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ABSTRACT

First order predicate logic appears frequently in Artificial Intelligence.
In learning programs, it is often the language used to describe
concepts, rules, examples, events, etc. This paper presents an overview
of research in logic-related learning systems and describes those
features of first order logic which have made it such a useful tool. Two
developments are of particular interest to us: the use of logic in what is
now called "constructive induction", and the benefits to machine
learning contributed by logic programming.

1. Introduction

Machine learning conferences are often the scenes of battles between rival factions
convinced that their approach to learning is the better one. This paper may either be
seen as an attempt to bring peace between several tribes or as firing a shot in another
battle. For example, we try to show how the use of first order logic can unite two
apparently different approaches, namely data-driven and model-driven learning.
However in advocating logic we may incur the wrath of those who claim that logic is
not a suitable language for knowledge representation. It is hoped that the advantages
we discuss below will out-weigh the disadvantages. Our argument is presented as an
overview of some learning methods which are dependent on a logic formalism.

Learning algorithms are often placed in either of two categories: data-driven or
model-driven. Data-driven learning makes generalisations by finding common sub-
expressions in the descriptions of a set of examples, whereas model-driven learning
uses a model of the domain in which learning is taking place to propose
generalisations. Data-driven systems appear to use a "weak method" because they do
not take advantage of domain knowledge and they usually require a large set of
examples to perform the learning task accurately. Model-driven systems appear to
use a "strong method" because their approach is knowledge-based and may require
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only a small number of examples to learn a concept description or operation.
However, they usually require a considerable amount of priming with background
knowledge.

Trends frequently come and go in Artificial Intelligence. For some time there was
heavy concentration of effort in data-driven learning. More recently the model-driven
approach has come to the fore. Explanation-based learning is one instance of model-
driven systems. It is our contention that by adopting a well-behaved description
language, such as first-order logic (and horn-clause logic, in particular), not only can
both approaches be accommodated, but a number of disadvantages can be eliminated
from them.

The overview that we present will concentrate on those learning systems which
have been influenced by research in logic programming and theorem proving. The
connection between these endeavours and machine learning is that the clausal form of
logic brings simplifications not only to problem solving but also to machine learning.
This simplification has made a significant contribution to "constructive induction"
which is at the heart of learning systems which enhance their own descriptive power
by adding new terms to the concept description language. That is, the language grows
with the learner's experience.

2. Growing Description Language

Banerji (1964, 1969, 1980) presents one of the earliest uses of first-order logic in
learning. He was especially concerned that the description language of a learning
system should be able to grow. That is, new terms can be added to the language as
the system learns. There should not be a pre-defined and fixed "vocabulary", because
when the limits of the language are reached, so too are the limits of the system as a
whole. For example, LEX (Mitchell, Utgoff, Nudel and Banerji, 1981) used a fixed
language to describe algebraic expressions. When it was found that LEX was unable
to learn some concepts because the language could not describe the necessary
expressions, a method for extending the language had to be found (Utgoff, 1986).

Following Banerji, Cohen (1978) wrote a program, called CONFUCIUS, which
successfully demonstrated that a program using first-order logic as its description
language could learn in an variety of domains. More importantly, it had the property
that concepts which had been learned could be stored in the system's knowledge base
and used in the description of other concepts. Hence it satisfied the objective of
creating a learning program whose ability to describe concepts grows over time.

Sammut's program, Marvin (Sammut, 1981), extended CONFUCIUS in several
ways. The representation language used in Marvin became Horn-clause logic and this
had two major benefits. Firstly, horn clauses can be viewed as productions which
specify how to generalise a description. This leads to a very simple but powerful
learning mechanism. The second benefit was that horn clauses are easy to execute as
programs (as is done in Prolog) and so a concept's description can generate instances
of that concept. This feature was used to show counter-examples to the trainer during
learning.

