
X0.tail = X2
max(X2, X3)
less(X3, X1)

With the addition of 'less(X3,X1)', Marvin haslearnedthatif the headof the list is greaterthanthe
maximum of the tail then the maximum of the whole list is the head.
Until now, all the existentially quantibedvariablescould be eliminated by changingpairs of
statements such as
X0.right = X4! X4.val =1
into
X3.right.val = 1
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However, this disjunct ofiax uses the brst genuinely quantiped variable, X3.
Show me an example of max: (e4, two)

To teachthe nextdisjunctof max the trainershowsMarvin ([1, 2], 2). If the headof thelist is lessthan
the maximum of the tail then the maximum of the whole list is the maximum of the tail.

Testing:
X0.head = X2
==> X2.left = nil
==> X2.right = X3
=> X3wval=1
X0.tail = X4
X4.head = X1
X4.tail = none
X1.left = X2
X1.right = X5
X5.val =0
number(X2)
Is
X0 = <head:
<left: <left: nil; right: <val: 1>>; right: <val: 0>>;
tail:
<head:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>;
tail: none>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 0>>

recognized by the concept? yes
([2, 4], 4) is the brst instance constructed.

Testing:
X0.head = X2
==> X2.left = nil
==> X2.right = X3
==> X3wval=1
X0.tail = X4
X4.head = X1
X4 .tail = none
X1.left = X2
X1.right = X5
==> X5.val =0
number(X2)
digit(X5)
Is
X0 = <head:
<left: <left: nil; right: <val: 1>>; right: <val: 0>>;
tail:
<head:
<left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>;
tail: none>>
X1 = <left: <left: <left: nil; right: <val: 1>>; right: <val: 0>>; right: <val: 1>>

recognized by the concept? yes

([2, 5], 5) is the next instance.
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Testing:
X0.head = X2

==> X2.left = nil

==> X2.right = X3

==> X3.wval=1
X0.tail = X4
X4.head = X1
X4 tail = none

==> X1.left = X2

==> X1.right = X5

==> X5.val =0
number(X2)

==> digit(X5)
number(X1)

Is

X0 = <head:
<left: <left: nil; right: <val: 1>>; right: <val: 0>>;
tail:
<head: <left: nil; right: <val: 1>>;

tail: none>>
X1 = <left: nil; right: <val: 1>>

recognized by the concept? no

WhenMarvin shows([2, 1], 1), the programhascreatedaninconsistenggeneralizatiorby introducing
‘number(X1)".

Testing:
X0.head = X2
==> X2.left = nil
==> X2.right = X3
==> X3.wval=1
X0.tail = X4
X4.head = X1
X4 tail = none
==> X1.left = X2
==> X1.right = X5
==> X5.val =0
==> number(X2)
==> digit(X5)
number(X1)
less(X2, X1)
Is
X0 = <head:
<left: <left: nil; right: <val: 1>>; right: <val: 0>>;
tail:
<head:
<left: <left: nil; right: <val: 1>>; right: <val: 1>>;
tail: none>>
X1 = <left: <left: nil; right: <val: 1>>; right: <val: 1>>

recognized by the concept? yes
It qualipeghis generalizatiorby addingless(X2,X1). Theinstancg([2, 3], 3) indicatesthatthetrial is

consistent once again.

Testing:
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X0.head = X2
==> X2.left = nil
==> X2.right = X3
==> X3wval=1

X0.tail = X4
==> X4.head = X1
==> X4 .tail = none
==> X1.left = X2
==> X1.right = X5
==> X5.val =0
==> number(X2)
==> digit(X5)
==> number(X1)

less(X2, X1)

max(X4, X1)
Is
X0 = <head:

<left: <left: nil; right: <val: 1>>; right: <val: 0>>;

tail:
<head:
<left: <left: nil; right: <val: 1>>; right: <val: 1>>;
tail:
<head: <left: nil; right: <val: 1>>;
tail: none>>>

X1 = <left: <left: nil; right: <val: 1>>; right: <val: 1>>

recognized by the concept? yes

The trial is generalizedurther with max(X4, X1). The instanceconstructeds ([2, 3, 1], 3) which is
valid.

This disjunct is:
X0.head = X2
X0.tail = X4
less(X2, X1)
max (X4, X1)

Show me an example of max: no
Description of max is:

[X0, X1:

X0.head = X1

X0.tail = none

number(X1)

[( X2, X3:
X0.head = X1
X0.tail = X2
max(X2, X3)
less(X3, X1)

]

[( X2, X4:
X0.head = X2
X0.tail = X4
less(X2, X1)

max(X4, X1)
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Learned in 5.83 secs
Do you want to teach me another concept? no
End of run

In fact the target has been reached.

A fourth disjunctis necessaryo saythatif the headis equalto the maximumof the tail thenthe
maximumis the head(or the maximumof thetail). This is not shownheresincethe learningsequence
is much the same as the other disjunctaof.
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A Tour Through Marvin

Marvin is the resultof severalstagesof evolution. Originally, the programwaswritten in Prolog, but
the latestversion,which is describedn this chapter,is implementedn Pascal Currently Marvin runs
onaVAX 11/780- UNIX system.The entire program,including dataareasrunsin about80K bytes
and the source consists of approximately 2200 lines of Pascal code.

At its highest level Marvin looks like this:

Marvin:
look at world;
repeat
learn new concept
remember concept
ask trainer 'Do you want to teach me another concept?'
until answer = no

Marvin's world is a ble containingthe descriptionsof all the objectsit can seeduring one training

session.The world may also containthe debnitionsof conceptsawvhich havebeenlearnedin previous
sessionsMarvin beginsby readingthe world ble andthenit repeatedlyasksthe trainerto teachit new

conceptsbasedon the objectsit can see.Once a conceptis learned,it is storedin an associative
memory.

5.1 Learning Disjunctive Concepts

Marvin learnsdisjunctiveconceptdy learningoneconjunctionat atime. It beginsby askingtrainerto
show an exampleof the conceptto be learned.This exampleis usedto learn one conjunctionof the
entireconceptAs we haveseen,a sequencef trial conceptds generatecandtesteduntil the targetis
reached Whenit haspbnished,Marvin assumeghat one conjunctionhasbeenlearnedand asksthe
trainer to show it a new exampleso that the programcan learn anotherconjunction. This can be
summarized as follows:

learn:
ask 'What is the name of the concept? '
read conceptname
Look up name in program'’s dictionary
repeat
ask 'Show me an example of the concept'
read example
if example = no then
the complete concept has been learned
else LearnConjunction(conceptname, example)
until complete concept is learned
print description of concept

Marvin brstasksthe nameof the concept.It looks up this namein a dictionaryto seeif the nameis
alreadyknown. If it is this meansthat the trainer hasalreadytaughtMarvin part of the concept.The
conjunctionaboutto be learnedwill be appendedo the existingdescription.If the nameis not known
then a new entry is made in the dictionary.

Thedictionaryis implementedasa hashtable.Eachentry associatedavith a conceptnameis a pair
consistingof the formal parametersf the conceptandits debPnition.An entry may berepresentethy a
Pascal record:
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concept = record
formal: list of variable;
dePnition: list of conjunction
end

The debnition is a list of conjunctions. Each new conjunction is appended to the end of the list.
Thelearningalgorithmbeginswith a call to LearnConjunction which, asthe namesuggestsiearns
one conjunction of the concept description.

LearnConjunction(ConceptName, Example)
description := primary(Example)
Trial:= create(description)
generalize(Trial)
simplify(Trial)
remember(Trial)

Trial and description are global variables,known to the whole program.The actionsperformedby
LearnConjunction are:

¥ The primary statementsare constructedfrom the training instance.This is done by procedure
primary Which alsogenerateshelist, Args, of universallyquantibedsariableswhich will become
the formal parameter®f the conceptif this is the brstconjunctionto be learned.The existentially
quantibed variablegxvars, are also created.

¥ Thelist of statementsvhich form the descriptionof the training instanceis thenusedto create a
conjunction which will become the initial trial.

The trial is thergeneralized. This procedure is the heart of the learning algorithm.

Once the target concepthas been learned, it is simplified, that is, redundantstatementsand
variables are removed.

¥  Finally, the conjunctionis remembered by updatingthe associativanemory.This involvesadding
the new statements in the conjunction toitiaix.

5.2 Creating Descriptions of Concepts

The brstactionwhich Marvin mustperformwhentrying to learna concepts to convertthe description
of aneventinto arepresentatiothatit canmanipulateThatrepresentatiois Prstorderpredicatdogic.
Eachobjectin the training instanceis assigned uniquevariablenamewhich the systemwill useto
referto it. Thisis accomplishedy the procedureprimary which scanghroughthe objectsin a sample
event and describes each in turn.

primary(Example)
for each object in Example,
create a variable, X to represent object
if X is identical to another object, Y then
Create an identity statement X =Y
Add the statement to the isin list of X and Y
else describe(X)
return description

An objectmay appeamorethanoncein anevent.If this happenghenanidentity relationbetweerthe
variablesrepresentinghe objectis created For example jf we appendalist, L, ontothe emptylist, nil,
thentheresultis identicalto L. A training exampleto teachthis caseof append maybe (nil, L, L). The
statemenk?2 = X7 will be generated to indicate that the second and third arguments are identical.

Eachvariablehasanisin list whichis alist of all the statementshatthe variableoccursin. As we
will seelater, this informationis usedby the learningalgorithm. An objectis describedby making
assertion@boutthe valuesof its properties Eachproperty:value pair in the objectto be describeds
taken in turn and a primary statement is constructed from that pair.
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describe(ObjectName)
for each property:value pair in object,
Create a statement ObjectName.property =V
if value is an object then
if object has been described before then
V = variable name given previously
else
V = new variable to represent the object
describe(V)
Add the statement to the isin lists of its variables

Notethatdescribe is recursive If the value of anobjectis itself an objectthenthe valuemustalsobe
describedHowever,Marvin musttake carenot to describethe sameobjecttwice. For example there
may be two brothers:

Fred = <age: 12; father: Jack>

Bill = <age: 14: father: Jack>
and

Jack = <age: 38; wife: Jill>

To create primary statementsfor this example Marvin would Prst describe Fred. During this
description, Jack would also be described.

X0.age =12
X0.father = X2
X2.age = 38
X2.wife = X3

Bill's turn is next, but Jack has already been described so the new statements created are simply:

X1l.age =14
X1.father = X2

A list mustbe keptwhich containsthe namesof all the objectsthat havebeendescribedso far. In this
way we do not createdwo descriptionsof the sameobject,andin the caseof two objectswhich refer
to each other, the program does not get caught going around a circular list.

If the conceptbeing learnedis brothers then X0 and X1 becomethe formal parameterf the
concept(i.e. the universallyquantipedvariables)and X2, X3 etc. becomethe existentiallyquantiped
variables (exvars).

Thedescription of aneventis alist of the statementin the currenttrial (aswell asthosethatwill
be removedduring the generalizatiorprocess)A statementnay be representetby the following data
structure:

statement = record
state: integer;
implicants: list of statement;
predicate-name: word,;
args: list of value
end

Ratherthan physically removing statementdrom the description,the learningalgorithm changeshe
state of the statementThe statebeld of a statementS, keepsa countof the numberof statements
implied by S which arein thetrial. If the stateis 0 thenSis in thetrial, sinceit hasnot beenreplaced
by any statementvhich it implies. If the stateis a positivenumberthenit hasbeenreplacedby at least
one other statement.

Sometimesa replacemenwill fail. A new statemenmay be introducedto replaceits implicants.
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However,this statementmay resultin atrials which canneverbe consistentislong asit is partof the
description.When this occursthe new statemenis removed.This is indicatedby a stateof -1. In
Chapter 4 the statements which had non-zero states in the description were marked by-aasarrow

The implicants beld is a list of the statementswvhich imply S. Primary statementshave no
implicants. However, statementswhich are introducedby a replacementoperationhave, as their
implicants, the statementswvhich they replace. Args is the list of actual parametersvhich may be
variables,selectorsor constantsValueshavetype tagsassociatedvith them so that the programcan
determinethe type of eachargument.Selectorsdistinguishedby a SEL tag, havetwo attributes:obj
andprop which indicate the the propenpyop is being selected in the objed.

As an example of a statementstructure, consider append(X0.1l, X1, X2.1l). A graphical
representatiomf this is shownin Figure5.1. Primary statementfiavethe sameinternal structure. For
example X0.colour = red is representedby the structurein Figure5.2. Oncethe primary statements
have beenconstructeda new conjunctionis created. A conjunctionis representedy the following
structure:

conjunction =  record
alternatives: list of conjunction
exvars: list of variables;
description: list of statement;
end

Exvars is alist of the existentiallyquantibedvariableswhich appeairin the conjunction.Description is
the list of statementsn the conjunctionand alternatives is the list of remainingconjunctionsfor the
concept.

of, 1, 1= 1 - [ |
v
append
implicants sell | | var| 1 sell | |,
v
tl tl
varl 0 var| 1

Figure 5.1 append(XO0.tl, X1, X2.tl)

The procedurecreate, called by LearnConjunction, allocatesa new record and sets exvars and
description 1o the valuesreturnedby primary. Remembethe initial descriptionis the list of primary
statementsThe valueof alternatives is nil until a conjunctionfollowing the presenbneis learned.The
new conjunction is placed as the last alternative in the concept structure described earlier.
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equal

selI |

v

colour

var| 0

Figure 5.2 X0.colour = red

To completethis discussiorof therepresentationf conceptsFigure5.3 showsthe entiredatastructure
for the trial concept ofumber in Chapter 4.

guantified variables

— X2 — X3
v
- XO0.left = X1
) 4
-] X1.left = nil B 2
A S
v 2
- XL.right= X2 - 3
F 5
v =
— X2val=X1 |[@&—F =
J Y
v
- X0.right= X3
y implicant
— X3.val=X0 of digit
) 4
- number(X1)
) 4
- digit(X3)

Figure 5.3 The last trial of number
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5.3 Memory

The function of the memoryis to enableMarvin to recognizepatternsin the examplesit hasbeen
shown.This is doneby recallingconceptsvhich describea part of the world thatit cansee.Marvin's
internalrepresentationf the scends the setof primary statementsJo. In Section3.4 we sawthatif a
concept,C, containsa disjunctwhich matchesa subsetof atrial T; thenC is true. Thusthe mainr™e
of the associativanemorywill beto assistthe generalizatiorprocedureo look for subsetof thetrial
description which match disjuncts of concepts in memory.

