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Abstract. Cohen’s [1] refinement rules provide a flexible mechanism
for introducing intentional background knowledge in an ILP system.
Whereas Cohen used a limited second order theorem prover to imple-
ment the rule interpreter, we extend the method to use a full Prolog
interpreter. This makes the introduction of more complex background
knowledge possible. Although refinement rules have been used to gener-
ate literals for a general-to-specific search, we show how they can also be
used as filters to reduce the number of literals in an RLGG algorithm.
Each literal constructed by the LGG is tested against the refinement
rules and only admitted if a refinement rule has been satisfied.

1 Introduction

Most current ILP systems use some form of declarative bias to restrict the search
space of the learner. Cohen [1] introduced refinement rules as a flexible way of
specifying the form of literals that may be introduced into the head and body of
the clause being constructed. His refinement rules are written in a second order
language. This allows the rules to be expressed very succinctly. A disadvantage
of this scheme is that the theorem prover is quite limited in its capabilities.
In this paper we show how the language of the refinement rules can be based
on a full Prolog interpreter with some simple second order extensions. We also
show how this system can be used to achieve the same effects as lazy modes in
Srinivasan’s work with Progol [10].

In his FLIPPER system, Cohen [1] used refinement rules to generate literals
for a general-to-specific search similar to FOIL’s [6]. We show how the same
kind of rules can be used to produce a saturated clause [8] [7] that can be used
either in a general-to-specific search or in a specific-to-general search as used by
Plotkin [5] or by Muggleton [2] in GOLEM. The crucial observation here is that
the refinement rules can be used to filter literals that are created by Relative
Least General Generalisation [5].

Learning based on the RLGG has fallen out of favour, mainly because the
Least General Generalisation of two clauses often creates a very large number
of redundant literals that must be avoided or removed by a variety of heuristics.
However, the RLGG remains a useful technique, especially when a specific-to-
general search is most suitable for a particular problem. It is well suited to
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learning tasks in which we are interested in obtaining a characteristic rather
than a discriminant concept description. For example, in computer vision we
may wish to learn to describe objects that appear in an image. In this case, it
may not be useful to learn to simply distinguish between, say, a cup and a table
because this does not capture the properties of the cup itself. For this reason, we
are interested in obtaining generalisations of the training set that are as specific
as possible.

In the following section, we review the basic ideas behind refinement rules.
We then show how the refinement rule interpreter can be implemented as an
extension to Prolog. Sections 4 and 5 demonstrates how refinement rules can
be used in conjunction with an RLGG algorithm to limit the number of literals
generated.

2 Refinement Rules and Generalisation

In this section, we briefly summarise some of the key ideas introduced by Co-
hen. Like FOIL, FLIPPER is a covering algorithm that creates a new clause by
starting with a head and an empty body. New literals are introduced into the
body of the clause to specialise it. The efficacy of the literal is tested, as in FOIL,
by information gain. Where FLIPPER differs from FOIL is the way in which it
constructs new literals. Literals are generated by refinement rules. Two types of
refinement rule may be defined. A head rule has the form:

(A, Pre, Post)

where A is a positive literal, Pre is a conjunction of literals and Post is a set of
positive literals. A body rule has the form:

(« B, Pre, Post)

where B is a positive literal and Pre and Post are as above.

There must only be one head rule stating that A should be used to create the
head of the clause being learned, provided that the condition Pre is satisfied.
After A has been constructed, the literals in Post, are asserted into a temporary
database. There may be any number of body rules to generate literals for the
body of the clause under construction. The preconditions are tested using a
function-free second order theorem prover.

