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Abstract

This paper discusses the role that background knowledge can play in building
flexible multistrategy learning systems. We contend that a variety of learning
strategies can be embodied in the background knowledge provided to a general
purpose learning algorithm. To be effective, the general purpose algorithm must
have a mechanism for learning new concept descriptions that can refer to knowledge
provided by the user or learned during some other task. The method of knowledge
representation is a central problem in designing such a system since it should be
possible to specify background knowledge in such a way that the learner can apply
its knowledge to new information.

1. Introduction

There are many reasons why one may wish to combine a variety of learning
strategies in one system. Many experiments have confirmed that we are yet to find a
single learning algorithm that does best in all circumstances (for example, Michie,
Spiegelhalter & Taylor, 1994). It is often more effective to use different algorithms at
different times than to try to use one algorithm all the time. This approach raises
several questions, including: under which circumstances is a particular method
appropriate and how large does our library of algorithms have to be?

Often, multistrategy learning systems have a fixed set of algorithms to draw upon
and their interaction is pre-determined by the programmer. In other words, they are
often designed to be specific to a particular type of learning problem. In this paper,
we suggest that general purpose multistrategy learners can be constructed by
allowing the learner to make use of complex background knowledge.



We contend that a great deal of flexibility can be gained by a machine learning
system that uses a concept representation language that permits references to user
defined background knowledge as well as knowledge derived from other learning
tasks. First, we illustrate the power of complex background knowledge with an
example of numerical reasoning in inductive logic programming. Next, we describe a
machine learning system that encourages the use of learned as well as predefined
background knowledge. Finally, we discuss the connection between background
knowledge and multistrategy learning.

2. An Example: Numerical Reasoning in ILP

The effectiveness of background knowledge as a means of providing a variety of
learning strategies can best be seen through an example. Sammut, Hurst, Kedzier
and Michie (1992) describe a learning problem where a human pilot is required to fly
an aircraft in a flight simulator. During the flight the actions of the pilot are logged,
along with the situation in which the action is performed. Flight logs are used as
input to an induction program which generates rules for an autopilot. The
architecture of the system is illustrated in Figure 1.

The task of piloting an aircraft through a complete flight plan is a complex task
involving a number of stages, each of which is defined by a particular goal. For
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example, the pilot may be told to take off; climb to a particular altitude; turn to some
heading; maintain straight and level flight until a certain marker is reached, etc. An
example of a multi-stage flight is shown in Figure 2. For each stage of a flight, we
build a separate set of control rules. Further complexity is added by the fact that an
aircraft has a number of controls, eg. elevators, ailerons, rudder, flaps, throttle, etc.
Within each stage we build rules for each control available to the pilot. The result is a
two-level controller where the top level is an “executive” which invokes low level
agents to perform a particular task. Thus, “Learning to Fly” applies machine learning
in a number of ways to build a control system that has different strategies for
different situations. While the result is a multistrategy controller, our original
experiments only involved a single learning algorithm, C4.5 (Quinlan, 1993).

Although these experiments resulted in working autopilots capable of flying the
aircraft from take-off to landing, the rules that were generated were often large,
difficult to read and not always robust under different flight conditions. One reason
for some of these difficulties is that only the raw data from the simulator were
presented to the learning algorithm. The data obtained from the simulator include
the position, orientation and velocities of the aircraft as well as the control settings.
While these data are complete in the sense that they contain all the information
necessary to describe the state of the system, they are not necessarily presented in the
most convenient form. For example when a pilot is executing a constant rate turn, it
makes sense to talk about trajectories as arcs of a circle. Induction algorithms, such as
C4.5, can deal with numeric attributes to the extent that they can introduce in
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Figure 2. Stages of a flight.



equalities, but they are not able to recognise trajectories as arcs or recognise any
other kind of mathematical property of the data.

Srinivasan and Camacho (forthcoming) have shown how such trajectories can be
recognised with the aid of a sophisticated mechanism for making use of background
knowledge. This mechanism is part of the inductive logic programming system
Progol (Muggleton, 1995). The feature of Progol that most interests us here is that the
learning algorithm is embedded in a custom built Prolog interpreter. Concepts
learned by Progol are expressed in the form of Prolog Horn clauses and background
knowledge is also expressed in the same form. Moreover, the Prolog interpreter’s
built-in predicates may appear in either learned or background clauses.