Marvin's memory consists of a list of associations:

association = record
stmnt: statement;
Usedin: list of concept
end

Eachassociatiorrecordsthe fact thata statementvhich matchessmnt is usedin all of the conceptsn
the list, Usedin.
After eachconjunctionin a conceptis learneda procedureindex, is calledto updatethe memory.
Each statement in the new conjunction is taken in turn and placed in the index. It operates as follows:

index(statement, concept)
if memory is empty then
memory := NewAssociation(statement, concept)
else
ConceptList:= lookup(statement)
if ConceptList empty then
add NewAssociation(statement, concept) to memory
else if concept notin ConceptList then
add concept to ConceptList

The function NewAssociation simply createsa new associatiorrecordas debPnedabove.If Marvin's
memory is empty then a new associationis addedimmediately. Otherwise Marvin looks up the
statementn theindexto the memory.The procedurdookup returnsthe list of conceptavhich contain
statements which match the parameter given.

lookup(stmntl)
for each pair <stmnt2, UsedIn> in memory,
if match(stmntl, stmnt2) then
return UsedIn

The programjust scanghroughthelist which representsnemorylooking for a match.For the scaleof
problemswhich havebeenusedto testMarvin, a linear searchthasprovedadequateHowever,if avery
large databaseis required,fasterlookup techniquesould be used.A methodfor improving lookup is
discussed in Chapter 7.

The function march performsthe pattern matching betweenstatementslit usesthe unibcation
algorithm outlined in Section 3.3.

match(stmntl, stmnt2)
if stmntl.predicate-name = stmnt2.predicate-name
and length(stmnt1.Args) = N
and length(stmnt2.Args) = N
then for i in 1..N,
if not unify(stmntl.arg[i], stmnt2.arg[i]) then
return FALSE

Two statementsnatchif theyhavethe samepredicatenameandall their argumentainify. As wasseen
earlier, variablesare namedwith respectto a particularbinding environment,so a completecall to
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unify must include the environments of the statements being matched. For example,

unify(stmntl.arg[i], envl, stmnt2.arg[i], env2)

When searchingfor a match betweenstatementsn the trial and statementsn the index, env1 will
representhe environmentcreatedor the primary statement®y primary. Thevariablesin env2 will be
instantiated by the pattern matching procedure.

Let us now give a complete dePnitioruaify:

unify(terml, envl, term2, env2)
if term1 is a variable then
if term1 is bound to value, v in envl then
return unify(v, envl, term2, env2)
else
bind(term1, term2, env1l);
record the substitution for term1
return TRUE
else if term2 is a variable then
return unify(term2, env2, terml, envl)
else if term1 is same type as term2 then
case type of
ATOM: return (terml = term2);
NUMBER: return (value of term1 = value of term2);
SELECTOR:
if term1.property = term2.property then
return unify(term1.obj, envl, term2.obj, env2)
else return FALSE
else return FALSE

If eithertermis avariablethenthe valuesmustbelookedup in the setof substitutionsor boundif they
are not alreadybound. Since atomsare storedonly once,referencego atomswill matchonly if the
point to the sameatom. Two referenceso numbersmatchonly if the numericalvaluesreferredto are
the same. Selectors match if the property name is the same and the variables in the selector match.

Whena substitutionis madeit is recordedin a specialstackcalledthe trail. This is donefor the
benebbf the generalizatiorproceduravhich, at certaintimes,will needto backtrackandundosomeof
the substitutions created by the pattern matcher.

So far in this sectionwe have usedthe terms substitution and binding environment without
describinghow they areimplementedThe methodusedis well knownto compilerwriters. A binding
environments representedby a groupof slots,calleda frame, on a stack.Eachvariableis associated
with oneslotin theframe.Variable Xn is boundto the valuestoredin position,frame + n, in the stack,
where frame points to the base of the binding environmentof that variable. For example, the
substitutiory’ X0/RED, X1/BLUE, X2/GREEN} is represented as

frame+ 2 | Greel

frame+ 1 | Blue

frame ---> | Red

The advantageof a stackimplementationis thatit makesbacktrackingvery easy.Whenit becomes
necessaryo changethe binding environmentackto a previousstate , we needonly changethe frame
pointer.
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5.4 The Generalization Algorithm

The goal of the generalizatioralgorithmis to look for replacementsvhich createa newtrial which is
more generalthan the currentone. The programscansdown the list of statementsvhich form the
description.If a statementhas not beenreplacedpreviously (i.e. state# 0), the algorithm tries to
introduce new statementswhich refer to a conceptwhose description containsa match for the
statement.

generalize(description)
for each statement in description,
if statement.state! 0 then
TryConceptsWith(statement)

The statement which is being used to look for concepts is callgartheBruner, 1956).
TryConceptsWith will look up the focusin memoryto bnd the list of conceptswhich contain
statements similar to the focus. In the following procedure, this list is daltetin.

TryConceptsWith(focus)
declare global StmntsOut
recognized:= FALSE
UsedIn:= lookup(focus);
for each concept in Usedin,
if CheckConcept(concept) then
recognized:= TRUE
if recognized then return TRUE
else return FALSE

CheckConcept is calledfor eachmemberof Usedin to discoverif any of theseconceptgecognizeany
partof the description.Thoseconceptavhich do will be usedto generalizehetrial. If no suchconcept
is found therTryConceptsWith returns false.

During the life of TryConceptsWith, somestatementsn the descriptionwill be replacedby new
statementsAs a statemenis removed,a referenceto it is placedat the headof the list StmntsOut.
TryConceptsWith will be called recursivelyso it should be rememberedvhen anothercall to it is
encounteredthat eachinvocationof TryConceptsWith createsa new StmntsOut.The new StmntsOut
will remainin existenceonly aslong astheinvocationof TryConceptsWith which createdt remainsin
existence.

CheckConcept(concept)
for each disjunct in concept,
if Contains(disjunct) then return TRUE
return FALSE

CheckConcepr tries eachdisjunctof the conceptto seeif the trial Contains a matchfor that disjunct.
When a match is found, the procedure returns true. If no match is found then it returns false.

Contains implementsa searchfor a subsetM, of the descriptionwhich matchesa conjunction.
Contains is implementedas a recursiveprocedurein order to perform a depth brst searchfor all
possiblematcheshetweena disjunctof a known conceptandthe descriptionof the training event.The
argumentonjunction is alist of statementin a conceptwhich is alreadystoredin memory.With each
recursivecall of Contains, the programmovesdown this list, trying to matchits headwith a statement
in the description.If the headof conjunction matchesa statement$, thenS may be animplicant, soit
is removed. That is, the state indicatoSa$ incremented by 1.

Contains is thencalledrecursivelyto Pnda matchfor theremainderof the conjunction If contains
fails, then the programcould not Pnd a completematch for the conjunction.That is, S is not an
implicantsoit is restoredo thetrial (the stateindicatoris decremented)rhe variablePartOut records
the statementghat have beentemporarily removed.When contains hasfound one completematch,
StmntsOut is partially restoredso that other matchescan be found. Note that StmnzsOut is usedas a
stack. Since PartOut points into this stack, the assignmentSimntsOut:= PartOut hasthe effect of
partially cutting back StmntsOut.

When a match fails, the substitutionscreatedduring the pattern matching operationsmust be
forgotten. OldSubst is usedto recordthe positionon the stackto which the programmustbacktrackin
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orderto forgetthe variablebindings.Noticethatby backtrackingthe algorithmtriesto Pndall possible
matches for the disjunct of a concept.

Contains(conjunction)
if conjunction = nil then
if Replacement(StmntsOut, focus) succeeds then
return TRUE
else return FALSE
else
PartOut:= StmntsOut
OldSubst:= Substitutions
for each statement in description do
if match(statement, conjunction.head) then
remove(statement)
if Contains(conjunction.tail) then
A complete match has been made
StmntsOut:= PartOut
else restore(StmntsOut, PartOut)
ForgetSubst(OldSubst)
return TRUE if a least one complete match was found

Whenthe procedureeacheshe endof the conjunction,a completematchhasbeenfound. At this point
Marvin will try to bPnish the replacement process by creating a new statement.

Replacement(StmntsOut, focus)

if focus not in StmntsOut then
return FALSE

S:= CreateStatement(StmntsOut)

if S =nil then
return FALSE

if not MoreGeneral and not restricting then
remove(S)
return FALSE

if Consistent(S) then
TryUnremoved(StmntsOut)
return TRUE

else return FALSE

Replacement must perform a number of tests before a new trial can be created.

¥ The focus statementwhich was passedas a parameterto TryConceptsWith must be in the
statements removed.

¥ If theprogramis trying to generalizeghetrial, thenit mustinsistthatat leastsomestatementave
beenremoved,otherwiseit would not be a proper generalization However, if the programis
attemptingto makethetrial more specibdrestrictingit) thenit doesn'tmatterif no statementan
be removed.

¥ Onceanewtrial hasbeenformed,it mustbe testedto seeif it is consistentTo do this aninstance
of the trial is shown to the trainer. If the trial is not consistent, it must be made more specibc.

CreateStatement(StmnstOut)
Find the arguments of the new statement.
if there is a many-to-one binding then return nil
if TriedBefore(ConceptName, ArgList) then return nil
FindRemovable(StmntsOut)
S:= NewStatement(concept, Args)
append S to description
return S
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To createthe new statementMarvin mustbndthe actualparametersf the call from the substitutions
producedby the patternmatcherlt is possiblethatthe matchcontainsa many-to-onevariablebinding.
At presentMarvin is incapableof dealingwith this situation. The argumentdor the new statementan
be found quite easily by looking up the values bound to each formal parameter of the concept.

FindArgs:
ArgList:= nil
for each argument in formal parameters of concept,
bnd value, v bound to argument in substitution
if v in Arglist then
many-to-one:= true
return FALSE
else place v in ArgList
return ArgList

TriedBefore Pndsout if the sameconcepthasbeenusedto recognizethe sameeventbefore.If thisis
true then the statementeing createdwill be a duplicateof one alreadyin the description.A new
statemenshouldnot be createdif thereis a statemenglreadyin the descriptionwhich hasthe same
predicate name and an identical argument list. So we detaBefore as,

TriedBefore(ConceptName, Arglist)
if there exists a statement, S
such that S.predicate-name = ConceptName
and S.args = Arglist
then return TRUE

The programmustalsocheckthat the statementén StmntsOutmay be removedwithout violating the
condition that the trial must be able to specify a complete object.

Suppose training instanceshownby the traineris the event(fred, bill, jack) wherefred, bill and
Jjack arethe namesof objects.Whenthe primary statementaregeneratedhesenamesarereplacedy
the variables(X0, X1, X2). Thesewill becomethe formal parameters of the new concept,onceit has
beenlearned Obviously,theremustalwaysbe somestatementn thetrial which describesachformal
parameter.

FindRemovable(StmntOut)
for each statement, S in StmntsOut,
if CannotRemove(S) then restore(S)

Most of the primary statementsvill havethe form Xn property = value. If thereis a statemensuchas
X0.head = X3 whereX3 is anexistentiallyquantibed/ariablethenthis statementill be calleda parent
of X3. (The statemenhasintroducedX3 to the world.) X3 mustbe describedssomewherethusif the
programattemptsto removea statementontainingX3 anda parentof X3 is still in the trial thenthat
statement may not be removed unless there are other refere8esigewhere in the trial.

CannotRemove(statement)

if statement is a primary then
return NoOtherRef(second argument of statement)

else for each argument in statement,
if argument is a formal parameter of target
and NoOtherRef(argument)
then return TRUE
else if Parentin(statement) and NoOtherRef(argument) then

return TRUE
return FALSE

Let us describethe proceduredor bndingthe parentof a variableand for Pndingif thereare other
references to it.
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Parentin(value v)
L:= list of statements which contain variable, v
for each statement, S in L,
if s=Xn.prop=v and S in Trial then return TRUE

Theisin list of v is beingusedto Pndout which statementgontaina referenceo v. Thesestatements
are then examined to see which one is the parent of

To bPndoutif avariableis referredto in otherstatementsiMarvin scansthroughthe isin list of v
and checks if is a member of the argument list one of the statements which is in the trial.

NoOtherRef(v)
if v in Args then return FALSE
L:= list of statements containing v
for each statement, S in L and S in Trial,
if member(v, arguments of S) then return FALSE
return TRUE

Args is thelist of argument®f the statementwhich is aboutto be addedto thetrial. If v isin Args then
it doesn't matter if there are no other references elsewhere.

Finally, the new statementanbe constructecand addedto the description.The argumentfound
by FindArgs becomethe parametergo of the statementsSimntsOut containsthe list of implicants.
Oncearecordfor the statemenhasbeenallocated,it mustbe placedin the occurrencdist of eachof
the variables contained in the statement.

NewStatement(concept, Args)
allocate record for new statement, S
predicate-name of S:= concept;
S.Arguments:= Args;
S.Implicants:= copy of StmntsOut;
S.state:=0
for each argument of S,
place S in occurrence list of argument
return S

Thetrial createdby the replacementwhich hasjust takenplacemustbe checkedto ensurethatit is a
propergeneralizatiorof the previoustrial. This canbe guaranteedf at leastone of the implicantsof
the new statementasbeenremovedfor the brsttime. A statemenmay alreadybe outsidethe trial
because it is the implicant of another statement.

MoreGeneral:
for each statement in StmntsOut,
if statement has just been removed then return TRUE

If a statemenis in SmmntsOur thenits stateindicator hasjust beenincrementedoy 1. If the stateis
equalto one then the statementas not beenremovedpreviously. Thereforethe replacemenbeing
attempted now generalizes the trial because a statement has been removed.

The programnow hasa trial which it cantestto seeif it is consistentor not. This is one of the
functionsof Consistent. If the trial is consistenthenfurther generalizationwill be attemptedwhen
Consistent returns.If it is not consistentConsistent will try to constructa morespecibdrial by using
the implicants of the new statement to add more information to the trial

Consistent(NewStatement)
if experiment with trial fails then
for each statement in StmntsOut,
if statement is notin trial then
restore(statement)
if TryConceptsWith(statement) then
return TRUE
else remove(statement)
remove(NewStatement)
return FALSE
else return TRUE
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This algorithmchoose®achimplicantof the new statemenin turn andtriesto introducenew concepts
with theseimplicants.Sincethisis recursive TryConceptsWith will createa newtrial andtestit. If this
oneis alsoinconsistentthe programwill checkthe consistencyf thattrial aswell. If all theseattempts
fail thenthe newstatemenmustbe abandonedinceit wasimpossibleto createa consistentrial which
includesNewStatement. WhenNewStatement is removed the stateindicatoris setto -1. This allowsthe
statement to be used as the focusTigConceptsWith, but excludes it from the trial.

WhenMarvin waslearningless we sawthatnot all the statement#n StmntsOur couldberemoved.
X3.wal = 1 could not be removedwhen number(X2) was introducedbecauseX3 was referredto by
morethanoneobject.However,afterthe replacementvascompletedthe statementould be removed.
TryUnremoved 100ks at the implicantsof a new statemento seeif thereare any primary statements
which can be removed after the replacement has been completed.

