
LEARNING CONCEPTS BY ASKING QUESTIONS

Claude Sammut

Department of Computer Science
University of New South Wales

Sydney, Australia

Ranan B. Banerji

Department of Mathematics and Computer Science
Saint Joseph’s University
Philadelphia, PA 19131

ABSTRACT

Tw o important issues in machine learning are explored: the role that memory
plays in acquiring new concepts; and the extent to which the learner can take an active
part in acquiring these concepts. This chapter describes a program, called Marvin,
which uses concepts it has learned previously to learn new concepts. The program
forms hypotheses about the concept being learned and tests the hypotheses by asking
the trainer questions.

Learning begins when the trainer shows Marvin an example of the concept to
be learned. The program determines which objects in the example belong to concepts
stored in the memory. A description of the new concept is formed by using the infor-
mation obtained from the memory to generalize the description of the training exam-
ple. The generalized description is tested when the program constructs new examples
and shows these to the trainer, asking if they belong to the target concept.

1. INTRODUCTION
From personal experience we know that it is hard to learn new concepts unless we already under-

stand quite a lot about the subject we are studying. For example, when mathematics is taught in
school, the teacher begins with simple problems like: what are numbers? Later, more complicated con-
cepts such as addition, followed by multiplication are presented. Usually many years of patient accu-
mulation of knowledge in a given field are required before one can fully understand the most complex
concepts in that field. To be able to learn in stages, the student must have a memory which he can use
to integrate all the knowledge acquired. As new concepts are added to the memory, the student’s
vocabulary broadens, enabling him to describe still more complex concepts.

As well as using his memory, a human student also asks questions to help him learn. Often a
teacher will show the student an example to explain a new concept. However, a few examples are not
always enough to completely define the concept. It is easy to generalize from a small number of exam-
ples and come up with an incorrect idea of the concept which the teacher wants the student to learn.
Questions often help to identify those parts of the concept which have misunderstood.

Marvin is a program which can learn complex concepts by using its memory of simpler con-
cepts to help describe the newer concepts. Marvin also asks the trainer questions to check that its
description of the concept is correct. A concept is informally defined as the description of a set of
objects in some universe. We say that an object is a positive example of a concept if the object is in the
set defined by the concept description. A negative example is an object not contained in the set.

-2-

Marvin begins learning a new concept when the trainer shows it an object which is a positive
example of the concept to be learned (the target concept). The description of the example represents a
concept which contains only one object, the example itself. The target concept is a generalization of
the example because it contains that object and perhaps many other objects. One concept, P, is a gen-
eralization of another concept, Q, if Q describes a subset of P. Alternatively, we say that Q is a spe-
cialization of P. Marvin’s task is to discover the description of the target. It will do this by searching
for a generalization of the initial example which contains all the positive examples of the target and
none of the negative examples.

Suppose P is a generalization of the initial example. Also suppose that P describes a subset of
the target. That is, P only contains objects which are positive examples of the target. We say that P is
a consistent generalization of the initial example. If Q is a generalization which contains an object not
in the target then we will say that Q is an inconsisent generalization of the target. A generalization of
the initial example is called a trial concept.

Marvin’s search for the target concept is specific-to-general. That is, the program begins with
the initial example and creates a new trial concept by generalizing the example slightly. If the general-
ization is consistent, then Marvin creates a new trial which is a generalization of the previous one. To
find out if a generalization is inconsistent, the program constructs objects which are contained in the
trial and shows them to the trainer. If the trainer answers that one of the objects is not contained in the
target then the generalization is inconsistent. When this occurs, Marvin tries to create a new trial
which is more specific than the previous one. That is, it tries to create concept which excludes the neg-
ative examples of the target. If specialization fails to produce a consistent trial then a different general-
ization is tried. Marvin will continue to make as many generalizations as it can as long as can maintain
consistency. When it has run out of generalizations, the concept description is stored in the the pro-
gram’s memory.

So far we have not specified how Marvin describes concepts. The concept description language
is a subset of first order predicate logic very similar to Prolog. Marvin constructs example objects by
taking a concept description and executing it as if it were a program. For Marvin, learning a concept is
equivalent to synthesizing a logic program.