Cohen gives an example of refinement rules that he used for the king-rook-
king illegal problem:

DBy = {rel(adjacent), rel(equal), rel(less_than)}

illegal(A,B,C,D,E,F) «—
where true asserting {row(A), col(B), ...,row(E), col(F)}

— R(X,Y)
where rel(R), CommonType(X), CommonType(Y) asserting ()
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DBq is an initial database that contains information that the refinement oper-
ation can use. In this case, the database starts with a list of the relations that
refinement is allowed to use in building a clause. Expressions of the form,

where (preconditions) asserting (postconditions)

inform the system about the conditions that must be true before the rule can be
applied and the conditions which must apply afterward. The post conditions are
added to DB. In this example, the first refinement rule indicates that the head
of the clause should be illegal(A, B,C, D, E, F) and the arguments are rows or
columns. Rules of the form, « BodyLiteral, tell the system the form of literals
that may be added to the body of the clause being learned. In this example, the
rule indicates that literals like adjacent(X,Y), equal(X,Y") and less_than(X,Y)
are legal as long as X and Y are of the same type.

3 Using Prolog to Interpret Refinement Rules

Refinement rules have been embedded in the iProlog interpreter [9] so that Prolog
itself is used to evaluate the rules rather than using a special purpose theorem
prover. In iProlog, the above example is written as:

rel(adjacent). type (row) .
rel(equal). type(col).
rel(less_than).

illegal(A, B, C, D, E, F)
where true asserting row(A), col(B), ..., row(E), col(F).

(:- R(X, YO
where rel(R), type(CommonType), CommonType(X), CommonType(Y).

Note that iProlog has been extended to allow the predicate symbol to be a
variable. So that minimal changes can be made to Prolog we insist that the
predicate variable must be bound before execution. Thus, we must add the literal
type(CommonType), to first bind CommonType. Thus, Cohen’s language is
more powerful in the sense that his theorem prover will search for an appropriate
predicate for CommonType, however, in iProlog, we now have the full power of
Prolog to specify intentional background knowledge. We will illustrate this with
an example from image processing [11].

The task is to learn to recognise various blood vessels from x-ray angiograms
of the cerebral vasculature. After preprocessing, the image is reduced to a skele-
ton of line segments, each of which represents a segment of a blood vessel. For
example, the following predicates describe an internal carotid artery:

internal_carotid_artery(mbl, 1).
segment (1, mbl, n, 40, 130, [2]).
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segment (2, mbl, w, 40, 144, [3]).
segment (3, mbl, nw, 35, 135, [4, 5]).
segment (4, mbl, n, 40, 50, [6, 7]).
segment (6, mbl, ne, 20, 170, [8, 9]).
segment (5, mblbl, e, 10, 100, [I1).
segment (7, mblb2, w, 5, 125, []).
segment (8, mblb3, e, 18, 90, [1).
segment (9, mblb4, n, 15, 100, [I1).

The blood vessel mbl, which is an Internal Carotid Artery, starts with segment
number 1. Each segment is described by an atom with the following arguments:
the segment’s segment number, the identifier of the blood vessel to which the
segment belongs, the direction of the segment (north, north-east, east, south-
east, etc), the diameter of the segment, the grey-level intensity of the segment
and finally, a list of segments that branch from the end of this segment. A
segment’s start and end points are where there is a branch or a bend in the
blood vessel.

In the following example, we will use the refinement rules, not to generate
literals for a general-to-specific search, but to create a saturated clause. The
head rule is:

internal_carotid_artery(VesselName, StartingSegment)
where
true
asserting
vessel_name(VesselName),
seg_list(VesselName, [StartingSegment]).

Refinement rules are invoked in a forward chaining manner. The head rule
matches the predicate internal_carotid_artery(mbl,1). Since there are no pre-
conditions, the head of the new clause is created and the predicates

vessel_name(Vessel Name) and seg_list(mbl, [1])

are asserted into the database. This enables the following body rule to construct
literals for the segments of the blood vessel:

(:- segment(Segld, VesselName, Dirn, Diam, Inten, SegList))
where
seg_list(VesselName, S),
member (SeglId, S)
asserting
seg_list(VesselName, SegList),
diameter (VesselName, SegId, Diam),
intensity(VesselName, Segld, Inten).