TryUnremoved(StmntsOut)
for each statement in StmntsOut,
if statement is a primary and itisin trial then
relax(statement)

This code bearssomeresemblanceo partsof Consistent exceptthat Marvin is now relaxing some
constraints on the concept rather than introducing new ones.

relax(statement)
if CanNotRemove(statement) then return
else remove(statement)
for each implicant of statement,
if implicant is not in trial then
restore(implicant)
if TryConceptsWith(implicant) then
return
else remove(implicant)
restore(statement)

The Pnalprogramto considerin the learningalgorithmis the part of the programwhich performs
experiments.

PerformExperimentWith(trial)
experiment(trial)
ask 'ls object recognized by concept?'
if answer is 'yes' then return TRUE
else return FALSE

Experiment invokesthe proof procedureswvhich will constructan instanceof the concept.Thereare
two phasesn generatinganinstancerconstructingan event,andensuringthatthe eventis onethatwill
enable Marvin to learn something new.

5.5 Executing Concepts as Programs

In orderto producea training example Marvin treatsa conceptdescriptionasa program.The outputis
an event which is recognizedby the concept.In Section 3.2 we discussedthe semanticsof the
description language. Now let us look in detail at how objects are constructed.

An objectis constructedy the actionsof the primary statementsyhich cansometimedethought
of as assignmentstatementsWhen an argumentof the '=' predicateis an unboundvariable (or
property)a valueis assignedo it. The other constructsof the languagethe conceptcalls, AND and
OR connectives, control the execution of the primaries.

In the brststageof our tour throughMarvin's object constructionprogram,we will look at how
objects and values are represented during execution.
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5.5.1 Binding Environments and Stacks

Earlier we sawthat a stackwasusedto storesubstitutionsfor variablesduring patternmatching.The
same sort of mechanism can be used to represent substitutions during the execution of a program.
Remember that the dePnitionagipend is:

[X0, X1, X2:
XO.value = nil!l X2 =X1! list(X1)
[( X3:
X0.hd = X3
I X2.hd = X3
I number(X3)
I append(XO0.tl, X1, X2.tl) (C1)

]

During the executionof append, the variablesXo, .., X3 will havesomevaluesassociatedvith them.
This associations implementedy placinga referenceo thevalueof variableXn in the stackposition,
frame + n, whereframe is the baseof the binding environmentof this call to append. Eachtime a
conceptis called, spacefor its binding environmentmust be allocatedon the stack. This will be
described shortly.

Consideringappend(X0, X1, X2) asa procedurecall in a conventionalanguageXo0, X/ andX2 are
valueswhich are passedo append to be boundto the formal parameter®f the procedureOf course,
our purposeis to havethe interpretersupply valuesfor X0, X1 and X2. This is indicatedby asking
Marvin to prove

[( X0, X1, X2: append(X0, X1, X2)]

Whentheinterpreterencounterg Xn, adummyvalue,calleda QVAR, is createdandareferenceo it is
placedin the stackasthe value of Xn. QVARSs are intermediatestoragelocationswhich, initially, are
empty.At somepoint in the executionof the concepta QVAR will be assigneda value by a primary
statement.

Implementation Note: QVARS may be allocatedoff a stack so that the spacethey occupy may be
reclaimed after use.

5.5.2 Executing Primary Statements

Suppose the interpreter is executing the statement:

X0.colour =red

X0 is an objectwhich is going to be constructedwvith a propertycolour whosevalueis red. The value
of X0 is representethy a QVAR, Q, whichis unboundnitially. In orderto executehe statementa new
objectmustbe created anda property:value pair mustbe put into the objectwith the valuescolour:
red inserted. Part of the structure resulting after completing this statement is shown in Figure 5.4.

The interpretercalls the function equiv to executean equivalencestatementlt tries to bndthe
valuesof the left andright handargumentslf it cannotbnda valuethena new QVAR is created For
example sinceX is representetdy anunboundQVAR, whenMarvin looksfor the valueof X0.colour, a
new objectis constructedwith the propertycolour. The value of colour is not known yet, so a new
QVAR is created to represent it.
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frame ]

colour

Figure 5.4 Executing X0.colour = red

equiv(valuel, value2)

x:= value-of(valuel)

y:= value-of(value2)

if x or y are nil then return nil

else if x is an unbound QVAR then
x:=y and put x on trail
return TRUE

else if y is an unbound QVAR then
y:=x and puty on trail
return TRUE

else both x and y are bound
return equal(x, y)

In our example equiv is calledthus:equiv(X0.colour, red). The brsttaskof the procedurés to discover
what the valuesof its argumentsare. X0.colour may alreadybe bound,if it is not, a QVAR mustbe
created to represent it.

value-of(x)
if x = nil then return nil
else case type(x) of
ATOM :if x is the name of an object then
return object
else return x

NUMBER, OBJECT: return x

VARIABLE: return value-of(stack[frame + n])
SELECTOR: return value-of(get(value-of(obj, prop)))
QVAR: return val-of-qvar(x)

If x is avariablethenthe valueboundto x mustbe found. This canbe doneby locatingthe stackslot
associatedvith the variable. The stackis an array of values,thus the value of the variable, Xn, is
stack[frame + n] where,frame, is the index of the baseof the binding environmentfor the current
concept call.

If x is a selectorof theform Xn.prop, thenthe valueof Xn mustbrstbefound. A procedureget, is
then called to get the value associated with the propety, in the value oXn.

During executionit is possibleto build up a chainof QVARs whereone QVAR pointsto another.
Val-of-qvar returns the value at the end of the chain.

Get is thefunctionwhich createobjects. Theargumentf ger areobj, the nameof anobject(that
is, a variable)andprop the nameof a property.If obj is not boundthena new objectis createdanda
pair createdwith prop in the property beld. The value beld of the pair is not yet known, so a new
QVAR is created and put in.
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get(obj, prop)
if obj = nil then return nil
else if obj is a word or number then return nil
else if unbound(obj) then
obj:= new object
add obj to trail
make a new property:value pair
property := prop and value := new QVAR
return QVAR
else if ( pair <property:value> in object then
return value
else if obj not complete then
make a new property:value pair
property := prop and value := new QVAR
return QVAR
else return nil

A new pair is also createdif the object exists, but is still 'underconstruction'.An object must be
completely specibed within one concept.
To complete the description efuiv we now specify the meaning @jual

equal(valuel, value2)
x:= value-of(valuel)
y:= value-of(value2)
if x or y are nil then return FALSE
case type(x) of
QVAR, ATOM: return TRUE if x and y are identical
NUMBER: return TRUE if numerical values are same
OBJECT: return TRUE if for each pair pi:v1 in X,
( pair p2rvzin y:
p1 = p2 and equal(vi, v2)

5.5.3 The Control of Execution and Backtracking

The executionof primary statementsnstantiatesobjects.The remainderof the interpreteris involved
in controlling the order in which the primaries are executed.

Theinterpreterexecuteshe statement#n a conjunctionsequentiallyIf the statements a primary
statement,it is evaluated.lf the statementis a referenceto anotherconcept,then then execution
environment is modiPed and execution begins on a new conjunction.

To call a concept, the interpreter performs the following actions:

call(concept, actual-parameters)
bind formal-parameters to actual parameters
D:= Prst conjunction in concept
save alternatives
make QVARs for quantibed variables in D
return D

We havealreadyseenhow the formal paramaterare bound.Whena conceptconsistsof a numberof
conjunctions,Marvin cannotknow which conjunctionmustbe provedso that the entire trial will be
true. Thus,the interpreterwill try to provethe Prstconjunctionit Pndsand savesthe restin casethe
proof is not successful and another alternative must be tried.

In orderto be ableto backtrack quite alot of informationmustbe stored.Whena new concepts
to be proved,the environmentof the calling conceptthe parent,mustbe saved.The following items
are saved as a record, calleebarrol node, on Marvin'scontrol stack:
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frame: When backtracking occurs the system must return to the original bindin
g
environment. Thus the stack frame pointer of the calling concept must be saved.

TrailPoint: As well asreturningto the previousbinding environmentQVARs which havebeen
assignedvaluessincethe presentenvironmentwas savedmust be cleared.When a
QVAR is assigned a value, it is placed on a stack calleddfie

alternatives: This pointsto the nextconjunctionto be attemptedvhenbacktrackingeturnsto this
point.
parent: When a conjunctionterminates,control must return to the calling concept- the

parent. Thus a pointer to the control node of the parent is saved.

continuation:  Apart from knowing which conjunctioncalled the presentone, the interpretermust
know which statement to continue executing from.

Supposehereis a conjunctionP! Q! R. BeforeP is executedthe currentenvironmentis saved.
The frameon the variablestackis saved.The currenttrail pointeris savedsothatif P assignedralues
to QVARs but eventuallyfailed, thoseassignmentsanbe undone If P succeedsthe interpretermust
know thatit shouldcontinueexecutionat Q. This is the purposeof the 'continuationpointer.If Q fails
it may be because? bounda variableto a value unacceptablé¢o Q. In this caseanotherdisjunctof P
shouldbetried in anattemptto producevariablebindingswhich areacceptabldéo both P andQ. Thus
before entering P for the brst time, one conjunctionis selectedfor executionand the remaining
alternativesare placedon the stack.When Q fails, the interpreterwill look for P's alternativeson the
stack.

Figure 5.5 showsthe stateof all the stacksduring the executionof append. The explanationgo
follow may becomeclearerby referringto this diagram.It showsa snapshobf the systemwhenthe
prstdisjunct of number is being executedlt is assumedhat number was called recursivelyby the
seconddisjunctof number which, in turn, wascalledfrom the seconddisjunctof append. Append was
called from the original request to construct an example to show the trainer.
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C1 andC2 arecontinuationgecordedon the control stack.They referto the correspondingtatements
markedin the descriptionsof the conceptsD/ is the seconddisjunctof numberwhichis analternative
left on the stack in case the brst disjunct fdils. is dePned as:

[XO:
X0.val = none

number(X0.hd) list(XO0.tl)
]

The debnition ofiumber is:

[XO:
[( X1:
XO0.left = nil
I X0.right = X1
I X1l.value =1
]
[( X1, X2:
X0.left = X1 (D1)
I X0.right = X2
I number(X1)
I digit(X2)
] (C2)
]
anddigit is

[XO0: X0.value =0 XO0.value = 1]

Rememberthat one Peld in a conjunction record containsa list of quantipedvariables.Before
execution of the conjunction can begin, each variable must be assigne@&ARwW

Execute containsthe mainexecutionoop for a conjunction.This procedurenovesdownthelist of
statementsD, in the conjunction.As it encountersa primary statementit is evaluatedoy equiv. If a
conceptreferencds encountered;all is invoked. This saveghe currentvalueof D on the control stack
and changesD to the brstconjunctionof the called concept.Succeed and backtrack also changethe
valueof D. Succeed setsD to the continuationof the parentandbacktrack setsit to a newalternativeto
try after the proof has failed for previous alternatives.

execute(D)
repeat
successful:= true
while (D" nil) and successful do
S:=head of D
if Sis a primary then
if equiv(S.arg[1], S.arg[2]) then
D:= tail of D
else
D:= backtrack
successful:= FALSE
else D:= call(S)
if successful then D:= succeed
until CSP=0

All changesn the environmentarerecordedon the control stack.The currentenvironmenis indicated
by the Control Stack Pointer (CSP).When the while loop terminatesa conjunctionmay have been
executedr failed. In both casesthe CSP will be modibedBeforethe programcancontinueexecution
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it mustcheckthatthe entire programhasnot beencompleted- either successfullyor unsuccessfully.
Terminationoccurswhenthe control stackis empty. Sinceall the work thatthe interpretermustdo is
scheduled by the contents of the stack, wigh = 0, all the work is done.

Let us now considerwhat actionsmust be performedwhena conjunctionhasbeensuccessfully
executed.

succeed:
while CSP " 0 do
node:= ControlNode[CSP]
mark QVARSs in this node's environment as complete
CurrentFrame:= node.frame
if node.continuation = nil then CSP:= node.parent
else return node.continuation

Whena concepthasbeensuccessfullyexecutedthe objectsthatit constructedaremarkedascomplete.
The binding environmentis changedto the binding environmentof the parent. If the parent's
continuationis nil, thatis, thereareno moreconditionsto satisfyin the parentthenthe procedureskips
to the control node of the parent'sparent.Otherwise, it returnsthe continuationof the parent.This
becomes the neWw in execute.

Theargumentof a completedconceptaremarkedascompletesothatanotherconceptcannotadd
new pairs to the object.

Whenfailure hasoccurred Marvin musttry anothemway of bndingthe solutionby backtrackinglt
scans down the control stack, looking for a concept which still has some alternatives left.

backtrack
while CSP" 0 do

node:= ControlNode[CSP]

if node.alternatives = nil then
CSP:=CSP-1
CurrentFrame:= node.frame

else
clear_trail(node.TrailPoint)
CurrentFrame:= node.frame
D:= brst alternative of node
make QVARs for D
node.alternatives:= rest of node.alternatives
return D

If a conceptwith alternativess found, a new executionenvironmentmustbe setup. All the QVARS
which whereassignedraluesin the conjunctionsthat failed mustbe cleared.The QVARs were stored
on the trail. The binding environmentpointer, CurrentFramemustbe resetto the new bindings.The
next conjunction to execute is obtained from the alternatives and its quantibed variables are initialized.

5.6 Performing Experiments

Being ableto constructan eventfrom a conceptdescriptiondoesn'tmeanthat Marvin canperforma
valid experiment.As was seenin Chapter3, Marvin mustensurethat if the trial is inconsistentthe
constructedeventmust not be recognizedby the target. To do this, the statementsvhich havebeen
removedrom thetrial by areplacemen(i.e. state” 0) andwhich arenotimplied by statementstill in
the trial, must be false.
Beforesearchingor aneventto be usedasan experimentMarvin performssomepre-processing.

Firstit simplibesthe trial andthenit determinesvhich of the statementsemovedmay be madefalse
(or denied). The overall design of the experiment is as follows:
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experiment(trial)

T:= simplibed(trial)

Out:= statements to be denied.

repeat
execute(T)
if denied(Out) then

output event that has been constructed

else T:= backtrack

The simplibedtrial is executedo constructan training event.Denied is thencalledto makesurethat
the statementsn Our areall false.If oneis not thenthe systemmustbacktrackto constructan new
event.Note thatwhenthe systembacktracksjt changeghe valueof T sothatit pointsto the groupof
statements with which it will resume execution again.