2.1 Background Knowledge and Generalisation

Like Marvin (Sammut, 1981; Sammut & Banerji, 1986), Progol begins by taking the
description of a single positive example and saturates the description by adding to it
literals derived from background knowledge. The new literals result from
background predicates being satisfied by data in the example. To illustrate this, let us
consider Michalski’s (1983) categorisation a number of generalisation operations. For
example, “climbing a generalisation tree” is one type of generalisation operation. Let
us define a simple type hierarchy in terms of Horn clauses.

living_thing(X) :- plant(X).
living_thing(X) :- animal(X).

animal(X) :- mammal(X).
animal(X) :- fish(X).

mammal(X) :- elephant(X).
mammal(X) :- whale(X).

Suppose ‘fred’ is an example of the concept ‘p’ which we wish to learn. Fred has the
property that it is an elephant.

p(fred) :- elephant(fred).

Saturation (Rouveirol, 1990) proceeds as follows: mammal(fred)  is true since
elephant(fred) is given. Having concluded mammal(fred), animal(fred) follows and
consequently so does living_thing(fred). A system like Progol would construct a most
specific clause like:

p(fred) :-
elephant(fred),
mammal(fred),
animal(fred),
living_thing(fred).



5

This forms the most specific clause at the bottom of a generalisation lattice. An
example of such a lattice is shown in Figure 3. The most general clause is the clause
with no body. Each node in the lattice is a clause whose body is a subset of the
literals in the body of the most specific clause. The learning algorithm must search
this lattice for the clause the best describes the positive examples while excluding the
negative examples. Note that the lattice is very similar to Mitchell’s version space
(Mitchell, 1977)

When saturation is completed, Progol uses the most specific clause to serve as a
bound on a general-to-specific search. Beginning with the most general clause, ie.
one with an empty body, Progol tries to find a subset of the most specific clause that
satisfies a minimum description length criterion for the best clause. Muggleton (1995)
describes the search procedure.

Suppose the background knowledge contains the clauses:

X in L..H :- X >= L, L =< H.

and the example,

p(2, 1, 3).

is presented to the learning system, then a generalisation is:

p(N, X, Y) :- N in X..Y.

since 2 in 1..3 is satisfied. Thus, Michalski’s “closing the interval” rule can also be
obtained from background knowledge. Like many ILP systems (De Raedt, 1996),
Progol permits mode declarations which provide a declarative bias to restrict the

p(fred) :- elephant(fred), mammal(fred), animal(fred), living_thing(fred).

p(X).

p(X) :- ....

Figure 3. Generalisation lattice



application of predicates to avoid an explosion in the number of literals that the
saturation procedure may construct.

Note that in the example above, we used one of Prolog’s built-in arithmetic
predicates “=<“. In fact, any of Prolog’s built-in predicates can be declared as
background knowledge and any user defined Prolog program may also be declared
as background knowledge. Furthermore, since ILP’s concept representation language
is Horn clauses, any learned concepts may also be entered as background
knowledge. This is extremely important because it allows great flexibility in
“customising” the learning system and giving addition power without changing the
basic learning algorithm. This is particularly important for our discussion of
numerical reasoning

2.2 Data Fitting Procedures as Background Knowledge

Progol’s ability to use background knowledge can be used in a multistrategy
approach to learning to pilot an aircraft. Srinivasan and Camacho applied Progol to
the problem of learning to predict the roll angle of an aircraft during a constant rate
turn at a fixed altitude. To do  this effectively, the target concept must be able to
recognise the trajectory as an arc of a circle. The predicates shown in Table 1 are
included in the background knowledge.

The pos predicate is the ‘input’ to the learner since it explicitly describes the trajectory
of the aircraft as a sequence of points in space. These points are derived from flight
logs. The before predicate imposes an ordering on the points in the trajectory.