The program consists of four major components:

• A memory which contains the descriptions of concepts that have been learned or provided by
the trainer as background knowledge.

• A pattern matcher which determines if objects shown to the program belong to concepts stored
in the memory.

• A simple theorem prover which, given a concept description, generates objects which satisfy
the conditions in the description.

• A search strategy which directs the operation of the other components in order to find a descrip-
tion for the concept that the trainer is trying to teach the program.

The work on Marvin has grown out of earlier efforts by Banerji (1964) and Cohen (1978) who
both stressed the importance of a learning system being able to extend its power to describe concepts
through learning. In the following section we describe the representation language used by Marvin.

2. REPRESENTING CONCEPTS IN FIRST ORDER LOGIC
A concept is represented by a set of Horn clauses. These are expressions in first order predicate

calculus which have the form:

P(X) ← Q(X) & R(X) & S(X).

That is, an object, X, belongs to the concept, P, if the predicates Q and R and S are true. The clause
will be called a definition of the concept P.

As an example, let us describe the concept tee. An object, X, is a tee if it consists of two objects.
One object, A, may have any shape and lies on top ofga another object, B, which is a brick and which
is standing up.

-3-

tee(X) ←
A is_part_of X &
B is_part_of X &
A is_on B &
any_shape(A) &
lying(A) &
brick(B) &
standing(B).

We can think of this clause as describing the set of all objects, X, which satisfy the conditions on the
right hand side of the arrow. any_shape is defined as:

any_shape(X) ← brick(X).
any_shape(X) ← wedge(X).

That is, the shape of an object in this world may be a brick or a wedge.

Marvin’s long term memory is a database of such clauses. The program also has a short term
memory which contains the set of facts which describe individual objects which the trainer presents as
examples. By fact we mean a unit clause, that is, a clause with no right hand side. Thus an instance, x,
of the concept tee would appear in the short term memory as:

a is_part_of x.
b is_part_of x.
b is_on a.
brick(a).
wedge(b).
standing(a).
lying(b).

This describes a wedge lying on top of a brick.

Originally we defined generalization and specialization in terms of sets of objects. These defini-
tions help to understand what those operations mean, but they do not give us an effective way of per-
forming generalizations or specializations. To construct a description of a concept, P, which is more
general than Q, the program must transform the expression in the description language which repre-
sents Q into another expression which represents P. That is, generalizations and specializations must
be defined as operations which manipulate the description language.

3. GENERALIZATIONS
Suppose x is an object which is defined by the following predicates: ‘Q1(x) & R1(x) & S1(x)’. If

there is a concept which is represented by:

P(X) ← Q1(X) & R1(X) & S1(X).
P(X) ← Q2(X) & R2(X) & S2(X).

then x is a positive example of the concept P. Note that the conjunction of predicates which describes
x matches the conjunction on the right hand side of the first clause. Now suppose x is an object which
appears in some visual scene which we show to Marvin. Since x is an example of P, the program can
try to generalize the description of the scene by asking: ‘‘If I replace x with some other example of P,
has the scene been changed in any essential way?’’ In the last example of the previous section, b was a
wedge and also an instance of any_shape. The description of x can be generalized by replacing
wedge(b) by any_shape(b). Wedge(b) matches the right hand side of one clause of any_shape.

When we perform replacement operations, we think of clauses as rewrite rules. Rewrite rules
are most commonly used to define the grammar of a language. In fact, the set of clauses stored in Mar-
vin’s memory defines a language. Sentences in the language describe objects which belong to concepts
known to Marvin. We should be careful to distinguish between the concept description language (i.e
Horn clauses in first order logic) and the language which describes the set of all objects recognizable
by the program. The latter is a subset of the description language. Shapiro (1981) gives a more

-4-

rigorous discussion of the relationship between these two languages.

A replacement such as changing wedge(b) to any_shape(b), is the fundamental operation used in
generalization. When there is a large number of concepts stored in the long term memory, many such
replacements are possible. The description of one instance of a concept may be transformed into many
different generalizations. The main problem for the learning program is to efficiently search through
the space of all such generalizations. Before giving a formal definition of generalization, let us look at
another example.