A backtracking point is createdwhen a call is made to a conceptwhich has alternative
conjunctions.The procedurebacktrack returnsto the point mostrecentlyplacedon the control stack.
However, it may be that choosingthe most recentalternativewill not changethe property which
causedthe failure. At presenta very simple (but not very efpcient)methodis usedto solve this
problem.Supposea statements, in Our is true, thatis, execute failed to producean eventwhich the
learning algorithm can use. Another attemptis madeto constructeda useful example.If S is true
following the secondattemptthen Marvin did not backtrackfar enoughsincethe alternativechosen
was not one which changedhe propertythat madesS true. ThereforeMarvin mustbacktrackfurther
and try again.

The procedurdenied is quite simple:

denied(Out)
for each statement in Out,
evaluate statement
if statement is TRUE then
return FALSE
return TRUE

A statement is evaluated by executing it as a simple boolean expression.

A trial is simplified by removingstatementsvhich areimplied by otherstatementsf thetrial. For
exampletheremay be two statementsless(X0, X1) and number(X0). The brststatemenimplies the
second.If less(X0, X1) is true then number(X0) must be true. Thereforethereis no needto prove
number(X0). Eliminating redundant statements also makes the job of the proof procedure easier.

simpliped(Trial)
for each statement, S in Trial,
if A statement, S' in Trial: S'.args + S.args then
place Sinlist T
return T

StatementS is in the simplipedtrial, 7, if thereis no statementS' whose argumentscontain the
arguments of as a subset.
A removed statemeng, cannot be made false if:

¥ Sisanimplicantof a statement$’, in thetrial andS' refersto a conjunctiveconcept.S' specibes
only one set of values for its arguments, there can be no alternatives.

¥ Thestatements, is implied by statementin thetrial. If theimplicantsaretruethenS mustbetrue
also.S is implied by statements in the trial if:

¥ the implicants of are a subset of the trial.
¥ there is a statemeftwhose arguments contain the arguments of

¥ S may be a memberof every conjunctionin a conceptwhich is called from the trial. Therefore
there is no conjunction which can be true whiils false. (Case 1 is a special case of this).

The procedur&oBeDenied scans the removed statements looking for occurrences of cases 1 and 2.
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ToBeDenied(StmntsOut)
Out:= copy of StmntsOut
for each statement removed,
if statement implies conjunctive concept
or statement is implied by statements in Trial
or ( a statement which gives a more specibc description of event
then delete statement from Out
return Out

Sincethe last condition occursinfrequently,andis time consumingto detect,an ad hoc approacthas
beenusedto dealwith the problem.It is ignored!However,if the programis incapableof producinga
result becausea statementould not be falsiped- the offending statemenis assumedo bt the third
category and is removed from Out.

A complete description of experiment is now:

experiment(Trial)
T:= simplibed(Trial)
Out:= ToBeDenied(StmntsOut)
repeat
set up environment for executing T
repeat
execute(T)
if successful then
if denied(Out) then
output constructed event
else T:= backtrack
until successful or cannot backtrack any more
if not successful then
delete statement which caused failure from Out
until successful

Theinner repeat loop representshe Prstversionof experiment. If this loop fails to producea result
because of one statementinr then the statement is removed fromy, and the process is repeated.

Note that the control and variable stacksand the trail remainin the statethey were in at the
completionof execute, by backtrackingand resumingexecute, the programcan continueto bndthe
next alternative solution.

5.7 Remembering Concepts

When a conjunctionhas beenlearned,it must be storedin Marvin's memory.Before doing so, the
description of the concept must be cleaned up.

All the removedstatementsare disposedof, and a proceduresimilar to simplified is called to
remove redundant statements.

simplify(description)
for each statement in description
if state of statement” O
or statement implied by another statement in Trial
then remove statement permanently

Oncethe Pnal form of the conjunctionhas beenestablishedthe conjunctionmay be storedin the
memory by callingndex to update the statement index.

remember(description)
for each statement in description,
index(statement)

This completeghe learningprocesgor oneconjunction.Controlreturnsto learn andthe entireprocess
is repeated until the trainer has no more concepts to teach Marvin.
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Performance Evaluation

This chaptempresentghe resultsof testsperformedduring a numberof learningsessionsvith Marvin.
Thetaskshavebeenchoserfrom severaldifferentdomainsjncludinggeometricconceptsgrammatical
inference, and automatic programming.

The measurements made were:

The total time taken to learn the concept.
The proportion of the total time spent in generating training examples to show the trainer.

The number of hypotheses formed while learning a concept.

K K K K

The number of hypotheses which were incorrect.

n addition, the programwas probledwhile learningthe 'number'conceptsof Chapter4. Probling
yields the numbertimes eachprocedurewas called. This allows us to determinewherethe program
spent most of its time and where its performance could be improved.

During this discussionwe will try to answerthe following questions\What conceptscan Marvin
learn and when will it fail? How efbcient are the various algorithms? How efbcient is the
implementation of those algorithms? How does it compare with other concept learning programs?

6.1 Learning Geometric Concepts

6.1.1 Blocks World

At the beginningof this work, we speculatedaboutthe way in which a child might learn spatial
relationshipsetweerphysicalobjectsunderthe guidanceof anadult. Marvin canlearnconceptssuch
as 'on-top-of' in much the same way as we expect the child to perform the same task.
Beforebeingableto learnthe circumstances which one objectmay be placedon top of another,
Marvin must Prstlearn aboutsomepropertiesof physicalobjects,suchas colour and shape.Marvin
learns by rote (i.e. without generalization) that the values red, green and blue are colours:

is-colour =
[X0: X0.value =red XO0.value = blué XO0.value = green]

and the values 'box’ and 'table’ are 'Rat'.
Bat = [X0: X0.value = bok X0.value = table]
A value is a shape if,

is-shape =
[X0: X0.value = spheré X0.value = pyramid [3at(X0)]

In Chapterl we assumedhatanadultshowedhe child aredsphereon agreenbox. Fromthis instance
of 'on-top-of',he learnta generaldescriptionof the conceptoy experimentingwith the conbguratiorof
the objects.

Marvin, the program, was also shown a red sphere on a green box: the object E1,

E1l = <top: S1; bottom: B1>
S1 = <shape: SPHERE; colour: RED>
B1 = <shape: BOX; colour: GREEN>

This instance was generalized to the description:

on-top-of =



74

[XO:
[( X1, X2, X3, X4, X5, X6:

X0.top = X1

X1.shape = X2
X1.colour = X3
X0.bottom = X4
X4.shape = X5
X4.colour = X6

is-shape(X2)
is-colour(X3)
Rat(X5)

is-colour(X6)

]

Thatis, thetop canbe any shapeandany colour,the bottomcanalsobe any colour, but its shapemust
be Rat.

The bvequestionghat were askedby the child in Chapterl were,in fact, thoseaskedby Marvin
when it performed this task.

6.1.2 Winston's Arch

No work dealing with conceptlearning would be completewithout some referenceto Winston's
famousARCH (Winston,1970).Thereademay recallthatWinston'sprogramwascapableof learning
the descriptionof an arch from examplessuppliedby the trainerin the form of line drawings.The
training instancesillustrated both archesand non-arches.The description of an arch may be
paraphrased in English as

TherearethreeobjectsA, B andC. A andB areblockswhich are standingup. A is
left of B andtheydo nottouch.A supportsC andB supportsC. C maybe anyshape,
but it is lying on top of A and C.

Marvin canalsolearnto describearches.One differencebetweenthis programand Winston'sis that
only one exampleis shownto Marvin by the trainer. After that Marvin showsthe trainer its own
examplesHowever,the trainer cannotshow a line drawing, he must presentthe training arch as an
object descriptionconsistingof property/valuepairs. It could be assumedhat a front-end program
performedthe low-level recognitionof line drawingsandoutputits resultsasobjectdescriptionsvhich
Marvin can understand.

Thereare severaldifferent ways of representingan archin the languageWe will chosea fairly
simple method:

top = <shape: BRICK; orientation: LYING; supported-by: L1>

L1 = <left: left-side; touches: FALSE; right: right-side>

left-side = <shape: BRICK; orientation: STANDING; supported-by: FLOOR>
right-side = <shape: BRICK; orientation: STANDING; supported-by: FLOOR>

This instanceof anarchis a brick which is lying on top of a groupof objects,L1. L1 consistsof a left
and a right side which do not touch. Both the left and right sidesare standingbricks which are
supported by the Roor.

In our representation we will debne a physical object as follows:
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phys-obj =
[XO:
[( X1, X2, X3:
X0.shape = X1
XO0.orientation = X2
X0.supported-by = X3
shape(X1)
orientation(X2)
support(X3)
]

[( X1, X2, X3:
XO0.left = X1
X0.touches = X2
X0.right = X3
phys-0bj(X1)
boolean(X2)
phys-obj(X3)

]

This stateghata physicalobjectis a block which hasshapeandorientationandit musthavea support.
An object may also be a group of blocks listed from left to right. It is necessanto specify if the
componentof a group are touchingor not. This is doneby giving the property 'touchesthe value
TRUE or FALSE. A support may be the Roor or another object.

support = [X0: X0.is = FLOORJphys-obj(X0)]

boolean = [X0: X0.val = TRUEJIXO0.val = FALSE]

shape = [X0: X0.val = BRICKIJX0.val = WEDGE]
orientation = [X0: X0.val = LYINGUXO0.val = STANDING]

The description ofirch learnt by Marvin was:

arch =
[XO:
[( X1, X2, X3, X4, X8, X9:

X0.shape = X1
XO0.orientation = X2
X2.val = LYING
X0.supported = X3
X3.left = X4
X3.touches = X8
X8.val = FALSE
X3.right = X9
shape(X1)
phys-obj(X4)
phys-obj(X9)

]

One criticism of Winston'sapproachto conceptlearningis that the trainer must carefully choosethe
examplese showsthe program.In particular,Winstonpointsout thatthe negativeinstanceshouldbe
'near-missesTheseare objectswhich are not recognizedby the targetconceptbecauseonly a small
numberof propertiesdo not have the requiredvalues.The 'small number'is usually one. Thus the
trainer must know quite a lot about the program's learning process in order to prepare the examples.
Marvin also relies on near-missego test its hypothesesHowever, since these examplesare
generatedy the programitself, the trainer needknow nothing aboutthe algorithmusedto createthe
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concept descriptions.

An alternativerepresentatiotfior learningARCH is to useMarvin's languageas a meta-language
for describinga picturedescriptionanguageTheinput dataspecifyingthe trainingexamplemightbea
list of objects such as:

<pred: on-top; argl: X0; arg2: X1>

<pred: left-of; argl: X1; arg2: X2>

<pred: don't-touch; argl: X1; arg2: X2>

<pred: orientation; argl: X0; arg2: LYING>
etc.

This is equivalent to a set of predicates such as,

on-top(X0, X1)

left-of(X1, X2)

don't-touch(X1, X2)

orientation(X0, LYING)
etc.

A conceptwhich describesan objectlike ARCH would actually specify part of the grammarof the
description language.

6.1.3 East Bound Trains

Michalski (1980) describesan exampleof two setsof trains, east-boundand west-boundThe task of
the INDUCE-1.1 programdescribedn that paperand by (Dietterich,1978)is to distinguishbetween
thetwo sets.SeeFigure6.1. Thetaskwe will setMarvin is this: giventhe exampleof oneeast-bound
train, learn to distinguish all east-bound trains.

Each car is specibed by the following properties:

Car shape: The shapeof a car may be an openrectangle,an opentrapezoid,U-
shapedan ellipse, a closedrectangle jagged-toppedr it may havea
sloping top. The ENGINE is a special car.

length: The car may be long or short.
Number of WheelsA car may have either two or three wheels.

Load: A car containsloads of various shapesincluding: circles, rectangles,
triangles, hexagons.

Number of parts: There may be one, two or three parts in the load.

A complete train may be described as a left-recursive list:

<infront: TRAIN; behind: CAR>
Thus the brst east bound train is:

carl =

<
car-shape: open-rect;
length: long;
nr-wheels: two;
load: rectangle;
nrpts-load: three
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Figure 6.1 East and West Bound Trains

car2 =

<
car-shape: sloping;
length: short;
nr-wheels: two;
load: triangle;
nrpts-load: one

>

and so on.

engine = <car-shape: ENGINE>

T3 = <infront: engine; behind: carl>
T2 = <infront: T3; behind: car2>

T1 = <infront: T2; behind: car3>
trainl = <infront: T1; behind: car4>

7
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The INDUCE-1.1 programis also suppliedwith ruleswhich describethe problemenvironment.This
domain dependeninformation may be usedby the programwhile learningthe concept.Suchrules
include the fact that hexagonstrianglesand rectanglesare polygons. Cars whose shapesare open
rectangles, open trapezoids or U-shaped are classed as having 'open tops'. Other cars have closed tops.
Marvin canalsobe suppliedwith domainknowledgein the form of conceptdebnitionsenteredby
the trainer. However, an important feature of Marvin is that ite@amn the domain knowledge.
Other domain knowledge includes the following concepts:

train =
[XO:
X0.car-shape = ENGINE
[( X1, X2:
XO0.infront = X1
X0.behind = X2
train(X1)
car(X2)

]

A trainis anengineor a carwith atrainin front. A caris in atrainif it is thehindmostcaror it is in the
train infront of the hindmost car.

in-train =
[X0, X1:
[( X2:
X1.infront = X2
X1.behind = X0
train(X2)
car(X0)
]
[( X2, X3:
X1.infront = X2
X1.behind = X3
car(X3)

in-train(X0, X2)
]

When shown the Prst east-boundrain as an example,Marvin replied by showing the trainer 20
different trains until it determined that an east-bound train could be distinguished by the description:

east-bound =
[XO:
[( X6, X9, X10, X11, X12, X13

X9.car-shape = X10
X9.length = X11
X11l.val = SHORT
X9.nr-wheels = X6
X9.load = X12
X9.nrpts-load = X13
number(X6)
closed-top(X10)
number(X13)
is-load(X12)
in-train(X9, X0)
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This stateshatthereis a car X9 in train X0. The lengthof X9 is SHORTandit hasa closedtop. The
type of load, the number of wheels and the number of parts in the load may be any value.

This conceptwaslearntin approximatelyl4 second<CPU time on the VAX-11/780. Of thattime,
58% was spentin generatinghe 20 examplego showthe trainer. Marvin createdmoreintermediate
hypothesesén learningthis conceptthanin any othergivento it. However,of the twenty hypotheses,
only four wereinconsistentThereasorthatso manytrials wereproduceds thata largeamountof data
is present in the examples.

6.2 Learning Grammar

6.2.1 Winograd's Grammar

Marvin is capableof learningsimple grammarsFor example Winograd(1972) usesa simple context
free grammarto demonstratehe useof systemicgrammarsn his programSHRDLU. This exampleis
quiteinterestingsinceit demonstrateMarvin'sability to partially learna conceptJeaveit temporarily,
learn a new conceptand then return to the original conceptto completeits description.This is
necessary since several of the concepts describing the grammar refer to each other.