Since the background knowledge can consist of any Prolog program, we can include
such complex knowledge as linear regression. This can be seen as a generalisation
rule just like climbing a generalisation hierarchy, although the computation is
obviously more involved. The regression predicate provides the key to finding the

Table 1. Background Predicates
pos(P, T) position, P, of aircraft at time, T.
before(T1, T2) time, T1, is before time, T2.
regression(ListY, ListX, M, C) least-square linear regression, which tries to find

Y = M × X + C  for the list of X and Y values.

linear(X, Y, M, C) linear(X, Y, M, C) :- Y is M*X+C.
circle(P1, P2, P3, X, Y, R) fits a circle to three points, specifying the centre (X, Y) and

radius, R
=<, >=, abs Prolog built-in predicates
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relationship between the roll angle and the radius of the turn. The mode declarations
in Srinivasan’s version of Progol are not typical of the declarative bias found in other
ILP systems. Srinivasan’s modes permit the user to specify that some arguments
should be lists of values collected over the entire data set. Thus, the mode declaration
for regression specifies that the first two arguments are lists which described the
sequence of pairs of coordinates for the aircraft during the turn. That is, the
coordinates from all the examples in the data set are collected. The mode declaration
causes Progol to generate these lists and invokes regression which performs a least-
square regression to find the coefficients of the linear equation which relates roll
angle and radius. Regression must be accompanied by another background predicate,
linear, which implements the calculation of the formula. In section 5 we describe an
alternative method for collecting values to be transmitted to data fitting algorithm.

The regression predicate is an intermediate relationship that does not appear in the
final description of the learned concept. During saturation, regression recognises the
relationship between the angle and radius, given the sequence of aircraft positions.
Once the coefficients of the linear equation are available, Progol can generate a
reference to linear. Thus the theory produced is1:

roll_angle(Radius, Angle) :-
pos(P1, T1), pos(P2, T2), pos(P3, T3),
before(T1, T2), before (T2, T3),
circle(P1, P2, P3, _, _, Radius),
linear(Angle, Radius, 0.043, -19.442).

The circle predicate recognises that P1, P2 and P3 fit a circle of radius, Radius and
regression finds a linear approximation for the relationship between Radius and
Angle which is:

Angle = 0.043 × Radius −19.442

The ‘_’ arguments for circle are “don’t cares” which indicate that, for this problem,
we are not interested in the centre of the circle.

Machine learning algorithms generally tend to be poor at numerical reasoning. This
is usually left to scientific discovery systems. However, the flight trajectory example
illustrates why, for many domains, it is important to incorporate numerical
reasoning into induction. One way to do this is by adding background knowledge
for a variety of equation solvers.

Because Progol permits the use of arbitrary Prolog code in its representation of
concepts,  it can invoke a variety of methods for fitting data which go beyond

                                                
1 The theory as been siplified slightly to avoid lengthy explanations of details not relevant to this discussion.



Progol’s own ILP style of learning. Linear regression is just one example of a
statistical method for fitting data. A library of such predicates gives a system like
Progol the ability to use different strategies depending on the type of data available.
Since the components of the library are just Prolog programs, the learning algorithm
does not have to be modified to permit different data fitting methods to be added.
Furthermore, the library may even include other learning algorithms. So the main
lesson to be learned is that while different forms of generalisation may be
appropriate for different types of data, these forms can be described using a uniform
language. This means that they can all share a common mechanism for applying
them. This, in turn, leads to a very flexible framework for learning.

3. Using Induction to Build Background Knowledge

The most obvious requirement in building a framework for learning is a mechanism
for communicating knowledge from one component of the system to another. One
approach could be to allow a variety of programs to exist independently and to
provide translation programs between them. The approach taken here is different
and that is to embed the learning systems in a interactive programming
environment, namely, a derivative of Prolog. Progol already incorporates a Prolog
interpreter in it so that it can execute background knowledge as programs. However,
it provides only one learning mechanism. iProlog,2 is a Prolog interpreter with a
variety of machine learning and statistical algorithms included as built-in predicates.
We begin by describing how some of the propositional algorithms are used
individually and then we discuss how to combine learning algorithms.