Suppose we wish to describe a column of bricks as a brick standing on the ground or a brick
standing on another column. This is a recursive description consisting of two clauses:

column(X) ←
brick(X) &
standing(X) &
X is_on Y,
ground(Y).

column(X) ←
brick(X) &
standing(X) &
X is_on Y &
column(Y).

Variables such as Y are implicitly existentially quantified. Suppose that these clauses, as well as oth-
ers, form the set of clauses in the long term memory, Si ← Mi. Also assume that we have a set of facts
in short term memory, C0, which consists of the unit clauses:

brick(a). (1)
standing(a). (2)
a is_on b. (3)
brick(b). (4)
standing(b). (5)
b is_on c. (6)
ground(c). (7)

If we substitute b for the variable X and c for the variable Y then predicates 4, 5, 6 and 7 match the
right hand side of the first clause in the definition of ‘column’. That is, b is an example of the concept
column. The substitution for this match is the set of pairs {X/a, Y/B}. We can elaborate C0 by adding
the predicate column(b) to form C1.

brick(a). (1)
standing(a). (2)
a is_on b. (3)
brick(b). (4)
standing(b). (5)
b is_on c. (6)
ground(c). (7)
column(b). (8)

Now predicates 1, 2, 3, and 8 match the right hand side of the second clause of ‘column’ with the sub-
stitution {X/a, Y/b}. Thus we can construct a new set C2 by adding column(a) to C1.

The process we call elaboration simply entails finding out which objects in the short tem mem-
ory are examples of concepts that Marvin knows. This requires the program to match object descrip-
tions with the right hand sides of clauses and then adding the adding the left hand side to the short term
memory.

We will now define the pattern matching operations used in the elaboration. It is convenient for
us to think of conjunctions of predicates as being equivalent to sets of predicates. In what follows, sets

-5-

will almost always contain predicates or clauses, not objects.

Definition 1: Given a set of clauses:

S1 ← M1
............

Sk ← MK

and a set of predicates, C, we say that C´ is an elaboration of C if there is an Mi and a substitution, σ,
such that

σMi ⊆ C and C´ = C ∪ σ{Si}.

The set, C, represents the set of facts which are presented to the program by the trainer as a description
of an instance of the concept to be learned. This description is expanded, or elaborated, by finding
those clauses stored in memory whose right hand sides match a subset of C. The left hand sides of the
clauses are added to C to form C´. The pattern matcher uses a simple unification procedure (Robinson,
1965) to construct substitutions for the variables in the clause. The effect of this elaboration is to aug-
ment the description of the example using the knowledge that Marvin has acquired previously.

When predicate (8) was added to C, it enabled Marvin to find more matches in memory. In this
way, sets of predicates can be elaborated repeatedly giving us a sequence of new sets derived from C0.

Definition 2: Given a set, C0, we define a sequence C0..Cn such that Ci+1 is an elaboration of Ci
and Cn cannot be elaborated further. We write

All_Elaborations(C0) = Cn,

representing the set of all predicates derived from C0.

The information obtained through elaboration is used to construct hypotheses or trials for the
concept being learned. The initial trial, T0, is always equivalent to C0. One trial, Ti, may be general-
ized to a new trial, Ti+1 by replacing predicates in Ti which match the right hand side of a clause with
the predicate on the left.

Again using the column example, we begin with T0 equivalent to C0. The first trial, T1, may be
obtained by replacing the predicates 4, 5, 6 and 7 with ‘column(b)’, giving:

brick(a). (1)
standing(a). (2)
a is_on b. (3)
column(b). (8)

Clearly this is a generalization of T0 since b may now be a column of any height. The following defi-
nition shows exactly how we arrive at a replacement operation such as the one above.

Definition 3: If Ti is a trial concept and M is a subset of Ti, and there exists a clause in memory
S ← M´ such that with the substitution σ, M = σM´ then we define a replacement operation which will
create a new trial, Ti+1, such that

Ti+1 = Ti − M ∪ σ{S}

Ti+1 is called a generalization of Ti. If there is more than one clause in the definition of the concept S
then Ti+1 is more general than Ti, since S describes a larger set of objects than is described by M.