For each match of the template and for each solution to the preconditions, a new
segment literal is created and the corresponding post-conditions are asserted. We
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use the seg_list predicate to ensure that all segment literals that are generated

are “linked”, meaning that there is a path from the starting segment to every

other segment that appears in the clause. We use the diameter and intensity

predicates to specify the type and origin of the value found in the segment literal.
After execution of this rule, the clause is:

internal_carotid_artery(mbl, 1) :-
segment (1, mbl, n, 40, 130, [2]),
segment (2, mbl, w, 40, 144, [3]),
segment (3, mbl, nw, 35, 135, [4, 5]),
segment (4, mbl, n, 40, 50, [6, 71),
segment (6, mbl, ne, 20, 170, [8, 9]).

Intentional background knowledge is required if we wish to include in the con-
cept description which segment has, say, the maximum diameter. This is a little
tricky because the refinement rule must scan all of the segments to find the max-
imum value. First, we require a predicate that can find the maximum value of a
measurement. We use the second order extension to make this predicate generic
for different types.

max(M, V, S, X) :-
findall (M(V, S, N), M(V, S, N), L),
max (L, M(V, S, X)).

max([X], X) :- !,
max([M(V, SA, A)|B], M(V, S, X)) :-
max (B, M(V, SY, Y)),
(A>Y >8S=8A, X=A; S=28Y, X=Y).

This can be read as: the maximum value of measurement M in blood vessel, V,
occurs in segment, S, and has value, N. The predicate can be invoked from the
body rule:

(:= max(M, V, S, N))
where
measurement (M),
vessel_name (V),
max(M, V, S, N).

measurement (diameter) .
measurement (intensity) .

A corresponding rule can be defined for the minimum value. After execution of
these rules, the following literals are added to the clause:

max (diameter, mbl, 1, 40)
max(diameter, mbl, 2, 40)



6 Claude Sammut

max(diameter, mbl, 4, 40)
max (intensity, mbl, 6, 170)
min(diameter, mbl, 6, 20)
min(intensity, mbl, 4, 50)

Using Prolog to scan all examples gives us the same capability as Srinivasan’s
lazy evaluation [10] to accumulate values to pass to a predicate that performs
some kind of “global” data analysis. In the case of Srinivasan and Camacho, this
was a regression algorithm. iProlog includes a number of other data analysis
tools (see [9]).

We now describe in some detail how refinement rules are evaluated.

3.1 Evaluating Refinement Rules

A head rule has the form:
Literal where precondition asserting postcondition.

where precondition is any legal Prolog expression as would appear in the body
of a clause. Postcondition is a conjunction of literals that will be asserted into
Prolog’s data base.

Training examples are given as ground unit clauses in Prolog’s data base.
When the refinement rules are invoked by a call to the refine built-in predicate,
the head rule is invoked. A new clause is created such that Literal is the head of
the clause, provided that the preconditions are satisfied. The preconditions are
tested by invoking the Prolog interpreter to try to find a proof in exactly the
same way that it would execute a Prolog program. Often the precondition for
a head rule is simply true. Once the clause has been created, each literal in the
postcondition is asserted, temporarily, into Prolog’s data base. All postconditions
are retracted after the refinement process has completed execution.

A body rule has the form:

(:- Template) where precondition asserting postcondition.

Note that the parentheses are needed simply so that the Prolog parser does not
confuse this with a syntactically incorrect clause.

Once the head rule has completed execution, the refinement rule interpreter
begins cycling through each body rule in text order. The following actions are
performed:

1. The preconditions and the template are conjoined to form a single conjunc-
tion of literals, C.

2. C is tested by running it as a query to the Prolog interpreter.

3. If C is satisfied, the postconditions are temporarily asserted into Prolog’s
data base.

4. The literal resulting from satisfying Template is added to the body of the
clause.
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5. If there is more than one solution to the query C|, backtracking finds all
solutions and therefore generates more than one literal to add to the clause.

Note that all literals added to the body of the new clause must be calls to defined
Prolog predicates.