The grammar to be learnt is:

S NP VP

NP Pnoun

NP DET NOUN
Pnoun John
Pnoun Mary

DET a

DET the

NOUN apple
NOUN giraffe

VP IVERB

VP TVERB NP
IVERB sleeps
IVERB dreams
TVERB dreams
TVERB eats

Some typical sentences which may be generated are:

John dreams.

John eats the apple.

A giraffe eats the apple.
The giraffe sleeps.

A sentences madeup of a nounphrasefollowed by a verb phrase The nounphrasemay consistof a
proper noun or a determinerfollowed by an ordinary noun. A verb phrasemay contain a single
intransitive verb or a transitive verb followed by another noun phrase.

Note that the meaningsof the words are completelyignoredso that 'The apple eatsa giraffe' is
consideredh valid sentenceT o teachMarvin this grammarwe will represena sequencef wordsasa
list, terminated by STOP. Part of the data supplied is:

npl = <head: JOHN; tail: STOP>
np2 = <head: THE; tail: np3>
np3 = <head: APPLE; tail: STOP>

vpl = <head: SLEEPS; tail: STOP>
vp2 = <head: EATS; tail: np2>

sentl = <head: A; tail: L1>
L1 = <head: GIRAFFE; tail: vp2>

Marvin mustknow the partsof speechof eachof the wordsabove,so conceptslassifyingthemmust
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be learntor suppliedas part of the 'dictionary'. Ratherthan give the full conceptdepnitions,we list

below the dictionary.

Nouns GIRAFFE, APPLE
Proper Nouns JOHN, MARY
Determiners THE, A

Intransitive Verbs
Transitive Verbs

DREAMS, SLEEPS
DREAMS, EATS

The description of the grammar as learnt by Marvin is:

list =
[XO:
X0.val = STOP

[( X1:vp(XO0, X1)]

np =
[X0, X1:
[( X2:
X0.head = X2
X0.tail = X1
pnoun(X2)
list(X1)
]

[( X2, X3, X4:
X0.head = X2
X0.tail = X3
X3.head = X4
X3.tail = X1
det(X2)
noun(X4)
list(X1)

vp =
[XO0, X1:
[( X2:
X0.head = X2
X0.tail = X1
X1l.val = STOP
iverb(X2)
]

[( X2, X3:
X0.head = X2
X0.tail = X3
X1l.val = STOP
tverb(X2)
np(X3, X1)

sent =
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[X0, X1:
[( X5:
np(X0, X5)
vp(X5, X1)

]

The conceptsnp (noun phrase)vp (verb phrase)and sent (sentencehave two arguments.These
conceptsattemptto parsea list of words. The brstargumentrepresentshe beginningof the list which
will be recognizedandthe secondargumentis the remainderof the list which is left over whenthe
words recognized are removed.

Note that vp refersto np andnp refersto list. list in turn refersto vp. Thesecircular references
preventMarvin from learningthe debnitionof vp andlist independentlylt is necessaryo learnthe
prstdisjunctof lisz, thenthe brstdisjunctof vp. Sincevp is now known, the seconddisjunctof /ist may
be learnt.Both disjunctsof np canbelearnttogether Now the debnitionof vp canbe completedsince
np is known. Having completed the circle, Marvin can Pnally leatn

Although the grammarusedhereis very simple, it is possibleto teachMarvin rulesthat ensure
that, for example, only animate objects may perform actions.

6.2.2 Active-Passive Transformations

The problemof learningthe rulesfor transforminga sentencen the activeform to onein the passive
hasbeensolvedpreviouslyby Hayes-Rothand McDermott (1978) and Vere (1978). The problemis:
Given the descriptionof pairs of sentencesn a transformationafjrammar,bnd a setof ruleswhich
determine the relationship
between the two sentences.

One example given by Hayes-Roth is

The little man sang a lovely song
A lovely song was sung by the little man.
A graphical representation of this pair is shown in Figure 6.2.
The equivalent representation for Marvin is:

nounll = <nst: man; number: singular>

noun2 = <nst: song; number: singular>

npll = <det: the; adj: little; noun: noun11>

np22 = <det: a; adj: lovely; noun: noun2>

verbll = <number: singular; vst: sing; tense: past-part>
aux11 = <auxst: have; tense: present; number: singular>
vpl = <aux: aux1l; verb: verbll; np: np22>

sl =<np: npll; vp: vpl>

S2 = <np: np22; vp: vp2>

vp2 = <aux: aux11; pb: pbl; verb: verbl1l; pp: ppl>
pbl = <pbst: BE; number: singular; tense: past-part>
ppl = <prep: by; np: np11>

In orderto learnthetransformatiorrules,Marvin mustbrstunderstandhata nounconstructconsistsof
anouninstanceandthe numberof the noun.A verbhasassociatedvith it anumberandatenseandso
on. As in the previouslearningtask, the debnitionsof noun phrasesand verb phrasesmustalso be
known.
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SINGULAR

have PRESENT SINGULAR sing PAST-PARET a lovely

sing SINGULAR

PRESENT SINGULAR PAST-PART  sing PAST-PART by

the little

man SINGULAR

Figure 6.2 Active and Passive forms of a sentence

After generating 18 pairs of sentences to show the trainer, Marvin produced the following rule:

act-pas =
[XO0, X1:
[( X2, X7, X8, X9, X12, X13, X14,
X15, X16, X17, X18, X21, X22, X23:
X0.np = X2
X0.vp = X8
X8.aux = X9
X8.verb = X12
X12.number = X7
X12.vst = X13
X12.tense = X14
X8.np = X15
X15.det = X16
X15.adj = X17
X15.noun = X18
X1.np = X15
X1.vp = X20
X20.aux = X9
X20.pb = X21
X21.pbst = BE
X21.number = X7
X21.tense = X14
X20.verb = X12
X20.pp = X22
X23.isprep = BY
X22.np = X2
is-number(X7)



83

aux(X9)
is-verb(X13)
is-tense(X14)
is-det(X16)
is-adj(X17)
noun(X18)
np(X2)

]

After a carefulexaminationit can be seenthat this is equivalentto the rule learntby Hayes-Rothas
shown in Figure 6.3.

Marvin required40 secondgo learnthis concept.80% of this time was spentin generatingthe
training examples.For this task, SPROUTERrequired30 minuteson a DEC KA-10 processotand
THOTH took 30 seconds on an IBM 370/158.

This learningtaskdemonstratethatMarvin is capableof learninga variety of complexproduction
rules that might be used in an expert programming system.

NP

DEL~"Ap) NOUN
be PAST-PART by NUMBER

Figure 6.3 Active-Passive Transformation Rule

6.3 Automatic Programming

In Chapter4 we saw that Marvin can learn conceptswhich may be executedas programs.These
includeda programto Pndthe maximumnumberin alist. This sectiondescribes setof list processing
programlearntby Marvin. Among them are: append list reversal,deletingnegativenumbersfrom a
list, and a simple insertion sort.

Obviously, Marvin must brstlearnwhat a list is. Throughoutthis section,only lists of numbers
will be consideredGiven the exampleq]] and[1], thatis the empty list and the single elementlist
containing the number 1, Marvin learns that a list is,
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list =
[XO:
X0.val = nil
[( X1, X2:
X0.head = X1
X0.tail = X2
number(X1)
list(X2)

]

The conceplapppend requiresthreeargumentsX0, X1, X2. X2 is theresultof appendingX1 to XO0. In
the brstcase|if X0 is nil thenX2 is the sameas X1. In the secondcase the brstelementof X2 is the
same as the brst element of X0 and the tail of X2 is obtained by appending X1 to the tail of XO.

append =
[X0, X1, X2:
[( X3:
X0.val = nil
X2 =X1
list(X1)
]
[( X3, X4:
X0.head = X3
X0.tail = X4
X2.head = X3
number(X3)

append(X4, X1, X2.tail)

]

This is the Prstexamplein which anidentity suchasX2 = X1 hasappearedThis wascreatedbecause
the samesampleobjectwasusedfor both X1 andX2. Thusthetrainingevent([], L1, L1) wherelL1 =
[1] waspresentedn orderfor Marvin to learnthe brstdisjunct.For the seconddisjunct([1], [1], [1, 1])
would be adequate.

In orderto learnreversejt is necessaryo learnappendl which appendsa single elementrather

thana completelist asis doneby appendOncethis hasbeenlearntthe following debnitionof reverse
may be learnt:

reverse =
[XO0, X1:
X0.val = nil
X1.val = nil
[( X2, X3, X4:
X1.head = X2
X1.tail = X4

append1(X3, X2, X0)
reverse(X4, X3)

]

This was learnt in 2.45 seconds after asking 7 questions.

A problem which Biermann posedfor the International Workshop on Program Construction
(Biermann,1980)wasto producea programwhich would deletethe negativenumbersfrom alist. For
example,if the brstargumentis, X0 = [-6, 3, -7, -2, 1] thenthe secondargument, X1 = [3, 1]. A
numberis representedsan objectof theform: N = <sign: S; mag:M>. Smaybe'+ or - andM is an
unsigned cardinal number which is the magnitude of N. The concept learnt was:



delete =
[X0, X1:

X0.val = nil
X1.val = nil

[( X2, X3, X4:

]

X0.head = X2
X2.sign ="'
X2.mag = X3
X0.tail = X4
cardinal(X3)
delete(X4, X1)

[( X2, X3, X4, X5:

]

X0.head = X2
X2.sign ="'+
X2.mag = X3
X0.tail = X4
X1.head = X2
X1.tail = X5
cardinal(X3)
delete(X4, X5)
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This stateghatif X0 is empty,thenX1 is alsoempty.If theheadof X0 is negativenumberthenX1 is
obtainedby deletingthe negativenumberfrom the tail of X0. If the headof X0 is positive thenthe
headof X1 is the samenumberandthetail if X1 is obtainedby deletingthe negativenumberdrom the

tail of XO0.

The bnal examplewe will give in this chapteris a simple insertion sort. First the conceptof
insertionmustbe learnt. This is a threeplacepredicate X0 is a numberto beinsertedin to thelist X1

such that the resulting list, X2 is correctly ordered.

insert =
[X0, X1, X2:
X1.val = nil
X2.head = X0
X2.tail = X1
number(X0)
[( X4, X6:
X1.head = X4
X1.tail = X6
X2.head = X0
X2.tail = X1
list(X6)
less(XO0, X4)
]
[( X3, X6, X7:
X1.head = X3
X1.tail = X6
X2.head = X3
X2.tail = X7

insert(X0, X6, X7)

less(X3, X0)
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If X1 is emptythenX2 is the singleelementlist containingXO0. If X0 is lessthanthe Prstelementof
X1 thenthe brstelementof X2 is X0 andthetail is X1, i.e. X0 is placedat the front of thelist. If X0 is
greaterthanthenprstelementof X1 then,the brstelementof X2 is the brstof X1 and X0 is inserted
into the tail of X1 to produce the tail of X2.

An insertionsortworks by takingeachelementfrom its PrstargumentX0, andinserting it into the
secondargumentX1. When X0 is emptythe entire sortedlist will bein X1. X2, the third argument
which returns the result will have the bnal value of X1 assigned to it.

sort =
[X0, X1, X2:
X0.val = nil
X2 = X1
list(X1)
[( X3, X4:
X0.head = X3
X0.tail = X4
X4.val = nil

insert(X3, X1, X2)
]

[( X3, X5, X6:
X0.head = X3
X0.tail = X5

insert(X3, X1, X6)
sort(X5, X6, X2)

]

Whenchoosingexamplego showMarvin, the trainershouldlook for the simplesteventspossible By
minimizing the amount of data that must be processed, he makes Marvin's task much easier.

The simplestexamplethat satisbegshe last disjunctof sorz is ([1], [], [1]). The primary statement
generated by this event are:

X0.head = X3
X3.left = none
X3.right = X4
X4.val =1
X0.tail = X1
X1.val = nil
X1.head = X3
X2.tail = X1

Thereare not enoughvariablespresentin this setof statementdo constructthe concept.[When the
event is being recognized, the same object is bound to more than one variable].

Thereis a way of avoiding this problemin sort. The more generalcasewill be consideredn
Chapter7. If the event([1, 1], [], [1, 1]) is shownas the trainer'sexample,the primary statements
generateadvill containenoughvariables.However,anotherproblemarises.insert and sort mustboth
recognizecomponent®f the eventsothatthe statementinsert(X3,X1, X6) andsort(X5, X6, X2) can
be created. Thus insert(1, [1], [1]) must be true and sort([1], [1], [1, 1]) must be true.

This is the reasonthat a redundantdisjunct must be learnt. The seconddisjunct is Pnally
unnecessarpecausehe caseit coversis also coveredby the more generalthird disjunct. But the
second one must be learnt in order to learn the third.
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6.4 Concepts that Marvin cannot learn

Thedifbculty of learningsort leadsusto discussa limitation of Marvin. Thatis, existentiallyquantibed
variablesare only createdwhenthey represensomepart of the training example.Thereare concepts
where this is insufpcient.

A simple example is the ordering of decimal digits. Suppose the following concept is known:

lessd =
[X0, X1:

XO0.val=0! Xl.wval=1
' XO0.val =0! Xl.val=2

' X0.val = 8! X1.val =9
]

This describeshich digits areadjacento eachotherin numericalorder.However,it doesnot give a
complete ordering. Marvin must learn the additional disjunct:

[( X2:lessd(X0, X2) lessd(X2, X1)]

Thatis, X0 is lessthanX1 if thereis an X2 suchthat X0 is lessthenX2 and X2 is lessthanX1. The
trainer only showsthe argumentsX0 and X1. For example,(0, 2) may be shownresultingin the
primary statements:

X0.val =0! Xl.val=1

Thereis insufbcientinformation in the exampleto instruct Marvin to createthe additional variable
which would allow the twdessd's to be inferred.
Possible solutions to this problem will be discussed in Chapter 7.

6.5 Summary of Results

Table 6.1 containsresultsobtainedfrom the measuremerf Marvin's performancewhile learningthe
examples described above.

Thetotal time requiredto learna conceptwasmeasuredThe objectgeneratiorprocedureaccounts
for a signibcantamountof the total time so the percentagef the time devotedto generatingobjects
wasobtained We canget someideaof how easilyMarvin learnta conceptby countingthe numberof
guestionsit hadto askthe trainer beforeit discoveredthe targetconcept.Another indication of the
difbculty of the conceptis the numberof times the trainer answeredno' to a question.This is the
number of times Marvin generated an inconsistent trial.

In columns3 and4, separatd>guresaregiven for eachdisjunctin the concept.The proportionof
time spentgeneratingobjectsfor vp is given astwo bPguresbecausehis conceptwas learntin two
steps.