In the example, Ti can be generalized further. All of the remaining predicates match the second
clause in the description of column. They can all be replaced by the single predicate column(a). Thus,
we can produce a sequence of more general trials.

Definition 4: If T0, .., Tk be a sequence of trials such that Ti generalizes to Ti+1 then we say T0
satisfies Tk.

Notice that making generalizations is exactly the same as recognizing that an object belongs to a
concept. Although the program may construct many generalizations, only those which are less general
than or the same as the target are of interest. Once a generalization has been created, we must be able
to if it is consistent or not.

-6-

Definition 5: Trial T is consistent with the target, T´, if any object which satisfies T also satisfies
T´.

The next section describes what is done when an inconsistent trial is constructed.

4. SPECIALIZATIONS
A generalization results in a set of predicates in a trial being replaced by a single, more general,

predicate. The replacement operation throws away some specific information contained in the set M
(i.e. those predicates which matched the right hand side of the clause) in favour of the more general
statement, S (i.e. the left hand side of the clause). If the new trial is consistent then the information lost
was not important. However, if the generalization is inconsistent then too much information was lost.
To make Ti+1 more specific, Marvin re-examines the predicates in M to determine which ones contain
essential information.

Suppose we wish to teach Marvin what an arch is. Assume that, among other things, Marvin has
already learned the concepts any_shape and same_shape, shown below.

any_shape(X) ← brick(X). (1)
any_shape(X) ← wedge(X).

same_shape(X, Y) ← brick(X) & brick(Y). (2)
same_shape(X, Y) ← wedge(X) & wedge(Y).

The following set of predicates describes the example of an arch shown by the trainer:

a is_part_of x.
b is_part_of x.
c is_part_of x.
a is_on b.
a is_on c.
b left_of c.
b does_not_touch c.
lying(a).
wedge(a).
standing(b).
brick(b). (3)
standing(c).
brick(c). (4)

This forms the initial trial, T0. The final definition of arch should include the specification that the two
columns b and c may have any shape as long as they are both the same. Now let us begin generating
trial descriptions of arch by performing replacements.

1. Since b is a brick, it is an instance of any_shape, thus one possible trial, T1, replaces brick(b)
above with any_shape(b) using clause (1).

2. This generalization would allow b to be a wedge while c remains a brick. Note, that the general-
ization is not totally incorrect since b may be a wedge, however, additional information must be
added to qualify the generalization. This additional information is obtained by searching for
another replacement which involves at least one of the predicates removed from the original trial.

3. Predicates (3) and (4) match the right hand side of clause (2) and predicate (3) also matches the
right hand side of clause (1). A new trial, T2, may be formed by adding same_shape(b, c) to T1.
This specialization creates a consistent trial.

Note that since clause (2) completely subsumes clause (1) predicate, any_shape(b) can be ignored in
the new trial. In general, this would not be the case. We now define specialization as follows:

Definition 6: Suppose T is a trial concept. Let

T1 = T − M1 ∪ σ1{S1}

-7-

be a generalization of T obtained by replacing a subset of predicates, i.e. M1, with a reference to the
concept, S1. Let

T2 = T − M2 ∪ σ2{S2}

be another generalization of T, such that

M1 ∩ M2 ≠ ∅

then T1 ∪ T2 is more specific than either T1 or T2.

The purpose of the specialization operation defined above is to conjoin two generalizations of T.
That is, specialization will force the program to search for conjunctions of generalizations. Without
specialization, Marvin could only discover generalizations which consist only of single replacements.
Usually, Marvin will attempt one generalization, say, T1 and if it is found to be inconsistent, then the
program will look for T2 to make the trial more specific.

5. CONSTRUCTING EXAMPLES TO TEST HYPOTHESES
To find out if a trial, Ti+1, is consistent or not, Marvin shows the trainer an instance of Ti+1. If

the program can create an object which does not belong to the target, but does belong to Ti+1 then Ti+1
is inconsistent. However, since the program has not yet learned the description of the target concept,
how can we guarantee that an object not in the target is shown to the trainer when the trial in inconsis-
tent?