3.1 Classification Algorithms

Like most propositional systems, a description of the attributes and their values is
required. We use an example from Cendrowksa (1987) to illustrate the notation. The
task is to learn to predict whether a person should wear hard or soft contact lenses or
wear no contact lenses. The attributes and their values are described as follows:

mode lens(
age(young, pre_presbyopic, presbyopic),
prescription(myope, hypermetrope),
astigmatism(not_astigmatic, astigmatic),
tear_production(reduced, normal),
lens(hard, soft, none)

).

                                                
2 A preliminary version of iProlog  for Unix is available from

ftp://ftp.cse.unsw.edu.au/pub/users/claude/src/iprolog.tar.gz
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The class value is always the last attribute in the list. Examples are entered as ground
unit clauses in Prolog’s database. A small sample for the problem described above is:

lens(young, myope, not_astigmatic, reduced, none).
lens(young, hypermetrope, not_astigmatic, reduced, none).
lens(young, hypermetrope, not_astigmatic, normal, soft).
lens(pre_presbyopic, myope, astigmatic, reduced, none).
lens(pre_presbyopic, myope, astigmatic, normal, hard).
lens(presbyopic, myope, not_astigmatic, reduced, none).
lens(presbyopic, myope, not_astigmatic, normal, none).
lens(presbyopic, hypermetrope, astigmatic, normal, none).

It is important to note that training and test examples, as well as concept descriptions
are always valid Prolog code. Therefore, Prolog’s deductive database features can be
used to retrieve and explore the database of examples. Also note that data for many
different relations may co-exist within the same database.

To run an induction algorithm, we simply invoke it as a procedure call in Prolog.
Thus, to build a decision tree, the following call is executed:

id(lens)?3

This invokes an ID3-like algorithm with pruning (Quinlan, 1979; 1993). The result of
all the induction algorithms is a Prolog clause which captures the decision tree or set
of rules. Since the result is in standard Prolog form, it can be asserted into the
database and used as an ordinary program. The clause generated by the decision tree
program is:

lens(Age, Prescription, Astigmatism, TearProduction, Lens) :-
(TearProduction = reduced -> Lens = none
|TearProduction = normal ->

(Astigmatism = not_astigmatic -> Lens = soft
|Astigmatism = astigmatic ->

(Prescription = myope -> Lens = hard
|Prescription = hypermetrope ->

|Age = pre_presbyopic -> Lens = none
|Age = presbyopic -> Lens = none)))).

Learning programs that follow similar paradigms use the same notation. So, for
example, if the user wished to compare decision trees versus Gaines’ Induct-RDR
(Gaines, 1989), it would only be necessary to invoke another command:

induct(lens)?

Which results in the rule:

                                                
3 Although iProlog generally follows the ISO Prolog standard, there are some minor differences. The postfix

‘?’ operator is used in preference to the standard prefix ‘?-’ to invoke the prolog interpreter. The ‘|’ in if-then-
else constructs is a synonym for the ‘;’ (th or operator).



lens(Age, Prescription, Astigmatism, Tear_production, Lens) :-
(Lens = none unless
(Astigmatism=not_astigmatic, Tear_production=normal -> Lens=soft unless

(Age = presbyopic, Prescription = myope -> Lens = none)
|Prescription = myope, Tear_production = normal -> Lens = hard
|Age = young, Tear_production = normal -> Lens = hard)).

Induct-RDR uses Compton’s Ripple-down Rule representation (Compton & Jansen,
1988). An unless operator has been added to Prolog’s standard if-then-else construct.
The example above is read as “lens is none unless not astigmatic and tear production
is normal. In that case the conclusion is that the lens should be soft. This conclusion
is over-ridden if age is presbyopic, ...” So far, an Aq algorithm  (Michalski, 1973;
1986) and a naive Bayes classifier also follow the same notation.

3.2 Numerical Algorithms and Filters

The training instances shown so far have been stored as ground unit clauses in
Prolog’s database. That is, the relation is represented by the examples in extensional
form. One of the useful features of storing examples as Prolog clauses is that, in
execution, there is no difference to the caller whether the relation is implemented
extensionally or intentionally. Thus, examples maybe generated by a Prolog
program. We use the task of learning to fly again to show how this feature can be
used.
Suppose the data logged from the simulator are described by the following mode declaration:

mode flight1(+x, +y, +z, +x_vel, +y_vel, +z_vel, +roll, +pitch, +heading, +roll_rate, +pitch_rate, +yaw_rate,
–elevators, +ailerons, +rudder, +flaps, +speed_break, +lg1, +lg2, +lg3, +throttle, +rpm).