Absolutetimesarenot necessarilya goodindicationof a program'performanceéecausehey will
vary greatlydependingon the hardwareandthe programminganguageusedto implementthe system.
However,the importantthing to note from the times given is that Marvin providesrapid real-time
responseo thetrainer.Thisis essentialf the learningsystemis to be usedto acquireknowledgefor an
‘expert' programming system. In this case the program must provide a comfortable working
environmentfor the human expert who may not be familiar with computers.The times also
demonstrat¢hata systemsuchasMarvin is capableof learningquite complexconceptsn areasonable
time. Thusit seemdikely that the techniqguesusedin Marvin may be usefulin developingpractical
systems such as knowledge based expert programs.

The nextpointto notefrom the bguresn Tablel is thatthe objectgeneratiorprocessaccountgor
a very large proportionof the learningtime. Thereis considerablevariationin the percentag®f time
becausdhe complexity of the objectsvariesfor the different tasks.However,the performanceof the
program can obviously be improved if the theorem prover in Marvin were to be speeded up.

One measureof the efpciencyof a conceptlearning systemwas suggestedy Dietterich and
Michalski (1977). Thatis to Pndthe proportionof generalizationgroducedwhich are consistenwith
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thetarget.Thatis: how manytimesdid the traineransweryes'comparedvith the numberof timeshe
said 'no'. On the average60% of the generalizationsnadeby Marvin are consistent.This compares
very well with otherlearningprogramsPartly, this is dueto the fact thatthe generalizationsnadeby
Marvin are fairly conservativeThat is, small partsof a trial conceptare changedat any time. If a
mistake is made, Marvin usually does not have to look very far before a consistent trial is found.

From theseresultswe seethat the basicideasbehindthe learningalgorithmare sound.The next
guestion is how efpbciently have these ideas been implemented.

Table 1: Summary of Marvin's performance on test cases.

Task Total Time %0Object.Gen. Questions Inconsistent
Lessd 0.08 27.3 2 2
Less 4.80 17.9 4:6:3 2:2:1
Max 5.83 355 1:5:5 0:1:1
List 0.18 27.3 0:2 0:0
Append 1.82 37.6 3:8 1:3
Reverse 2.45 449 2:5 2:3
Delete 1.45 48.7 0:3:3 0:1:1
Insert 7.27 355 6:3:4 0:1:1
Sorf 47.35 76.1 10 6
EastBound 14.18 58.0 20 4
Arch 6.33 46.3 11 5
On-top-of 0.63 60.5 5 1

vp 1.3 16+27.1 1:5 0:1
np 0.57 41.1 2:3 0:0
word-list 0.24 45.6 0:3 0:1
sentence 6.30 24.3 9 1
Active-Passive 40.52 80.3 18 3

* Measurements fafort are given only for the Pnal disjunct.

6.6 Efbciency of Implementation

A goodmethodfor discoveringwherea program'sveaknesseke is to countthe numberof timeseach
proceduras called.This allowsusto Pndoutif timeis beingwastedn somepartsof the program.The
Berkeley Pascalcompiler running under UNIX/32V on VAX computersprovidesthis information
when a programis probled.This was done while Marvin learnt the numberconceptspresentedn
Chapter 4. Some of the results are presented in this section.

Five conceptswere learnt ranging from the very simple debnitionof digit to the rather more
complex concept, maximum. In all 11 training exampleswere shown to Marvin, one for each
conjunction.Table6.2 showsthe numberof timesthe majorproceduresn Marvin werecalled.Thebar
graphin Figure 6.4 showsmore clearly which proceduresilominatethe Marvin'stime. Obviously the
statement matching procedures are the most used procedures.

The learningalgorithm usesa relatively inefbcientmethodfor generatinga new statementThe
programscanghrougha trial descriptionin linear order,usingeachstatemenasa focusfor its search
for new concepts.Since a conceptusually containsmore than one statementjt is possiblethat the
conceptwill be tried severaltimes.In fact, almost50% of the attemptsto generatea new statement
resultedin a statementthat had already beentried before. [This can be seenfrom the fact that
TriedBefore was called 60 times but prove, which is called after TriedBefore returnstrue, was called
only 29 times].

Anotherreasonfor the excessivauseof the patternmatcheris the fact that a depthbrstsearchis
used to try to match statements in a stored concept with statements in the trial.

The next highestfrequencyin the histogramis due to the object generationprocedureprove.
Remembethatin orderto generatean objectwhich is usefulto the learningalgorithm, the program
createsan object,thenteststo seeif any of the removedstatementsretrue. If oneis true,thena new
object must be created. In fact 60% of the objects generated are rejected in this way.



Table 2: Requency of Procedure Calls

Count Procedure

1 marvin

29 prove

1391 addtrail

121 clearq

284 SaveEnv

2463 unbound

3903 valofqg

1269 get

8361 valueof

568 equal

1018 equiv

298 mkbind

499 mkqvars

284 call

126 backtrack

238 succeed

14 eval

273 falsibed

96 denied

96 execute

29 ToBeDenied

363 simplibed

11 primary

44 describe

67 MakeStatement
2129 bind

9940 isbound

2129 RecordSubst

21368 ForgetSubst

28403 unify

21356 match

13 newassoc

43 index

87 lookup

1485 restorel

1423 replace

1413 restore

11 generalize

29 contained

87 TryConceptsWith

116 CheckConcept

60 TriedBefore

129 bndargs

31 NewStatement
31 Occursin

73 CanNotRemove
49 NoOtherRef
47 Parentin

55 NoSpec

60 CreateStatement
31 FindRemovable
31 restricts

31 NotRelaxed
1694 Contains

29 qualiped

1 relax

23 TryUnRemoved
1 restricts2
31 MoreGeneral
109 simplify

11 create

11 remember

11 cleanup

11 LearnConj

5 LearnedCons

5 learn

1 init

89



90

equiv ]
get ]|
addtrail ]
restore
replace ]
restorel
Contains |
bind 7
RecordSubst]
unbound ]
valofq ]
valueof ]
isbound
match ]
ForgetSubst]

unify | T T T T T 1

0 10000 20000 30000

Procedure

Number of Calls

Figure 6.4 Frequency of Procedure Calls

6.7 Comparisons with other systems

Marvin is the only generalpurposeconceptlearning programthat is capableof generatingits own
training examples.Some domain specibcprogramsdo have this ability (Popplestone1970; Lenat,
1977). Cohen (1978) and Mitchell (1978) have both proposedmethodsfor a learning programto
generatats own traininginstancesThe mainadvantagef beingableto do thisis thatthe programcan
control its focus of attentionwithout relying on the trainer. This is also of importancein Lenat'sAM

systemwhich discoverstheoriesin mathematicdy proposingits own ‘agendabf interestingthingsto
be explored.

Since Marvin is a descendenbf CONFUCIUS, the two programssharecertain characteristics.
Amongthemis the emphasigplacedon 'growing’ descriptionlanguagesSinceconceptspncetheyare
learnt,are storedin memoryandmay be usedin future conceptdescriptionsthe descriptivepower of
the languagegrows with time. Indeedthis ability is necessaryf recursiveconceptsareto be learnt.
Recursioris alsoa featurewhich distinguishMarvin and CONFUCIUSfrom systemsuchasINDUCE
(Larson,1977) and Thoth (Vere, 1978). Michalski (1980) claims that it should be avoidedbecause
recursivedescriptionaredifpcult for humango read.However,to learnabstractonceptoncerning,
for example, lists or numbers, recursion is necessary.

Dietterich and Michalski (1977) have suggesteda numberof characteristicof learningsystems
which serveas points of comparisonbetweenthe programs.Let us list thesecharacteristicas they
apply to Marvin.

Intended Application:
general.
Marvin is not restrictedto any particulardomain. It canlearn conceptsin a wide
variety of environments.

Language:
Marvin's descriptionlanguagés Prstorderlogic with quantibersConnectivesn the
language include conjunction and disjunction.

Generalization Rules:
A numberof differenttypesof generalizationsulesare proposedby Dietterichand
Michalski.

Dropping Condition:
This rule involves removing statementsfrom conjunctions.In
Marvin's casethe dropping rule must be modibedslightly to a
'replacement rule'. This is the main generalization method used.
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Turning constants into variables:

When Marvin seesa descriptionof an objectasa list of property/
value pairs, it constructsa logical descriptionin which the object
names are replaced by variable names. The values of these

variables can then be generalized by the replacement procedure.

Climbing Generalization:

This is the sort of rule which enableghe programto deducethat if
anobjectis atriangle,thenit alsobelongsto the classof polygons.
Beinga polygon,it is a planegeometricbgure etc. Thisis achieved
in Marvin by learning the various classipcationsabove as
concepts.Atriangle would then be recognizedby all of those
concepts.

This is the most difbPcult comparison.Asve have already mentioned,the measure
usedby DietterichandMichalski compareghe numberof generalizationgnadewith
the numberthat were actually usedin the Pnal concept.On the average,in the
programsthey analyzed,about 30% of the generalizationsnmadewere useful. The
nearestcomparisonthat can be madewith Marvin is the ratio of the number of
training examplesgeneratedo the numberof exampleswhich were found to be in
the targetconcept.The averageover the variouslearningtasksdescribedindicates
that about 60% of the trial concepts produced are consistent.

Efbciency:
Extensibility:
¥
¥
¥
¥
¥

Applications: Marvin has not beenusedto developany conceptsfor expert
programs,althoughwe expectthat the techniquesusedwill be applicableto
developing knowledge based programs.

Marvin can learn disjunctive as well as conjunctive concepts.

No specialmechanismhasbeenincludedto dealwith noisy data. However,bad
data are placed in separate disjuncts.

DomainKnowledge:This canbelearntaspreliminaryconceptsyhich maythen
be used to describe other concepts.

Constructivelnduction: According to Dietterich and Michalski, most programs
producedescriptionawhich involve the samedescriptorswvhich were presentin
the initial data. Such programsperform non-constructivanduction. A method
performsconstructiveinduction if it includesmechanismsvhich can generate
new descriptorsot presentn theinput data.To a certainextentMarvin is able
to do this since knowledge stored in its memory is used to augmentthe
descriptionof a training instance.However, thereis no meta-languagevhich
would be ableto performtrue featureextraction.This problemwill bediscussed
further in Chapter 7.

6.8 Conclusion

Marvin can learn conceptswhich can be describedin brst order predicatelogic with quantiberslt
cannotlearn conceptswith the logical negation.It cannotlearn conceptswhich require existentially
guantibed variables which cannot be derived directly from the training instances.

The presenimplementatiorhasshownthatthelearningalgorithmworksvery well consideringhe
experimentahatureof the program.Therearea numberof debcienciesvhich could be overcomen a
new implementation.
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Future Directions

In Chapterl we debneda setof objectivesfor the researchdescribedn this thesis.From the results
givenin Chapteré we canseethatMarvin hassatisbedheseobjectivesbut of course thereis always
morework to bedone.This chapterdePnesomenewgoalsfor furtherwork in conceptearning.Some
of the suggestionsvill be aimedat improving the presentimplementationof Marvin. Othersindicate
ways of extendingthe programso thatit will be capableof learningmore complexconceptsn more
complex environments.

7.1 The Language

Expressionsn Marvin's descriptionlanguagespecify a classof objectsin the universe.An objectis
distinguished by the values of its properties.

In the currentlanguagean objectis input by listing its propertyvalue pairs. This is not alwaysa
convenientform of description.For exampleto describea relationshipsuchas 'father’,we might use
the following:

Jack = <age: 38; son: Bill>
Bill = <age: 12; father: Jack>

An alternativemethodfor presentingthe object descriptionsis to entera seriesof predicateswhich
correspondo what are now the primary statementsln this examplethe single predicatefather(Bill,
Jack) would eliminatethe needto specifythe valuesof two propertiesin two different objects.Note,
however thatwe still considerthe objectsasbeingcharacterizedby the valuesof certainpropertiesso
the theoreticalbasisfor this languageis consistentwith Banerji (1969) and Cohen(1978). These
changes bring the language nearer to the notations used by Vere and Michalski.

Let us take the description of ARCH as a further example:

supports(sidel, top)
supports(side2, top)
left-of(sidel, side2)
~ touch(sidel, side2)
shape(top, BRICK)

The identiberstop, sidel andside2 are the namesof objectsand BRICK is an atom. It is up to the
learning programto substitutevariablesfor thosenamesso that the valuesmay be generalized An
advantag®f this notationoverthe presenbneis thatit is moreconvenienfor expressingelationships
betweenobjects. This can be seenby comparingthe descriptionof ARCH given here and the
description in Chapter 6.

If we assumehatMarvin hasa pre-processoattachedo it to performbasicpatternrecognitionof
a scene,then the input to Marvin will be the resultsof the measurementperformedby the pre-
processorThe primary statementssuchassupports(sidel, top), may be consideredasdescribingthose
results. Setsare not strictly necessaryn a descriptionlanguage sincethey can be simulatedby list
objects. However, they are useful becausethey allow eventsconsistingof a number of parts to
described very succinctly. It is possible to represent sets implicitly. This is illustrated by the example,

son(Mary, Fred) son(Mary, Bill)

This expression describes a set { Fred, Bill} which is the value of Mary's property

In this versionof thelanguagethereis no longeranexplicit representationf objects(andsets) so
how canthe learningprogramshowthe traineran example?Supposehe programis trying to build a
number:
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number =
[XO:
[( X1:
left(X0, null)
I' right(X0, X1)
I value(X1, 1)
]

[( X1, X2:
left(X0, X1)
I' right(X0, X2)
I number(X1)
I number(X2)

]

left, right andvalue areall primary statementsWwhen( X1 is encounteredthe programmay createa
newsymbol,sayOBJI to representhevalueof X1. To executea primary statemensuchasvalue(X1,
1), the variablespresentarereplacedby their values,giving value(OBJ1, 1). The resultis thenplaced
onastack.All the expressionsn the stackrepresenthe descriptionof the objectbeinggeneratedThe
description on the stack must always be consistent; thus there must not be two expressions such as
value(X1, 0) value(X1, 1)
present simultaneoulsy. On the other hand it is acceptable to construct two statements such as,
son(Mary, Fred) son(Mary, Bill)

Thedifferenceis thatthe valueof the propertyvalue is expectedo be a singlevalue,whereaghevalue
of the propertyson is a set. The type of the value of a property mustbe suppliedby the traineras
domainknowledgeso that the interpreterknows how to maintainthe consistencyof the stack. This
methodof generatingobjectscan be comparedwith the implementationof the WARPLAN problem
solver (Warren, 1974).

Note that the equivalencerelation'=" hasbeeneliminatedfrom the language.This is no longer
necessargasabuilt in relation.It is possibleto determinethe similarity of objectsby learningan'equal’
concept for each type of object.