Like a forward chaining rule interpreter, the refinement rule interpreter re-
peats its cycle until no more new literals can be found. The result of this process
is a saturated clause based on one of the training examples. This may be used
as the “bottom” clause in a Progol-style search [3]. If the refinement process is
applied to all of the positive training examples, the resulting set of clause can
be used to form LGG’s as with Plotkin [5] or in GOLEM [2].

The biggest problem with LGG’s is that many redundant literals are usually
created. In the next section we will see how refinement rules can be used to filter
the LGG, eliminating unwanted literals.

4 Constrained RLGG’s

We follow an approach similar in spirit to the constrained atoms of Page and
Frisch [4]. Since refinement rules impose restrictions on the form of literals that
can be generated through saturation, it is reasonable to apply the same restric-
tions to literals constructed by generalisation. Thus, we modify Plotkin’s LGG
algorithm to filter literals so that whenever an LGG of two literals is found, it
is tested against the refinement rules. If no refinement rule is satisfied, the new
literal is discarded. As a result, the RLGG’s do not grow to impractical sizes.
Assuming the new literal is L, the refinement test proceeds as follows:

1. Search the list of refinement rules (X, Pre, Post) (for the head literal) and
(« X, Pre, Post) (for the body literals) to find a rule where X unifies with
L. If no match is found, the test fails.

2. If a matching refinement rule has been found for L, invoke the Prolog inter-
preter to test the preconditions, Pre. If the proof fails, the refinement check
fails.

3. If the preconditions are met, temporarily assert L into Prolog’s data base.
This is necessary so that subsequent tests of other literals can refer to L.

4. Assert the postconditions.

5. Return with a success.

One further variation of the LGG algorithm is required. When inverse substi-
tutions are created and variables are inserted into the terms, each variable is
temporarily bound to a unique dummy constant. This is necessary so that when
L is asserted into the data base, it has constant values consistent with the vari-
able bindings of other literals in the clause, rather than unbound variables that
match anything.

To illustrate how refinement rules can reduce the number of literals in an
RLGG, let us continue with the medical imaging example. Suppose we have the
following two training instances:
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internal_carotid_artery(mbl, mbl_1).

segment (mbl_1, mbl, n, 40, 130, [mb1l_2]).
segment (mbl_2, mbl, w, 40, 144, [mb1_3]).
segment (mbl1_3, mbl, nw, 35, 135, [mbl_4, mbl_5]).
segment (mbl_4, mbl, n, 40, 50, [mbl_6, mbl_7]).
segment (mbl1_6, mbl, ne, 20, 170, [mb1_8, mb1_9]).
segment (mbl1_5, mbilbl, e, 10, 100, [1).

segment (mb1_7, mblb2, w, 5, 125, [1).

segment (mb1_8, mblb3, e, 18, 90, [1).

segment (mbl1_9, mbilb4, n, 15, 100, [1).

internal_carotid_artery(pk2, pk2_1).

segment (pk2_1, pk2, n, 35, 70, [pk2_2]).

segment (pk2_2, pk2, ne, 40, 100, [pk2_3]1).
segment (pk2_3, pk2, w, 40, 120, [pk2_4]).
segment (pk2_4, pk2, n, 50, 40, [pk2_5, pk2_6]).
segment (pk2_5, pk2, nw, 45, 50, [pk2_7, pk2_8]).
segment (pk2_7, pk2, ne, 20, 120, [pk2_9, pk2_10]).
segment (pk2_6, pk2bl, e, 10, 150, [1).

segment (pk2_8, pk2b2, w, 5, 175, [1).

segment (pk2_9, pk2b3, e, 16, 130, []1).

segment (pk2_10, pk2b4, n, 14, 140, [1).

