
Learning to Classify X-Ray Images Using
Relational Learning

Claude Sammut1 and Tatjana Zrimec1,2

1 School of Computer Science and Engineering, University of New South Wales,
Sydney 2052, Australia

2 Faculty of Computer and Information Science, University of Ljubljana,
Trz̆as̆ka 25, 1001 Ljubljana, Slovenia

Abstract: Image understanding often requires extensive background
knowledge. The problem addressed in this paper is such knowledge can
be acquired. We discuss how relational machine learning methods can
be used to automatically build rules for classifying types of blood
vessels. We introduce a new learning system that can make use of
background knowledge coded as arbitrarily complex Prolog programs to
construct concept descriptions, particularly those needed to classify
features in an image.

1 Introduction

Model-based image processing is the application of knowledge about objects
expected in a scene to the recognition of those objects if they appear in an image. In
medical image understanding (Zrimec & Sammut 1997; Robinson et al 1993), expert
radiologists bring a wealth of experience to bear on the problem of interpreting x-ray
images. Much of the knowledge needed for such a task can be obtained from text
books. However, each radiologist accumulates a large amount of personal experience
in understanding the contents of an x-ray image. The challenge for an automated
image understanding system is how such experience can be gathered by a program. In
this paper, we argue that a relational learning system can acquire such knowledge.
However, the program itself must also be capable of using extensive background
knowledge.

We introduce a new learning system that extends Cohen's (1996) work on
refinement rules. This system, which is part of the iProlog machine learning
environment (Sammut 1997), can take advantage of background knowledge encoded
as arbitrarily complex Prolog programs. As we shall see, this is particularly useful in
constructing some of the high-level relations needed to synthesise programs capable
of recognising different types of blood vessels.

A further problem for learning in this domain is that while the examples are quite
complex, there are only a few of them. This is due to the difficulty of obtaining x-ray
images that have been fully interpreted and labelled by an expert. Because of the
small sample size, we employ a specific-to-general search based on Plotkin's (1971)
relative least general generalisation (RLGG). However, we severely limit the number

1

X-ray image

Interpretation Segmented
image

Fig.1. The image interpretation process

of literals in the RLGG in a manner related to those described by Page and Frisch
(1992).

In the following section, we briefly describe the image processing required to
obtain the input to the learning program. We then introduce the mechanisms for
generating clausal descriptions of the examples and the generalisation mechanism.
We conclude with a discussion of the current status of the work and future directions.

2 Interpreting X-ray Images

Figure 1 outlines the process of interpretating x-ray angiograms of a patient’s cerebral
vasculature. X-rays are normally taken from several standard views of the patient’s
brain. An image passes through the following preprocessing stages.

1. The grey-scale x-ray image is thresholded to obtain a black-and-white image.
2. The black-and-white image is skeletonised to reduce thick vessels to lines only a

single pixel wide.
3. The skeleton is traced to join pixels into segments of blood vessels.
4. The segmented skeleton is used to guide further processing of the grey-scale

image to obtain diameters and intensity values of each blood vessel segment.

In practice, this process is iterative. Different levels of thresholding reveal more detail
and also more noise. The method used here is to first apply aggressive thresholding,
obtaining only the most prominent blood vessels. Gradually, the threshold is
decreased to admit more detail. The blood vessels recognised in the previous pass can
be used to guide further recognition. For the purposes of this paper, we will only

2

consider a single pass with a high threshold to obtain a relatively simple set of
segments.

The output of the tracing program is a set of Prolog facts that will be input to the
learning program. For example, the following clauses:

blood_vessel(mb1, 1, 'ICA').
segment(1, mb1, n, 40, 130, [2]).
segment(2, mb1, w, 40, 144, [3]).
segment(3, mb1, nw, 35, 135, [4, 5]).
segment(4, mb1, n, 40, 50, [6, 7]).
segment(6, mb1, ne, 20, 170, [8, 9]).
segment(5, mb1b1, e, 10, 100, []).
segment(7, mb1b2, w, 5, 125, []).
segment(8, mb1b3, e, 18, 90, []).
segment(9, mb1b4, n, 15, 100, []).

describe a blood vessel mb1, of type ICA (Internal Carotid Artery) which starts with
segment number 1. Each segment is described by an atom with the following
arguments: the segment's segment number, the identifier of the blood vessel to which
the segment belongs, the direction of the segment (north, north-east, east, south-east,
etc), the diameter of the segment the grey-level intensity of the segment and finally, a
list of segments that branch from the end of this segment. A segment's boundaries are
where there is a branch or a bend in the blood vessel.