These data are all numeric and we will use a learning algorithm that produces
numeric output, like CART’s regression trees (Breiman et al, 1984). The variables
represent the position, orientation and velocities of the aircraft as well as the current
control settings. For numeric problems, we use a notation based on DEC-10 Prolog’s
mode declarations. The independent variables are marked with a “+” and the
dependent variable is marked with a “–”. In this case we wish to predict the elevator
setting given the other variables as input. Like the decision tree program, a
regression tree algorithm is simply invoked by passing the relation name as the
argument to a procedure call:

rt(flght1)?

The raw data provided are often not in a form most suitable for analysis. For
example, rather than have separate x, y and z velocities as given above, we may
prefer to use the single value of airspeed. We may also decide that some variables,



11

such as the position of the landing gear (lg1, lg2 and lg3) are not relevant. We can
define a new relation derived from the old one as follows:

mode flight2(+airspeed, +climb_rate, +roll, +pitch, +heading, +roll_rate, +pitch_rate, +yaw_rate,
–elevators, +ailerons, +rudder, +flaps, +speed_break, +throttle,+rpm).

flight2(AirSpeed,ClimbRate,Roll,Pitch,Heading,RollRate,PitchRate,YawRate,Elevators,Ailerons,Rudder,Flaps,
SpeedBreak,Throttle,RPM) :–

flight(X,Y,Z,Xvel,Yvel,Zvel,Roll,Pitch,Heading,RollRate,PitchRate,YawRate,Elevators,Ailerons,Rudder,
Flaps,SpeedBreak,0,0,0,Throttle,RPM),

AirSpeed is sqrt(Xvel*Xvel + Yvel*Yvel + Zvel*Zvel),
ClimbRate = Zvel.

To build a new regression tree now, we call:

rt(flght2)?

Induction algorithm usually read their data from files. Instead, a learning algorithm
in iProlog invokes the Prolog interpreter to deliver its examples. When examples are
stored extensionally, this is just the same as reading one example at a time. However,
in the case above, we have redefined the relation. If we ask for all solutions of the
relation flight2, we get the original data filtered by a program that calculates the
airspeed and only delivers those examples where the landing gear is up (0 for all
three wheels). Although this kind of filtering can be done by preprocessing input
files to any learning program, the ease with which data can be transformed in this
environment saves a great deal of time. We will also see later that filters are
important in multistrategy learning.

Like the classification programs, the output from a regression tree algorithm is also a
valid Prolog program. For example, the following data are extracted from a larger
data set:

pitch(500, -2461, -977, -7).
pitch(498, -2422, -955, -17).
pitch(489, -2385, -932, -20).
pitch(413, -2219, -801, -20).
pitch(397, -2190, -771, -18).
pitch(369, -2131, -709, -19).
pitch(265, -1925, -494, -15).
pitch(252, -1895, -463, -13).
pitch(231, -1835, -400, -12).
pitch(211, -1771, -339, -10).
pitch(202, -1737, -311, -8).
pitch(195, -1702, -283, -7).

Running the regression tree program on these data, we obtain:



pitch(Alt, Dist, X, Pitch) :-
        (Alt <= 216 ->
                (Alt <= 21.5 ->
                         Pitch = -3.86;
                        (Alt <= 83.5 ->
                                 Pitch = -7.70;
                                 Pitch = -6.11));
                 Pitch = -17.18).

Statistical techniques such as a linear discriminant algorithm (Fisher, 1936)4 and
connectionist methods like back-propagation (Werbos, 1975; Hinton, Rumelhart &
Williams, 1985) can also be used to create numerical relationships. To illustrate how a
back-propagation network can be integrated into an ILP setting, let us see how the
classic xor  network can be represented. The original xor relation is:

xor(0, 0, 0).
xor(1, 0, 1).
xor(1, 1, 0).
xor(0, 1, 1).