Every learning system must have some way of representing concepts and
examples of concepts. For convenience, the term concept is used to stand for all those
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things which a program is intended to learn including plans, heuristics, scripts, etc.
We refer to the method of representation as the concept description language. It must
have a primitive set of attributes or terms to begin with. The key to being able to
extend a language through learning is that a reference to a newly learned concept
should be allowed to appear in other concept descriptions in any place where a
primitive could be used. Thus a growing language allows the learning system to
construct its own high-level attributes with which it can simplify concept
descriptions. Indeed, a simplification mechanism can be at the heart of a learn ing
program, as in Muggleton's DUCE (Muggleton, 1987).

To be able to use a concept description in place of a primitive, it must be possible
to interpret the description as a recognition procedure. For example, if we have just
learned a description for the concept chair, then we should be able to refer to chair
in, say, the description of an office scene and expect that the chair "program" will
recognise the chairs in the scene. Of course, many knowledge representation systems
allow the declarative description of a concept to be interpreted as a recognition
procedure. However, it is not always easy to use new concepts in place of primitive
attributes. For example, network representations require extensions providing for
sub-nets which can be hidden behind a single node of a higher level network. Frame
systems require the ability to describe a slot-type by other frames. But while it is
possible to achieve the same effect with a variety of representation methods,
extensibility is a natural and easily implemented feature of horn-clause logic.
Moreover, a description in horn-clause logic is a logic program, so we have all the
advantages of a clean, declarative description of concepts and also a language
powerful enough to be a general purpose programming language and thus applicable
in a large variety of domains.

To recognise an object, it is only necessary to use a horn clause in a forward
chaining manner. Suppose we have a set of clauses:

C1 ←  P11 ∧  P12 (1)

C2 ←  P21 ∧  P22 ∧  C1 (2)

and a instance:

P11 ∧  P12 ∧  P21 ∧  P22 (3)

The Pij denote primitive terms. Applying the clauses (1) and (2) as if they were
simple productions, clause (1) recognises the first two terms in expression (3)
reducing it to P21 ∧   P22 ∧   C1. This can be reduced by clause (2) to C2. Thus, clauses
(1) and (2) recognise expression (3) as the description of an instance of concept C2.

Of course, instead of the primitive terms Pij we could have references to other
concepts, just as C1 is referred to in clause (2). This allows us to build arbitrarily
complex recognition procedures. Moreover, adding new terms to the description
language becomes a trivial case of adding a new clause to the existing set.

Another important feature of a horn clause description language is that when the
clauses are executed in a backward chaining manner, they produce instances of
concepts. When we apply backward chaining to horn clauses, effectively we ask the
system to prove a proposition. The proof of a concept is the existence of an instance
of it. Of course, the proof procedure is non-deterministic in the sense that any
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instance will do as a proof. This property of a logic-based representation is important
when part of the learning program's task is to actively explore its task environment.
We will return to learning in reactive environments following a discussion of
induction using horn clause logic.

3. Inverting Resolution

Robinson's (1965) resolution principle has had far-reaching effects for theorem-
proving and logic programming. Resolution provides an efficient means of deriving a
solution to a problem, giving a set of axioms which define the task environment.
Whereas resolution takes two terms and resolves them into a most general unifier,
anti-unification finds the least general generalisation of two terms. Plotkin (1970,
1971) first investigated the derivation of least general generalisations, a problem
which was later taken up by Vere (1975, 1977) and Buntine (1986). An inverse of
resolution provides an extremely powerful induction method (Muggleton, 1987;
Muggleton and Buntine, 1987).

The method of least general generalisations is based on the idea of subsumption.
This states that a clause C1 subsumes, or is more general than, another clause C2 if
there is a substitution σ  such that C2 ⊇  C1σ. A least general generalisation is a
generalisation which is less general than any other such generalisation. For example,
the least general generalisation of

p(g(a), a) (4)

and p(g(b), b) (5)

is p(g(X), X). (6)
Note that under the substitution {a/X} (6) is equivalent to (4) and under the
substitution { b/X} (6) is equivalent to (5). See Plotkin (1970).