7.2 Generating Statements

In the presentimplementationthe patternmatcher(i.e. the statemenggenerationprocedure)and the
searchstrategy(the learningalgorithm)are combined.As could be seenfrom the probledprogramin
the previouschapter,a greatdeal of redundantpatternmatchingis performed.In fact, 50% of the
statements generated had been generated at least once before.

Marvin's performancecan be improvedif the patternmatcherand searchstrategyare separated
into co-routinesanda discriminationnetis usedto speedup the statementndexing. The structureof
the discrimination net and how it is used will be described in this section.

Currently, when a completeconjunctionhasbeenlearnt,its statementsre enteredinto anindex
which is representedby a linear list of associationsThe associationgre betweenstatement&ndthe
conceptsn which theyappearA fairly obviousway of improvingthe searchtime is to replacethatlist
with a moresophisticateanechanismlnsteadof maintaininga singlelist, we will keepalist for every
constantknown to Marvin. The list for constant,X, will containthe associationdor all statements
which containX. Whenwe wantto look up a statementye takeeachconstanin the statemenandbnd
the intersectionof all the lists associatedvith them. This resultsin a small setof statementgusually
only one) which will make pnding a match much easier.

For example, let's create an index for the statements:

colour(XO0, red) (S1)
colour(X1, green) (S2)
size(X0, big) (S3)

size(X1, big) (S4)
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The result is the set of associations below.

colour: S1, S2
red: S1
green: S2
size: S3, 54
big: S3, 5S4

If we wantto look up a statementolour(X, green) we Pndthe entriesfor the constantsolour and
green Which appearin the statementWe thenbndthe intersectionof { S1,S2} and{ S2} which are
the lists associatedvith the colour and green. This resultsin the setof statementsvhich could match
colour(X, green). Thesetis { S2} . We havejust discussedndexingfor the statementsf conceptsn
memory.This indexis permanensincedatacanonly be addedto it. Marvin doesnot, at presentave
anyform of indexingon the statementin thetrial conceptSincethetrial is searchedegularlysuchan
indexwould be very useful. This index would only be temporary Oncea conjunctionhasbeenlearnt,
its index may be removed.

Remembetthat the goal of the statemengeneratingprocedureis to Pnd conjunctionsstoredin
memory which are subsetsof the trial. The data structurewe proposeto usewill containa list of
referencego the candidateconjunctions.Associatedwith eachconjunctionwill be the statements
containedn it. Associatedvith eachof the statement# the conjunctionwill bealist of the statements
in the trial which match it, along with the bindings resulting from the match.

Consider the following example:

digit =
[XO:
value(X0, 0) (D1)

value(X1, 1) (D2)
]

number =
[XO:
[( X1: (D3)
left(X0, null)
I' right(X0, X1)
I value(X1, 1)
]

[( X1, X2: (D4)
left(X0, X1)
I' right(X0, X2)
I number(X1)
I digit(X2)

]

ThelabelsD! .. D4 referto the disjunctsof eachconcept.If the primary statementsn a trial include
the following:

left(X0, X2)

left(X2, null)
right(X2, X3)
value(X3, 1)
right(X0, X4)
value(X4, 0)

then the index built up will be:
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D4 left(X0, X1) left(X0, X2) { X0/X0, X1/X2}
left(X2, null) { X0/X2, X1/null}
right(X0, X2)  right(X2, X3)  { X0/X2, X2/X3}
right(X0, X4)  { X0/X0, X2/X4}
D3 left(X0, null) left(X2, null) { X0/X2}
right(X0, X1)  right(X2, X3)  { X0/X2, X1/X3}
right(X0, X4)  { X0/X0, X1/X4}
value(X1,1)  value(X3, 1) { X1/X3}
D2 value(X0, 1)  value(X3,1) {X0/X3}
D1 value(X0, 0)  value(X4, 0) { X0/X4}

The index tells us that there are four statementsn the trial which have matchesin D4, the second
disjunctof number. This gives us reasonto think that somepart of the trial may be recognizedas a
number.However,only two statementsn number matchthe four statementsn the trial. The second
column indicateswhich statementdn D4 were matched.Column three shows the corresponding
statementén thetrial. Both left(X0, X2) andleft(X2, null) matchthe samestatementThe substitutions
resulting from each match are shown in the last column.

Sinceonly two of the four statement$n D4 canbe matchedthis disjunctcannotbe true. On the
otherhandall the statementén D3 havebeenmatched oneof themtwice. If we canbnda consistent
substitutionamongthe matchedstatementsthen D3 is true. By 'consistentwe meanthat a variable
may appearonly onceon theleft handsideof a substitutionandonly onceon theright. Our problemis
which of the two righr predicatesdo we want to match? The statement,value(X3, 0) createsa
substitution,{X1/X3} . This conRictswith the substitution{X1/X4} presentfor right(X0, X4). The
substitutionsfor left(X0, null), right(X2, X3) and value(X3, 0) can be combinedwithout conf3icting.
Therefore, these statements are the implicani3ofith the substitution {X0/X2, X1/X3} .

Sincea completedisjunctof number is satisPeduumber(X2) is a new statementhatcanbetested
by replacingits implicants.digiz(X3) anddigit(X4) arealsonew statementsThereis only onepossible
substitutionin the caseof number(X2); however,it can often happenthat more are possible.The
program must therefore try all combinations.

Sincenewstatementfiavebeencreatedthesemay alsobe addedto theindex. Theywill appeaias
new entries for D4.

D4 e e e
number(X1) number(X2) {X1/X2}
digit(X2) digit(X3) {X2/X3}

digit(X4) {X2/X4}

With theseadditions,all the statementsn D4 havebeenmatched.The only consistentsubstitutionis
{ X0/X0, X1/X2, X2/X4} . Thus number(X0) canbe generatecand also addedto the index and the
procesamay continue. This methodof generatingstatementhasalreadybeenimplementedalthough
it hasnot beenintegratedinto Marvin. It is signipcantlyfasterthan the old methodof generating
statements.

7.3 Generating Objects to Show the Trainer

At presentwhenMarvin showsa exampleto thetrainer,it generates completeobjectandthenchecks
it to ensurethat noneof the removedstatementsretrue. If oneis true, the interpreterbacktrackso
Pnda new objectthat satisbeghe trial. Backtrackingonly returnsonelevel on the control stack,so it
may happenthat the property which causeda removedstatementto be true remainsunchanged.
Therefore,the new objectwill fail again.Whentwo failuresin a row are due to the sameremoved
statementthe interpreterbacktracksdeeperinto the stackuntil the correctalternativeis found. This is
very inefbcient.

Beforetrying to generatebjects,Marvin creategwo lists. Oneis thelist of statementsvhich must
be true, and the other is the list of statementswhich must be false. To improve the program's
performance, these two lists could be merged.
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Suppose the description of an object, X includes the statements:
colour(X, Y)! value(Y, red)

The colour may be generalizedoy removingthe statementalue(Y, red) and replacingit with any-
colour(X). In the presentsystem,the entire examplewould be constructedbefore checkingthat any-
colour did not make X red. Instead Marvin could create a description:

colour(X, Y)! any-colour(Y)! ~value(Y, red)

Immediatelyafter any-colour assignsy avalue,we execute~ value(Y, red) to makesurethatY is not
red.

The new strategyfor constructingobjectsrequiresthat statementsnvolving a variable, X, which
mustbefalse,will beplacedimmediatelyafterthe positivestatementvhich assigns anewvalue.The
program must still backtrack, but it will not be the blind backtracking currently being done.

7.4 Learning Logical Negation

Programssuch as Vere's Thoth (vere, 1980) learn counterfactualgor exceptionsto the rule) from
negativeexamplesWhen Marvin testsan inconsistenfgeneralizatiorit generatesiegativeexamples.
Thus, it may be possible to use these to learn predicates which must not be true.

Whenaninconsistengeneralizatioris made Marvin triesto makethetrial morespecibcSuppose
the trial,

colour(X, Y)! any-colour(Y)

is inconsistent.The exampleshown to the trainer may have Y as blue, which the trainer saysis
incorrect.Oneway of makingthe trial morespecibds by taking the statemenvalue(Y, blue) which is
in any-colour and negating it:

colour(X, Y)! any-colour(Y)! ~value(Y, blue)

Usually, the additionof positiveinformationwill resultin a betterrestrictionof the trial. However,if
no positiveinformationis available Marvin couldtry addingthe negationof the disjunctof theconcept
referred to by the statement which created an unacceptable example.

This methodhassomeproblemswhich mustbe studiedfurther. For example to testthe restricted
trial, Marvin may show the trainer a greenobject which is acceptableThis doesnot necessarily
indicatethat the newtrial is consistentBlack may alsobe a colour which is not allowed, but Marvin
hasn'ttestedthatyet, soit cannotassumehatblueis the only exception.This problemis similar to the
onewe discussedn Section3.5whenwe wantedto generateninstanceof aninconsistentrial which
did not belong to the target.

7.5 Problems with Quantibed Variables

Supposeave wantto teachMarvin the orderingof the decimaldigits 0..9. The brststepis to learnthat0
comes before 1, 1 before 2 etc.

lessd =
[XO0, X1:

value(X0, 0)! value(X1, 1)
' value(X0, 1) value(X1, 2)

' value(X0, 8)! value(X1, 9)
]

The Pnal disjunct that must be learnt is,
[( X2: lessd(X0, X2} lessd(X2, X1)]
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To teachthis disjunct the trainer might show Marvin the example(1, 3) which would resultin the
primary statements,

value(X0, 1)! value(X1, 3)

Unfortunately,this pair doesnot matchany of the conjunctionsin lessd,so how is it possibleto learn
that there exists a digit in between the two given?

The problem s that the input doesnot provide enoughinformation to make the connection
betweenthe two digits. Onesolutionis to requirethe trainerto provide additionalobjectsas'hints'to
guide the program.If the digit 2 is supplied as an extra piece of information then Marvin, as
implementedalready could learn the concept.This is similar to Vere's approachwith background
information (Vere, 1977).

In Marvin'scasethis solutionis not very desirablebecausét placesoo muchresponsibilityon the
trainer.A secondalternativeis to modify the statemengeneratiorprocedure A new statementanbe
introducedonly if all the statementsn one disjunct are matched.However, if we allow partial
matchingthen more statementsan be generatedFor example,the primary value(X0, 1) will match
statementsn the brstand seconddisjunctsof lessd. In both casesthereis no objectwhich will the
satisfy the other statementsn eachconjunction.However,whena partial matchoccurs,Marvin may
postulate the existence of new objects which satisfy the conjunctions. For example,

[( X2, X3: lessd(X2, X0) lessd(X0, X3)]

Whenthe new objects, X2 and X3, arecreatedby a partial match,they mustbe ableto participatein
othermatchesFor somevaluesof X3, lessd(X3,X1) will betrue.It mustbe possibleto discoverthis
sinceit will resultin the targetconcept.Oneway of allowing X2 and X3 to be usedin further pattern
matchingis to generatanstancesf themby executingless(X2, X1) andless(X1, X3) aswasdoneby
thelearningsystem.The description®f theinstance®f X2 ad X3 maythenbe generalizedn thesame
way that the descriptions of input objects are generalized.

Thereis onevery difbcult problemwith the partial matchingapproachWhenlearninga complex
concept,many unwantedstatementswill be generated.To demonstratethis, considerthe concept
quicksort.

sort =
[XO0, X1:
value(X0, nil)! value(X1, nil)
[( X2, X3, X4, X5, X6, X7, X8:
head(X0, X2)
I' tail(X0, X3)
I head(X4, X0)
I tail(X4, X5)
I partition(X2, X3, X6, X7)
I sort(X6, X8)
I sort(X7, X5)
I append(X8, X4, X1)

]

partition =
[X0, X1, X2, X3:
value(X1, nil)
I value(X2, nil)
I value(X3, nil)
I number(X0)

[( X4, X5, X6:
head(X1, X4)
I' tail(X1, X5)
I head(X2, X4)
I tail(X2, X6)
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I less(X4, X0)
I partition(X0, X5, X6, X3)
]

[( X4, X5, X6:
head(X1, X4)
I tail(X1, X5)
I head(X3, X4)
I' tail(X3, X6)
I less(X0, X4)
I partition(X0, X5, X2, X6)

]

Thesortedversionof alist, X0 is X1. Sort worksby takingthetail of X0, thatis X3, andpartitioningit
into two lists, X6 andX7 suchthatX6 containsall the elementof X3 which arelessthanX2, whichis
theheadof X0. X7 containsall the elementgyreatetthanX2. X6 andX7 arethensortedgiving X8 and
X5 respectivelyFinally the completelysortedlist, X1, is obtainedby appendingX8 andX4. This joins
the two smaller,sortedlists with X2 in the middle. The debnitionof partition is givenwithout further
explanation.

Becauseahereareseveralintermediatestepsin sort, quite a few variablesmustbe usedto transmit
information from one predicateto another.No examplegiven by the trainer can provide the the
necessary information to generate these statements unless partial matching is used.

SupposeMarvin is trying to createthe two sort predicates.We will assumethat the only
conjunctionof sort which is in memoryat presents the brstonewhich expectshoth argumentgo be
nil. At leastfour emptylists mustbe presento generatehe recursivecallsto sort. However,sincethe
traineronly showedtwo lists to Marvin therecanonly be two emptylists in theinput. Thesecanform
the basisfor somepartial matchesThatis, newlists whosevaluesarenil would be createdn orderto
satisfy the brstdisjunctof sort. However,thesenew lists may also be usedin more partial matches
producingothersort predicatesandalsonew partition predicatesvhich involve threenull lists. All the
lists created could participate in still more matches, and so on.

The learningprocesss a searchfor the mostappropriatesetof predicatedo describea concept.
While we insiston all-or-nothingpatternmatchingthe searchspaceremainsbounded However,when
partial matchingis introduced the searchspaceis potentiallyinbnite.If partialmatchingis goingto be
used then some means of directing the search must be found.

Whenstudentdn ComputerSciencearetaughtthe quicksortalgorithm,they alreadyknow whata
sortedlist is. They probablyalsoknow a simple sorting algorithmsuchasan insertionsort. Sincethe
goal of the quicksortis clear,it shouldbe easierfor themto understandhe reasorfor the varioussteps
involved. Perhapswe should not expectthe machineto learn complexand efpcientdescriptionsof
conceptson the brstattempt.If a naive debnitionis learnt brst, this may provide Marvin a way of
restrictingits searchWith the additionalinformationprovidedby someprior knowledgeof the concept
it may be possibleto evaluatewhich matchesare more likely to be useful in building the target
concept.