Suppose we wish to train the learning program to recognise different types of
blood vessels. What kinds regularities would we expect the program to discover from
examples of, say, the Internal Carotid Artery? One may be that the diameter reaches
its maximum somewhere near the middle segment and this always corresponds to the
intensity at its lowest value. Another may be that the final segment always ends
pointing north-east. And another is that the internal carotid artery always has branches
leading to two other arteries before it bifurcates into two more arteries, one of which
goes north and the other east. The learning system must invoke background
knowledge to obtain a useful set of predicates for such descriptions. In the following
section, we describe how we make use of background knowledge.

3 Refinement Rules and Generalisation

Cohen (1996) introduced refinement rules as a method for constructing new literals to
add to clauses during a general-to-specific search. A restricted second order theorem
prover was is to interpret these rules. However, this theorem prover is limited to a
simple function-free language. The system described in this paper is a component of
iProlog (Sammut 1997). This is an ISO compatible Prolog interpreter with a variety
of machine learning tools embedded as built-in predicates. Since the full power of
Prolog is available, the refinement rules we implement can invoke arbitrary Prolog
programs.

Two types of refinement rule must be defined. A head rule has the form:
A Pre Post, ,

3

where A is a positive literal, Pre is a conjunction of literals and Post is a set of
positive literals. A body rule has the form:

← B Pre Post, ,

where B is a positive literal and Pre and Post are as above.
There must only be one head rule to that A should be used to create the head of the

clause being learned, provided that the condition Pre is satisfied. After A has been
constructed, the literals in Post, are asserted into Prolog’s database. There may be any
number of body rules to generate literals for the body of the clause under
construction. Literals in the precondition of these rules may invoke any Prolog
program.

Suppose we wish to create a saturated clause (Rouveirol & Puget 1990; Sammut
1986) based on the example of blood vessel mb1, shown in the previous section. The
left-hand side of the following rule is the template for the head literal.

blood_vessel(VesselName, StartingSegment, VesselType)
where

true
asserting

seg_list(VesselName, [StartingSegment]).

The where part of the rule is the precondition and the asserting part is the post-
condition. Refinement rules are invoked in a forward chaining manner. The head rule
matches the predicate blood_vessel(mb1, 1, 'ICA'). Since there are no preconditions,
the head of the new clause is created and the predicate seg_list(mb1, [1]) is asserted
into the database. This enables the following body rule to construct literals for the
segments of the blood vessel:

(:- segment(SegId, VesselName, Dirn, Diam, Inten, SegList))
where

seg_list(VesselName, S),
member(SegId, S)

asserting
seg_list(VesselName, SegList),
diameter(VesselName, SegId, Diameter),
intensity(VesselName, SegId, Intensity).

For each match of the template and for each solution to the preconditions, a new
segment literal is created and the corresponding post-conditions are asserted. After
execution of this rule, the clause is:

blood_vessel(mb1, 1, 'ICA') :-
segment(1, mb1, n, 40, 130, [2]),
segment(2, mb1, w, 40, 144, [3]),
segment(3, mb1, nw, 35, 135, [4, 5]),
segment(4, mb1, n, 40, 50, [6, 7]),
segment(6, mb1, ne, 20, 170, [8, 9]).

We next include a rule that constructs a ‘>’ relation on the diameters and intensities

4

of the blood vessel segments.

(:- X > Y)
where

measurement(M), M(V, S1, X), M(V, S2, Y).

measurement(distance).
measurement(intensity).

A second order extension to Prolog permits the principal functor of a predicate to be a
variable provided that at run time, the variable is bound to a valid predicate symbol.
Without the precondition above, it would be possible to have comparisons where one
argument is a diameter and another is an intensity or between numbers belonging to
different blood vessels. We can now see that the assertions in the segment rule
provide type information used by the X > Y rule. Execution of this rule would add
literals of the form X > Y for all pairs of diameters and intensities of segments in
mb1.

A more sophisticated piece of background knowledge is required if we wish to
include in the concept description which segment has, say, the maximum diameter.
This is a little tricky because the refinement rule must scan all of the segments to find
the maximum value. We now see the power of Prolog being used to construct a new
literal. First, we require a predicate that can find the maximum value of a
measurement. We use the second order extension to make this predicate generic for
different types.

max(M, V, S, X) :-
findall(M(V, S, N), M(V, S, N), L),
max(L, M(V, S, X)).

max([X], X) :- !.
max([M(V, SA, A)|B], M(V, S, X)) :-

max(B, M(V, SY, Y)),
(A > Y -> S = SA, X = A; S = SY, X = Y).