A network with two hidden nodes is trained on the above data and the resulting
network is described by the clause:

xor(Input1, Input2, Output) :-
X10 is logistic(3.01981 + -6.05867 * Input1 + 6.32054 * Input2),
X11 is logistic(-3.6811 + -6.7386 * Input1 + 6.76381 * Input2),
Output is logistic(4.91949 + -10.2493 * X10 + 10.4417 * X11).

The function, logistic , is required to provide the standard activation function,

1
1 + e− x

Thus, we have a new classifier which can be invoked as a Prolog program and, like
any other program, can be used as background knowledge.

4. Structured Induction and Exploratory Data Analysis

The present solution to the “Learning to Fly” task is an example of structured
induction. Shapiro (1987) introduced the idea of structured induction as a means of
simplifying a learning task and for making the result of learning more human
readable. His experiments were conducted in the familiar domain of chess end-
games. Quinlan (1979) had previously demonstrated that it was possible to induce
decision trees for this domain. However, they were usually large and end-game
experts could find little in them that corresponded to their own intuition. To

                                                
4Adapted from Bob Henery’s Statlog code (Michie, Spiegel,halter & Taylor, 1994)
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overcome this problem, Shapiro obtained the help of a chess master who was able to
describe high-level features that players looked for.

Armed with this knowledge, Shapiro induced decision trees for each of the high-
level features and organised the whole knowledge base as a tree of trees. The top-
level tree was hand-crafted from the knowledge obtained by the chess expert. The
subtrees were built by induction. The result was an accurate solution which also
made sense to chess experts.

Shapiro used a uniform representation and the same type of induction algorithm
throughout his analysis. This is also true of the original flight control system. All the
control agents were synthesised using the same learning algorithm. However, in the
iProlog framework, different algorithms may be used when one is more appropriate
than another. Since they all generate Prolog programs, the task of invoking the ‘low-
level’ knowledge from the ‘high-level’ can be done simply by constructing clauses
for the high-level knowledge which calls the induced procedures.

Used in this manner, our multistrategy learning is not fully automatic, but rather, is a
collaboration between human and machine. In practical data analysis, it is most
likely that the human user will want quite a lot of discretion in choosing strategies
and guiding induction. Therefore, we do not force too much automation on the user,
but prefer to provide building blocks.

To be a useful tool, particularly for applications in data mining, the machine learning
environment must provide for  “what if” experiments in which the user may try
something, then try something else, come back to a previous experiment, etc.
Logically, when a new rule is induced it could replace the ground facts that were
used as examples during induction. That is, a new, more general, theory replaces the
older theory. However, its unlikely that a user would wish the original data to be
destroyed as this would prevent further experimentation, unless the data were
completely reloaded.  One approach to permitting ‘what-if’ experiments is to create a
separate database for induced rules. For example, when the decision tree algorithm
os run on the lens data, the system builds a ‘frame’ containing the following
information:



creator: id(lens);
date: '97/08/22 - 12:55:12';
n_examples: 24;
errors: 0;
time: 0.0166667;
rule:

lens(Age, Prescription, Astigmatism, Tear_production, Lens) :-
(Tear_production = reduced -> Lens = none
|Tear_production = normal ->
  (Astigmatism = not_astigmatic -> Lens = soft
  |Astigmatism = astigmatic ->
    (Prescription = myope -> Lens = hard
    |Prescription = hypermetrope ->
      (Age = young -> Lens = hard
      |Age = pre_presbyopic -> Lens = none
      |Age = presbyopic -> Lens = none)))).

As well as building the rule for the concept, the system stores the procedure call that
created the rule. This is useful because, the programs may have parameters such as
pruning levels or learning rates, and these will be recorded. Other information such
as the number of examples, number of errors on training and test data, etc can also
be stored. Thus comparisons of different learning trails are easy to do . Thus the user
is aided in making an appropriate choice of algorithms, parameters, attributes, etc.

5. Multistrategy Learning

So far, we have seen how a variety of learning algorithms can be incorporated into a
single framework to provide a convenient environment for data exploration. But
more than being just a another machine learning tool kit, that fact that all the
algorithms use a common language means that it is easy to pass the results of one
algorithm to another. Therefore one learning algorithm can make use of another.