Subsumption served a very useful tool in several learning systems. Vere (1975)
developed a method for efficiently searching for possible substitutions among literals.
However, as Buntine (1986) points out, subsumption alone has its limitations. In
particular, it is unable to take advantage of background information which may assist
generalisation. We use Buntine's example to illustrate the problem. Suppose we are
given two instances of a concept cuddly_pet,

cuddly_pet(X) ←  fluffy(X) ∧  dog(X) (7)

cuddly_pet(X) ←  fluffy(X) ∧  cat(X) (8)
Suppose we also know the following:

pet(X) ←  dog(X) (9)

pet(X) ←  cat(X) (10)
According to subsumption, the least general generalisation of (7) and (8) is:

cuddly_pet(X) ←  fluffy(X) (11)
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In light of the background knowledge, this is an over-generalisation and potentially
dangerous since any fluffy object could be considered a cuddly pet. A more
appropriate one would be:

cuddly_pet(X) ←  fluffy(X) ∧  pet(X) (12)
In fact, Sammut (1981) took the conservative view that generalisation should only be
done when the relevant background knowledge is available. Observing an example
such as (7), Sammut's program, Marvin, uses clause (9) as a rewrite rule to produce a
generalisation which is clause (12). That is, when the right hand side of a background
clause matches a subset of literals in the right hand side of an instance clause, then
those literals are replaced by the left hand side of the background clause. Initially, no
generalisation could occur because Marvin had no background knowledge and
observations were simply stored in the knowledge base in horn-clause form.
However, as the knowledge base expanded, so did Marvin's ability to generalise.
Sammut and Banerji (1986) attempted to formalise this process, but it was left to
Buntine (1986) and Muggleton (1987) to produce more elegant theories for
generalisation.

Muggleton's DUCE (1987) relies on a set of operators to compact the description
of a set of examples to a simpler description. Each example is described by a
propositional horn-clause. Some operators preserve the equivalence of descriptions
but reduce the number of symbols required while others produce generalisations.
There are six operators in all and they are the basis for a method of anti-unification.
Indeed, one of the goals of this work was to produce a complete inverse of resolution.
All six operators are necessary for the completeness of the theory, but pairs of
operators are sufficient for induction. We will describe one such pair and refer the
interested reader to Muggleton's paper (1987) for the complete description. A first-
order version of DUCE, called Cigol2, is under construction (Muggleton and Buntine,
1987).

Absorption. Given a set of clauses, the body of one of which is completely contained
in the bodies of the others, such as:

X ←  Α ∧  B ∧  C ∧  D ∧  E

Y ←  Α ∧  B ∧  C
we can hypothesise:

X ←  Y ∧  D ∧  E

Y ← A ∧ B ∧ C
In fact, this is the generalisation rule used in Marvin.

Intra-construction. This is the distributive law of Boolean equations. Intra-
construction takes a group of rules all having the same head, such as:
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X ←  B ∧  C ∧  D ∧  E

X ←  A ∧  B ∧  D ∧  F
and replaces them with:

X ←  B ∧  D ∧  Z

Z ←  C ∧  E

Z ← A ∧ F
Note that intra-construction automatically creates a new term in its attempt to
simplify descriptions. This satisfies Banerji's desire for a growing description
language, since, as we stated earlier, the new term is able to be used in the
descriptions of other concepts. At any time during induction there may be a number
of applicable operators. The one chosen is the operator which will result in the
greatest compaction. This is DUCE's heuristic for guiding its search for a
generalisation.

Buntine (1986) produced a theory for induction of horn-clauses called
generalised subsumption. In this framework, all subsumption is done relative to a
logic program. In this case, the logic program is the set of clauses which represent the
learner's background knowledge. Buntine also examined the very important problem
of defining and limiting the search space for induction. The following section draws
on a number of his observations.