This can be read as: the maximum value of measurement M in blood vessel, V, occurs
in segment, S, and has value, N. The predicate can be invoked from the body rule:

(:- max(M, V, S, N))
where

measurement(M),
blood_vessel(V, _, _),
max(M, V, S, N).

A corresponding rule can defined for the minimum value. After execution of these
rules, the following literals are added to the clause:

5

max(diameter, mb1, 1, 40)
max(diameter, mb1, 2, 40)
max(diameter, mb1, 4, 40)
max(intensity, mb1, 6, 170)
min(diameter, mb1, 6, 20)
min(intensity, mb1, 4, 50)

The segment of interest is number 4 since it has the maximum diameter and minimum
intensity.

Once a clause has been saturated, we need a generalisation mechanism. We
mentioned earlier that while the examples in this domain can give rise to quite
complex descriptions, only small data sets are available. Typically, general-to-
specific search methods require a reasonably large sample for their statistics to be
accurate. For this reason, we have chosen to experiment with a specific-to-general
search based on Plotkin’s (1971) relative least general generalisation (RLGG). The
first step is to use saturation, as described in the previous section, to build clauses
which are then passed to an LGG algorithm for generalisation. However, a pure LGG
generates far too many irrelevant literals. Therefore, we follow an approach similar in
spirit to the constrained atoms of Page and Frisch (1992). Since the refinement rules
impose restrictions on the form of literals that can be generated through saturation, it
is reasonable to apply the same restrictions to literals constructed by generalisation.
Thus, we modify Plotkin’s LGG algorithm to filter literals so that whenever an LGG
of two literals is found, it is tested against the refinement rules. If no refinement rule
is satisfied, the LGG is rejected. As a result, the RLGG’s do not grow to impractical
sizes.

4 Discussion

The current status of this project is that the programming of the image processing and
machine learning software has been completed. Initial testing on sample x-ray images
is has begun, but full-scale trials are yet to be conducted. There are several novel
aspects to this work:

• We have modified Cohen’s refinement rule approach to permit the introduction
of complex background knowledge through Prolog programs.

• We have used the refinement rules, together with a method for tagging literals to
constrain the size of RLGG’s.

• We have applied this approach to the problem of model-based image
interpretation, particularly for x-ray images.

We believe that studying methods for making effective use of intentional background
knowledge is important for the development of ILP. It’s greatest advantage over
propositional learning methods is the possibility of employing background knowledge
to construct concept descriptions that are beyond the capabilities of other kinds of
learning systems.

6

References

Cohen, W. (1996). Learning to classify English text with ILP methods. In L. D. Raedt
(Eds.), Advances in Logic programming. (pp. 124-143). IOS Press.

Page, C. D., & Frisch, A. M. (1992). Generalization and Learnability: A study of
constrained atoms. In S. Muggleton (Eds.), Inductive Logic Programming. (pp.
29-61). Academic Press.

Plotkin, G. D. (1971). A further note on inductive generalization. In B. Meltzer & D.
Michie (Eds.), Machine Intelligence 6. New York: Elsevier.

Robinson, G.P., Colchester , A.C.F., Griffin, L.D. (1993) Model Based Recognition
of Anatomical Objects from Medical Images. In Information Processing in
Medical Imaging, 13th International Conference, IPMI'93, Arizona, USA, (pp.
197–211).

Rouveirol, C., & Puget, J.-F. (1990). Beyond Inversion of Resolution. In Proceedings
of the Seventh International Conference on Machine Learning, Morgan
Kaufmann.

Sammut, C. A., & Banerji, R. B. (1986). Learning Concepts by Asking Questions. In
R. S. Michalski Carbonell, J.G. and Mitchell, T.M. (Eds.), Machine Learning: An
Artificial Intelligence Approach, Vol 2. (pp. 167-192). Los Altos, California:
Morgan Kaufmann.

Sammut, C. (1997). Using background knowledge to build multistrategy learners.
Machine Learning, 27 , 241-257.

Zrimec, T. and Sammut, C.A., (1997). A Medical Image Understanding System,
Engineering applications of Artificial Intelligence, February, 10 (1), 31-39.

7