In section 2.2 we saw how Srinivasan used Progol to mix data fitting strategies. Let
us see how this approach can be generalised. The first point to note is the system will
probably need some guidance, in the form of a language bias. Because first order
representation languages are so rich, the search space for a learning algorithm can be
prohibitively large unless, the search space is restricted in some way.  Many first
order learning systems allow the user to write ‘mode declarations’ or define a
refinement operator  which restrict the concept description language to a tractable
subset of Horn clause logic. Thus the user must have at least some rough ideas about
what the learning system should look for. In that sense, data analysis is a cooperative
endeavour between human and computer.

The language bias tells the learning algorithm which background predicates to add
during saturation. Normally, background predicates are complete at the time of
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learning.  For example, our animal taxonomy in section 2.1 would have been entered
before starting any learning task involving animals. This was not the case for
learning the relationship between roll angle and turning radius. Linear regression
was used to generate a background predicate ‘on-the-fly’. To do this, two mod
declarations were need. One was used during learning to instruct Progol to try linear
regression and a second mode declaration was used to actually construct the literal
that implemented linear equation in the concept description. Furthermore, the
‘learning time’ mode declaration had to indicate that all the values of a variable had
to be collected in order to perform the regression.

Because of its flexibility, we have chosen a method of language bias based on
Cohen’s refinement rules (Cohen, 1996). Cohen gives an example of refinement rules
that may be used in the king-rook-king illegal problem:

DB0 = {rel(adjacent), rel(equal), rel(less_than)}
illegal(A, B, C, D, E, F) ←
where true asserting {row(A), col(B), ..., row(E), col(F)}
← R(X, Y)
where rel(R), CommonType(X), CommonType(Y) asserting ∅ 

DB0  is an initial database which contains information that the refinement operation
can use. In this case, the database starts with a list of the relations that refinement is
allowed to use in building a clause. There are two types of refinement rules. There
must be one and only one rule of the form ClauseHead ←. This tells the system what
the head of the clause being learned should look like. Expressions of the form,

where <pre-conditions> asserting <post conditions>

inform the system about the conditions that must be true before the rule can be
applied and the conditions which must apply afterward. The post conditions are
added to DB. In this example, the first refinement rule indicates that the head of the
clause should be illegal(A, B, C, D, E, F)  and the arguments are rows or columns.
Rules of the form, ← BodyLiteral, tell the system the form of literals that may be
added to the body of the clause being learned. In this example, the rule indicates that
literals like adjacent(X, Y), equal(X, Y) and less_than(X, Y) are legal as long as X  and Y
are of the same type. Refinement rules use a second order, language permitting
predicate symbols to be variables.

This notation is very convenient for multistrategy learning since literals in the pre-
condition of a refinement rule can be calls to another learning algorithm. For
example, we may have a data set that contains continuous attributes and we wish to



try a regression tree algorithm  on some of those attributes. In the flight data, one
option we want the program to explore is a relationship between the pitch angle and
the location of the aircraft5. The following refinement rule accomplishes that.

← pitch(Alt, Dist, X, Pitch)
where rt(pitch)  asserting ∅ 

When the pre-condition for adding the pitch literal is checked, the regression tree
program is invoked, generating the clause shown in section 4.2. The pitch literal is
then a reference to this newly generated clause. If the pitch data are not stored
explicitly, as in our earlier example, it may be necessary to have a filter program,
similar to flight2, to define the pitch relation based on the four variables above in the
full flight data. Of course, the learning systems search algorithm must still determine
whether a literal generated by this rule is useful.

We now have a mechanism that allows the system to automatically explore a
combination of different types of background knowledge, including other learning
algorithms, based on suggestions provided by the user.

6. Propositional versus  First order Learning

One of the difficulties that advocates of first order learning face is finding a
convincing argument why it is necessary. Common counter arguments are that
problems that may naturally be represented in a first order form can often be
transformed into propositional form and propositional learners (eg.  decision trees,
etc) are much faster than first order learners. Clearly there are some problems, such
as learning programs like list membership, sorting, etc, for which it is not possible to
make such a transformation. However, for many real-world problems, the counter
argument is a powerful one. The main contention of this paper is that the primary
advantage of first order representations is the ease with which background
knowledge can be incorporated in the learning framework. However, this need not
force the user to incur a penalty in efficiency.