4. Searching for Generalisations

An appealing approach to the search problem is Mitchell's Version Space (Mitchell,
1977). Here, a bi-directional search of the space of sentences in the description
language is used to locate the sentence representing the best generalisation. The given
instances of a concept form a bound on the most specific sentence which could be a
generalisation. A bound on the most general sentence is provided by the legal
expressions in the language which could possibly be generalisations of the instances.
The worst case is a sentence which covers the entire universe. New positive examples
force the bounds on the most specific sentences to become more general. New
negative instances force the bounds on the most general sentences to become more
specific. When these boundaries meet and provided that all positive and negative
examples can be correctly classified, we have the sought for generalisation.
Unfortunately, it is not easy to apply the Version Space method to horn-clause logic
because of the richness of the language. Since so many things are describable, the
branching factor even in a bi-directional search becomes prohibitive.

Marvin adopted a strictly specific-to-general search in which only those sentences
which could be derived from the current knowledge base were considered. This had
the effect of reducing the search space dramatically, but at the expense of a rather
large assumption that the system will have learned all the background knowledge
necessary for learning further concepts. Since Marvin was being trained by a
"friendly" tutor, this assumption was justified, but it is obviously too restrictive for
more general learning tasks. Another problem was that as the knowledge base grew,
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so did the search space.
Shapiro (1981) adopted a general-to-specific search strategy in his Model

Inference System (MIS). First, a language L, which is a subset of a logic
programming language (effectively pure Prolog) is defined. It is assumed that the
model (or set of concepts, in our terminology) to be inferred is fully describable in L.
A refinement operator must also be specified. This operator shows how a more
specific sentence in L can be derived from another given sentence. The search
procedure uses refinement as its means of moving down branches in the search tree.
The most significant drawback of MIS was that it required a fixed description
language. If L were too general, then the search space would become very large. It is
also not possible to add new terms to the language. It is worth noting that MIS was a
side-effect of Shapiro's main research interest at the time, namely debugging logic
programs. Automatically debugging the null program is the same as automatically
synthesising a program. Since logic programs can be used to describe concepts,
learning, automatic programming and debugging are all united!

Muggleton (1987) used a measure of compaction to guide DUCE's search. Since
there may be more than one compaction operator applicable at any time, a measure is
applied to each rule to determine which one will result in the greatest compaction.
The measure of compaction is the reduction in the number of symbols in the set of
clauses after applying an operator. Each operator has an associated formula for
computing this reduction. Naively carrying out the computation would require
applying all the operators to all clauses and choosing the best. Obviously this is too
expensive for a large data set so a significant subset of rules is chosen instead. DUCE
also uses a bit-string representation of clauses to speed up pattern matching. It should
also be noted that an oracle, that is human supervisor, can reject any hypotheses that
DUCE produces by the application of a rule. This will force it to search for other
hypotheses using a best-first search. The oracle also has the opportunity to interpret a
new hypothesis and give it a sensible name.

5. Learning and Logic

Now let use examine how the evolution of the ideas presented above affects our view
of machine learning in general. The most important result we wish to emphasise is
that an elegant theory often leads to elegant solutions to problems which are both
practical and efficient. The theory may also help to tie together a number of
seemingly separate issues.

At the beginning of this paper we mentioned one such separation between data-
driven and model-driven learning algorithms. It should be evident that viewing data
and knowledge bases as logic programs gives us a mechanism capable of performing
both data-driven and model-driven learning. For example, DUCE's induction
algorithm looks for regularities among data using a search that is dictated by the form
of the clauses in the data. Since the data are represented by the same horn clause form
as concepts, the search can be assisted by background knowledge of the concepts
already learned. The uniform representation means that no special mechanism has to
be built to combine data-driven and model-driven approaches.

Another advantage of the logic programming representation is that concepts can
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be executed as programs to yield instances of themselves. This is very useful for
learning programs which must interact with their environment in complex ways. For
example, Marvin tests a generalisation by presenting instances of it to the trainer. The
idea here is that it should not be necessary for the trainer to know the exact
representation of Marvin's concept for him or her to judge how well Marvin is
learning. After all, a teacher can usually only judge the knowledge level of a student
by watching the performance of some task.