7.5 Learning Universal Quantibers

Supposave showMarvin thetrainingexample(5, { 4, 1, 3, 2}). Partof atrial which maybe generated
is:

value(X1, 5)
member(X2, X1)
less(X1, X0)
member(X3, X1)
less(X3, X0)
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For each element of the set X1 there is a matching set of statements,
member(X, X1) less(X, X0)

Thus it is possible to generalize the trial by replacing all of those statements by
[" X: member(X, X1) less(X, X0)]

To do this, the patternmatcherusedin statemengenerationrmay be askedto look for matcheswithin
thetrial aswell aswithin conceptsn memory.If a numberof matchesanbe made all with consistent
bindings, then thérall statement may be attempted.

Discoveringwhich statementimplies the other within the forall statementmay presentsome
problemsto the objectgeneratorlf the two predicatesn the exampleaboveare swappedthenwhen
executedeft to right, Marvin may startproducingan inbnite setof humbersessthan X0 andtesting
themfor membershign X1. In fact it shouldselectthe elementsof X/ andthenperformless(X, X0).
Both predicatespecify a rangeof valuesfor X, but member(X, X1) describesa subsetof less(X, X0).
Thusmember(X, X1) impliesless(X, X0).

If asetA is asubsetof anotherset,B, then B mustcontainobjectsnotin A. To determinewhich
statemenshouldimply the other,Marvin canuseone predicateto try to generatean objectnotin the
other, just as it does already when it creates training example to show the trainer.

7.6 Feature Extraction

Oneweaknes®f Marvin is thatit still musttrustthe trainerto teachit conceptsn an orderthat will
ensurethat the memory is well structured.Let us seeif thereis a way of making Marvin more
autonomous.

We havediscussedow partial matchingcanbe usedbetweenstatementén the trial andmemory
to learnsort. Partialmatchingcanalsobe performedbetweenstatementén thetrial andthemselveso
learn forall statementsNow let consider matching conceptsin memory with other conceptsin
memory.

Although Marvin hascontrol over its own training examplesjt hasno control over the orderin
which conceptsarelearnt. The presentalgorithmis sensitiveto this order,so Marvin mustrely on the
trainerto choosethe ordercorrectly; otherwisethe memoryorganizationwvould become unstructured.
An algorithm canbe designedwhich is insensitiveto the fact thatthe memoryis not well structured,
however a bettersolutionmight beto provide Marvin with a mechanisnfor reviewingits memoryand
restructuring it if necessary.

A partial matching procedurewould allow Marvin to compareconceptsit has learnt. If two
conceptontaina commonsubsebf statementshenthis subsettanbe madeinto anewconcept.The
statements in the Prst two concepts can be replaced by a single statement referring to the third concept.

For example,when Marvin was taughton-top-of, we assumedhat flar would haveto be learnt
beforeany-shape. This time let's do it in reverse order. Marvin brst learnsdtathape is

value(X, red)
value(X, table)
value(X, sphere)
value(X, pyramid)

and later it learns thghz is,
value(X, Rat) value(X, table)

Beforeflat is storedin the memory,Marvin performssomepatternrecognition.lt discoverghatpart of
any-shape matcheglar, so matching statements are replaced by a refereifee. to

Rat(X)" value(X, sphere) value(X, pyramid)

If the new conceptdid not completelymatchanotherconcept,but had somestatementsn common,
thenthosecommonstatementgould be extractedto form a third concept.This processensureghat
Marvin's memory is always well structured.
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7.7 Learning to Learn

A criticism that may be levelled at Marvin is that its generalizationsare too conservativelf it is
learninga conceptwhich involvesquite complexobjects,manypropertiesof the object,suchascolour,
may beirrelevant.Yet Marvin mustgeneralizecolourbeforemovingonto higherlevel generalizations.
This is attributableto the specibc-to-generalature of Marvin's searchstrategy.That is, the initial
hypothesisdescribesonly a limited set of objects,and the cover of the conceptis very gradually
expandedin contrastMeta-DENDRAL usesa general-to-specibsearchMitchell, 1978)which starts
with the mostgeneralconceptthat canbe generatecandthen proceed€o makethis descriptionmore
specibc.

Whena humanlooks at an objecthe usuallyfocuseson the importantdetailsbrstbecauséne has
learntthat someproperties say its colour or texture,are not likely to be distinguishingfeatures.The
searchstrategyof the learningalgorithm may be madeextendedso thatit canlearn,over a period of
time, which properties should be tested and which ones it can generalize without testing.

If Marvin hasoften found that the specibccolour or textureof an objectcould be generalizedo
any colour or texturethenthe nexttime it seesan objectwhich hasthoseproperties,it immediately
introducesthe conceptsany-colour'and'any-texturewithout testingthem. This could be doneusinga
relatively simple mechanismEach conceptmay have associatedwvith it a 'score'for the numberof
timesit could hasbeenintroducedinto trial conceptwithout beingrestricted.Thatis, if areplacement
duringthe learningprocessntroducesa statementvhich resultsin a consistengeneralizationthenthe
conceptreferredto by thatstatemenis givenahigherscore If thegeneralizatiowasinconsistentthen
the score is decreased.

Supposehe trainer showsMarvin an objectwhich hascolour and shape Becauseat hasalready
learntin on-top-of thatthe colour could be generalizedo any colour it may assumehat the samecan
be doneimmediatelyfor the newconceptSincethe shapeof objectshadto berestrictedn on-rop-of, it
is reasonable to assume that the shape will have to be tested in the new concept as well.

If Marvin's assumptionsare correct then the scoresfor colour and shape can be adjustedto
reinforcethe ideathat shapeis a more importantdistinguishingfeaturethan colour. However,if the
assumptiordid not work, thenthe scorefor ‘colour' would haveto be decreasedandthe colour of the
object must be tested.

Notethatthis strategyinvolvesrisks.If the conceptto be learntconformsto Marvin'sassumptions
about the world then the conceptwill be learnt more quickly than if it had used the present,
conservativalgorithm.However,a consequencef the newmethodis thatmorethanonepropertywill
be changedvhena new exampleis shownto the trainer. If the exampleis a negativeinstance more
work will haveto be doneto makethe trial more specibdecauseave don'tknow which propertywas
responsible for the inconsistent generalization.

The bestcasefor the new algorithm gives a performancewhich is substantiallybetterthan the
conservativeversion.However,the worst casemay resultin a worseperformanceBruner, Goodnow
andAustin (1956)describea Focus Gambling algorithmusedby someof the humansubjectsin their
tests. This method corresponds closely to the suggestions made here.

7.8 Summary

No researcleffort is evercomplete sincetherearealwaysmanymore problemsthatneedto be solved.
Among them are:

¥ The descriptionlanguageusedby Marvin is limited in a numberof respects.Sometimesit is
difbcult to neatly expressrelational descriptions.Thereis no built in set conceptwhich would
reduce the complexity of some descriptionsconsiderably.At present, sets must be learnt.
Constructs such as logical negation and universally quantibed variables do not exist.

The pattern matching and statement generation procedures can be made more efpcient.

The objectgeneratiorproceduresanalsobe improvedby dealingwith negativeinformationin a
more intelligent way.

¥ If the not connectiveis to be addedto the language thereoughtto be a procedurefor learning
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concepts withvounterfactuals (Vere, 1980).

¥ At presentpatternsin atrial descriptionare matchedin an ‘all-or-nothing'mannerwith concepts
storedin memory.A partial matchingproceduresimilar to thosedevelopedby Hayes-Rothand
McDermott(1977) and Vere (1975) will enable Marvin to attempt more complex concepts.

The partial matching algorithm should also enable Marvin to detect ‘forall' relationships.

Onelimitation thatmustbe imposedon the traineris thathe mustpresentconceptgo Marvin in a
specibcorder, simple conceptsbrst, followed by larger conceptswhich containthe simple ones.
This is necessarpecauseéMarvin hasrelatively little control over the structureof its memory.A

further applicationof the partial matchingalgorithm is to give Marvin the ability to compare
conceptdts hasstoredin memoryandextractcommonfeaturesThis would allow the programto

ensure that memory is always well structured.

¥ Thelearningalgorithmcurrentlyin useis very conservativelf a complexobjectis shown,every
property is the subjectof a generalization A Focus Gambling algorithm may be usedwhich
selectghe mostpromisingpropertiesor generalizationthusreducingthe time requiredto learna
concept.

Someof the proposaldisted abovearerelatively straightforwardmprovementgo the implementation.
Others are, in themselves, complete research topics for the future.
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Conclusion

When researchin Artibcial Intelligencebrst beganin the 1950's,emphasiswas placedon creating
programswith generalintelligence.That is, they should not be limited to working in a particular
domain.However,aftera decadeof work in the Peld,opinionschangedResearchenecognizedhatto
perform tasks with an acceptablelevel of competence,a great deal of knowledge about the
environmentwasrequired.As aresult,a numberof very succesfulexpert'problemsolvershavebeen
constructed.

The mostsignibcantproblemencounteredy designersof suchprogramshascometo be called
'knowledgeengineering'ln order to developan expert program,the designersmust createa large
knowledgebase usuallyrequiringthe help of humanexperts.This processs time consumingandoften
involvesad hoc programming methods.

These difbculties have led us back to consideringa more general approachto Artibcial
Intelligencewhere the generalityis moved a level higher than it was before. The special purpose
problemsolversremain;howeverthe knowledgeneededo drive themshouldbe acquiredby ageneral
purpose learning system.

A numberof very usefulalgorithmshavebeendevelopedor conceptearning.Someof thesewere
discussedn Chapter2. The projectdescribedn this work wasintendedto addto this 'bagof tools'for
the knowledge engineer.

8.1 Summary

When a learningprogramexpectsthe examplest is shownto be carefully selectedby the trainer, it
assumeghat the trainer alreadyknows the depnitionof the conceptto be learntand that he knows
somethingabouthow the programworks. Marvin is capableof generatingts own traininginstancesso
a lot of the hardwork involvedin learningis shifted awayfrom the trainer,to the program(Mitchell
and Utgoff, 1980; Lenat, 1977; Sussman, 1975).

Marvin usesa 'generateandtest'modelof learning.Given aninitial example the programcreates
a conceptintendedto describethe classof objectscontainingthis example.lt testsits hypothesishy
performinganexperimentThatis, it creatests own instanceof the concepthathasbeendevelopedif
the example shown to the trainer is an instanceof the target concept,Marvin may continue to
generalizeits hypothesis Otherwiseit must modify the hypothesisso that a correctinstancecan be
created.

Conceptsaaredescribedn termsof a descriptionlanguagebasedon brstorderpredicatdogic with
guantibersAn importantability which Marvin hasis that, like Cohen'sCONFUCIUS(Cohen,1978),
thedescriptionanguagellowsthe programto describecomplexconceptsn termsof simpleronesthat
have been learnt before.

The descriptionof aneventshownto Marvin is convertedo anexpressionn Prstorderlogic. The
programthen performsa patternmatchingoperationto Pnd associationdetweenthe input eventand
the knowledgeit hasstoredin its memory.The purposeof this operationis to Pndthe conceptghatare
alreadyknown to Marvin which recognizepartsof the event.A conceptis true if it is implied by a
subset of the trial description.

A trial is generalizedoy replacingthe implicantsof a conceptstoredin memoryby a statement
referingto thatconcept.New trials will continueto be generalizedintil one createsaninstancewhich
is not recognizedy the targetconceptWhenthis occurs,an attemptis madeto makea trial which is
more specibcthan the one which failed. This is done by adding statementgo the trial description
without removingany other statementsln this way a sequencef trials is producedwhich 'oscillates’
around the target concept, getting closer for each new trial until the target is Pnally reached.

In orderto be ableto createinstancego showthe trainer,Marvin treatsa conceptdescriptionasa
programin alogic programmindanguagesuchasProlog.During the executionof sucha program any
unboundvariable becomeshoundto a value which will resultin the entire conceptbeingtrue. The
language is non-deterministic since there may be more than one possible set of bindings.
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Not all the possibleoutputsof a conceptare acceptableastraining instanceslf atrial conceptis
inconsistentthat is, it recognizeseventsnot recognizedby the target, then the object construction
routine must generateone of thoseeventsnot in the target. Thus, Marvin must have an 'instance
selectorwhich is capableof choosingthe bestobjectsto showthetrainer.In Chapter3 we sawthat,as
long as memoryremainswell structured,if an eventdoesnot satisfy any statementwhich hasbeen
removedfrom thetrial (andthe removedstatements notimplied by anyin thetrial) thenthe eventis
an acceptable training instance.

In Chapters4 and 6 we sawthat Marvin canbe taughta wide variety of complexconceptsThe
trainerdoesnot requireany detailedknowledgeabouthow the programworks andMarvin'sresponsés
usually quite fast. Thusit seemdlikely that a systemsuchas this one will prove usefulin creating
knowledge bases for intelligent problem solvers.

8.2 Discussion

An interestingaspecbf Marvin'sdesignis thatit bringsinductionandtheoremprovingtogetherin one
program.Not only are theretwo componentsn Marvin for performingthesefunctions,but alsothe
procedureshavea greatdealin commonin their implementationsThey both rely very heavily on a
unibcation algorithm for pattern matching.

Figure 8.1 contains a schematic representation of a learning system based on Marvin.

Recepto Effectors

Short Term Memor

Pattern Learning Theorem
Matcher Strategy Prover

Long Term Memon

Figure 8.1 A general purpose concept learning system.

The system'dong term memoryconsistsof the collectionof conceptghatit haslearntto date.When
somenew objectis seen,its representatioms enteredinto the shortterm memorywherethe pattern
recognitiondeviceis ableto accesst and comparethis descriptionwith the contentsof the long term
memory.

As long asthe systemcontinuego observeheworld, it triesto maintaina consistenmodelwhich
explainsthe relationshipsamongeverythingit sees.The modelis representedby the conceptsn long
term memory. When somethingnew and unexplainedis encounteredthe world model must be
modibedto takeinto accounthe newphenomenonUpdatinglong termmemoryis the responsibiltyof
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the learning mechanism.lt useswhat it alreadyknows about the world to createa theory which
describesthe new event. It must also proposean experimentfor testingthe theory. To do this the
learningstrategyinvokesa theoremproverwhich will attemptto establishthe validity of the theory.
The outcomeof the experimentmustbe observedo discoverif the theorywascorrect.If it wasnot,
then a new theory must be advanced and tested.

The advantagef incorporatinga theoremprover(or somekind of problemsolver)into a learning
systemis thatit canlearnby doing. The programis not merelya passivesystemanalyzingdataasit is
input. A systemlike the oneproposedn this work canactively searchfor a bettermodelby performing
some actions in the world it it is investigating.

Thereis oneparticularlyimportantpart of this designwhich requiresfurtherattention.The system
shouldbe capableof some'introspection'lt shouldbe ableto examineits memoryto try to discover
new conceptsfrom the knowledgeit alreadyhas (Lenat, 1977). The systemshould also be able to
evaluateits learningstrategyso thatit can be adjustedaccordingto the circumstancegMitchell and
Utgoff, 1980). Undoubtedly these problems will keep us busy for some time to come.
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