Lavrač and Džeroski (1994) describe the LINUS algorithm in which problems are
presented in a first order representation and then transformed into a propositional
form for input to a learning program such as CN2 (Clark & Niblett, 1989; Clark &
Boswell, 1991). Why do this? Why not start with a propositional representation? The
most obvious answer is that some domains, like molecular biology (Muggleton, King

                                                
5 This is not really a very useful relation, but it serves our purpose as an example.
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& Sternberg, 1992) and natural language processing (Mooney & Califf, 1995) are most
naturally represented using first order theories. But the most compelling reason,
ultimately, is that in the first-order form, it is easy to use a method like saturation to
elaborate the description of the training examples based on background knowledge,
prior to transformation.

Turney (1996) used a similar transformational approach in response to Michie et al’s
(1994) East-West Challenge. Here that task was to learn to classify East-bound and
West-bound trains according to features such as types of carriages and their loads,
etc. However, some relations were also required to successfully represent the trains.
After transformation, Turney’s system generated training examples with 1199
features . The relational representation was for more compact and therefore more
easily understood by humans, but the feature vector permitted a fast propositional
learner to be applied.

In the experiments reported previously, Srinivasan used linear regression as
background knowledge for an ILP system. In subsequent work, (Srinivasan, 1996) he
reversed the rôles of ILP and statistics.  The task for his learning system this time,
was, given the chemical structure of some molecules to obtain descriptions relating
structure to activity. He noted the following: the domain is inherently quantitative
and ILP is best suited to qualitative descriptions; when appropriate attributes have
been available, ILP programs have not been able to better the performance of
standard techniques like linear regression, however, ILP programs perform
creditably  when such attributes  are unavailable;  ILP programs are usually slower
than their propositional counterparts. The attributes in this domain are usually
supplied by experts. However, they are often unable to conceive a complete range of
useful attributes. These observations lead Srinivasan to use ILP as a preprocessing
stage for linear regression. He applied Progol to the data so that it could discover
relations such as ‘compound has hydrogen at position 4 and the substituent at
position 3 is a hydrogen donor’. Once discovered, these relations were turned into
attributes to be used by a standard linear regression package.

These experiments show that the title of this section is really misleading. There is no
reason to think of propositional and first order learning systems to be in competition
with each other. We have just discussed several examples where they have
complemented each other. So, the question arises: is it possible to build a general
framework within which various learning systems can be combined in a flexible
way? We hope that this paper demonstrates that the answer to this question is “yes”,
using logic programming to provide the framework.



7. Conclusion

We have shown how a number of different learning algorithms can be incorporated
into a unified environment for data exploration. Multistrategy learning can be
accomplished by using one form of learning to construct background knowledge for
another. The key features of the system that enable this kind of multistrategy
learning are that:
• the background knowledge and the concept description language are the same

and
• the concept descriptions generated by the learning programs are themselves

executable as programs.

A uniform representation language ensures that knowledge can be reused. That is,
learned concepts can be added to background knowledge for further learning. The
user can also provide pre-defined background knowledge and the system will not
have to know what is user defined and what has been learned because both are
treated the same way.

Since the representation language is executable and can be used to write programs,
the background knowledge can describe complex concepts, including other learning
and data modelling algorithms. We have seen how a refinement language can be
used to guide the system in selecting sub-tasks for learning. When a refinement
operator seeks some background knowledge, it can invoke another learner to the
background knowledge, on-the-fly. Examples of this kind of ‘sub-task’ learning were
using regression to find numerical relationships for an ILP learner; using ILP to find
attributes for regression and using regression trees to find numerical relations for an
ILP learner. Because the definition of refinement operators is flexible, many different
combinations of learning strategies are possible.

The main reason for resorting to multistrategy learning is that different learning
methods are better suited to different tasks. We have used Inductive Logic
Programming as the framework in which a variety of learning systems can be
embedded. The ILP framework was chosen because it allows very complex
background knowledge to be encoded. Thus, while a particular learning algorithms
can provide high performance for specific domains, ILP provides the ‘glue’ the binds
the different learning strategies together.
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