Using the refinement rules described in section 3, we obtain the following two
saturated clauses. Note that at this point we have not yet created any variables
but retain all constants.

internal_carotid_artery(mbl, mbl_1) :-
segment (mb1_1, mbl, n, 40, 130, [mb1_2]),
segment (mb1_2, mbl, w, 40, 144, [mbl_3]),
segment (mb1_3, mbl, nw, 35, 135, [mbl_4, mbl_5]),
segment (mb1_4, mbl, n, 40, 50, [mbl_6, mbl_7]),
segment (mb1_5, mbibl, e, 10, 100, [1),
segment (mb1_6, mbl, ne, 20, 170, [mb1_8, mbl_9]),
segment (mb1_7, mbib2, w, 5, 125, [1),
segment (mb1_8, mb1b3, e, 18, 90, [1),
segment (mb1_9, mbib4, n, 15, 100, [1),
max (diameter, mbl, mbl_4, 40),
max(intensity, mbl, mbl_6, 170),
min(diameter, mbl, mbl_6, 20),
min(intensity, mbl, mbl_4, 50).

internal_carotid_artery(pk2, pk2_1) :-
segment (pk2_1, pk2, n, 35, 70, [pk2_2]1),
segment (pk2_2, pk2, ne, 40, 100, [pk2_31),
segment (pk2_3, pk2, w, 40, 120, [pk2_4]),
segment (pk2_4, pk2, n, 50, 40, [pk2_5, pk2_61),
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segment (pk2_5, pk2, nw, 45, 50, [pk2_7, pk2_81),
segment (pk2_6, pk2bl, e, 10, 150, [1),

segment (pk2_7, pk2, ne, 20, 120, [pk2_9, pk2_10]),
segment (pk2_8, pk2b2, w, 5, 175, [1),

segment (pk2_9, pk2b3, e, 16, 130, [1),

segment (pk2_10, pk2b4, n, 14, 140, [1),

max (diameter, pk2, pk2_4, 50),

max (intensity, pk2, pk2_7, 120),

min(diameter, pk2, pk2_7, 20),

min(intensity, pk2, pk2_4, 40).

Since there are 9 segment literals in the first clause and 10 in the second, a
simple LGG of these clauses would result in 90 segment literals in the new clause.
However, using the same refinement rules as filters on the LGG, we obtain:

internal_carotid_artery(_0, _1) :-
segment(_1, _0, n, _2, _3, [_4]),
segment (_4, _0, _5, 40, _6, [_7]),
segment(_7, _0, _8, _9, _10, [_11 | _121),
segment(_11, _0, n, _13, _14, [_15, _16]1),
segment(_15, _0, _17, _18, _19, [_20, _211),
segment (_16, _22, _23, _24, _25, [1),
segment (_20, _26, _27, _28, _29, _30),
segment (_21, _31, _32, _33, _34, [1),
max(diameter, _O, _11, _13),
min(intensity, _0, _11, _14).

which is a considerable improvement on the unconstrained LGG.

5 A Small Trial

It is unlikely that we will ever have a large number of x-ray images as training
examples since it is very time consuming for radiologists to provide fully labelled
images. Therefore the mode of operation in this application is more one of “pro-
gramming by example” than data mining. A small trial has been conducted on
a sample of 10 x-ray images of the internal carotid artery and 11 negative ex-
amples obtained from images of different blood vessels or images from different
views.

Apart from the predicates already described, the background knowledge in-
cludes the concepts of left and right turns (i.e. changes in direction from one
segment to the next); left and right branches (i.e. different blood vessels ema-
nating from the example vessel) and counting predicates providing the number
of turns and branches.

The refinement rules were applied to all 10 positive examples, obtaining 10
saturated clauses. The constrained LGG of these clauses produced the following
clause:
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internal_carotid_artery(_0, _1) :-
segment(_1, _0, n, _2, _3, [_4 | _51),
left_turns(_0, _6),
right_turns(_0, _7),
left_branches(_0, 2),
right_branches(_0, 2).

This describes a blood vessel that has an initial segment heading North. It has
some left and right turns and exactly two left branches and two right branches.
While the size of the training set is extremely small, this trial demonstrates that
refinement rules can be effective in constraining the LGG to produce a concise
and understandable concept description.
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