The concepts which can be represented by a logic programming system need not
be restricted to static descriptions of objects. The language is flexible enough to be
able to teach a logic-based system concepts of planning and problem solving. Note
that an instance of a plan is the execution of it. So instead of showing an instance of a
generalisation to a trainer, a learning system which has control of an agent in a robot
world can execute a plan. As well as actions, the concept description contains the
expected result of the plan. If the actual result meets this expectation then the
experiment supports the generalisation. If the experiment causes a different result
then the generalisation is refuted. Recently, Hume has moved a descendent of
Marvin, called CAP (Sammut and Hume, 1987), into a simulated robot world (Hume,
1985) where many concepts are, in fact, plans of action. Attempts are also underway
to install a logic-based learning system onboard a real robot. A similar approach has
been taken by Carbonell and Gil (1987). Their representation language is based on
first-order logic, although not horn clauses.

One aspect of learning in a robot domain is common to other problem solving
domains, that is the importance of learning efficient ways of achieving a result even
after an abstract concept of the solution has been acquired. This requirement to
"operationalise" a concept has resulted in a surge of interest in explanation-based
generalisation. Here also, we have another example of an elegant theory bringing
order amidst confusion. Kedar-Cabelli and McCarty (1987) have shown how
explanation-based generalisation can be viewed as resolution theorem proving.
Mitchell, Keller and Kedar-Cabelli (1986) state the explanation-based generalisation
problem as follows:

Given
a concept (whose description is to be elaborated by EBG)
a training example (of the concept)
a domain theory (rules and facts about the domain)
an operationality criterion (for the form of the plan to be learned)

determine
a generalisation of the training example that is a sufficient concept
definition for the target concept and that satisfies the operationality
criterion.

The assumption of EBG is that the original declarative description of the target
concept lacks the information necessary to be able to execute a program to achieve
the target. Of course a logic programming language can execute a declarative
description provided that there is enough domain knowledge to be able prove the
concept. So EBG becomes a simple matter of tracing Prolog's execution of a program
and generalising that trace. This is done by replacing constants by variables and
dropping constraints introduced by the specific example.
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6. Logic and the Future

In this section we discuss some of the challenging problems in logic-based learning
which are currently under investigation.
Incremental Learning. A robot, learning legal behaviour in a task environment, must
necessarily use an incremental learning method where concepts are built and refined
after making observations and performing experiments. One of the main difficulties
in learning by experimentation in a reactive environment is that experiments can
never validate the robot's theory of behaviour of the world. Experiments usually
involve noisy data, they can cause damage to the environment, they may cause
misleading side-effects. So it is more than likely that at some point in its exploration
of the world, the robot will have not only an incomplete theory, but also an incorrect
one. Thus it is necessary to have a system which is robust enough to be able to repair
its knowledge base as new information is acquired.

Muggleton's induction theory may part of the solution to this problem. It is often
the case that the robot learner has acquired enough experience to form a correct
theory for the behaviour it has observed, but it actually has an incorrect theory
because early experiments gave misleading results. Even when later observations
could correct the error, this will not happen unless the robot can reorganise its
knowledge base to take into account the later evidence. A learner which uses a
compaction algorithm to maintain its knowledge base can reorganise concepts and
create new concepts. Evidence supporting a correct concept will result in the creation
of new clauses. The already existing concept will fall into disuse by not being
supported by new evidence. Where the correct and incorrect versions of the same
concept are contradictory, it may be necessary to choose between the two by looking
at the amount of supporting evidence each has.
Limiting Search. An advantage of having fixed description language is that it is easier
to control the search space of a learning algorithm. In section 4 we discussed a
number of aspects of search. Buntine's (1986) analysis of the complexity of the
search space will aid in developing strategies and heuristics for improving the time
complexity of the learning algorithms. An attempt at this was made by Sands (1984).

7. Conclusion

We have tried to bring together the work of a number people to show how they have
contributed to a coherent theory of learning where logic programs are the basis of the
representation language for concepts. It has been claimed that this representation
encourages a simple yet powerful approach to induction which is general enough to
unite apparently different styles of learning: data-driven and model-driven,
explanation-based and inductive learning.
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