The set, All_Elaborations(T0), contains all the predicates which can be inferred from T0. If the
target concept can be learned at all, then its description must be a subset of All_Elaborations(T0). Any
object which fails to satisfy any of the predicates in this set cannot belong to the target. To test the
trial, Ti+1, Marvin constructs an object which does not satisfy any of the predicates in
All_Elaborations(T0), with the exception that Ti+1 and anything that it implies, must be satisfied. This
guarantees that, if at all possible, an object will be constructed so that it belongs to the trial concept but
not to the target. If the trial is consistent, then the object must belong to the target.

Definition 7: Let Ti+1 be a generalization of Ti. Any object which satisfies Ti+1 but neg ates each
element of

All_Elaborations(Ti) − All_Elaborations(Ti+1)

is called a crucial object. If Ti is consistent with the target and Ti+1 is not then no crucial object satis-
fies the target.

Recall that in the example in section 3, the description, T0, of a column consisting of two blocks
was generalized to the description, T1, of a block resting on another column. By definition 7, an object
which can be used to test the generalization may be constructed by the following procedure:

1. Find all elaborations of T0:

brick(a). (1)
standing(a). (2)
a is_on b. (3)
brick(b). (4)
standing(b). (5)
b is_on c. (6)
ground(c). (7)
column(b). (8)
column(a). (9)

2. Find the set of all predicates implied by T1, i.e. all elaborations of T1.

-8-

brick(a). (1)
standing(a). (2)
a is_on b. (3)
column(b). (8)
column(a). (9)

3. Find All_Elaborations(T0) − All_Elaborations(T1)

brick(b). (4)
standing(b). (5)
b is_on c. (6)
ground(c). (7)

4. Construct an object which satisfies T1, but does not satisfy any of the four predicates 4, 5, 6 or 7.
The resulting object will consist of a brick on top of at least two more bricks. Negation of predi-
cates 4, 5, 6 and 7 prevents the bottom of the column from begin a single brick standing on the
ground.

We hav e now dev eloped methods for generalizing and specializing concept descriptions and we
also have a way of testing whether those descriptions are consistent or not. In the following section,
we bring all of these elements together to create the complete Marvin.

6. AN OVERVIEW OF THE LEARNING ALGORITHM
Let us now summarize Marvin’s learning algorithm:

To learn a new clause:
1. The trainer gives the program an example of the concept.

2. Find the list of all replacement operations obtainable from the primary predicates.

3. Use these operations to generalize the initial trial.

4. Store the resulting concept in memory.

To find the list of replacement operations:
1. Let C initially be the set of all facts describing the training example.

2. Find the set, I, of all concepts implied by C.

3. Append I to C.

4. Repeat this procedure until no more implied concepts can be found. The result is
All_Elaborations(C). The list of replacement operations consists of all the clauses used to
find the implied concepts in All_Elaborations(P). See definitions 1 and 2.

To generalize a trial Ti:
1. Choose the first concept in the list of replacement operations.

2. Perform the replacement to obtain Ti+1. (See definition 3).

3. Try to qualify Ti+1.

4. If Ti+1 cannot be qualified, abandon this replacement.

5. Repeat this procedure with the next replacement operation in list.

To qualify a trial, Ti+1:
1. Construct a crucial object which satisfies Ti+1 but does not satisfy

All_Elaborations(Ti) − All_Elaborations(Ti+1)

(See definition 7).

2. Ask trainer if object satisfies target. If it does then Ti+1 has been qualified.

3. If not then specialize Ti+1 to a new trial Ti+2

-9-

4. Try to qualify Ti+2.

To specialize a trial, Ti+1:
1. Search list of replacement operations for a clause, S ← M, such that M ∩ Mi+1 ≠ ∅, Mi+1

comes from the replacement which produced Ti+1.

2. Perform replacement on Ti+1 to obtain the new trial, Ti+2. (See definition 6).

To construct an example from a trial, Ti+1:
1. To construct an example from P & Q: Construct P, Construct Q.

2. To construct an example from an atomic predicate P when there is a set of clauses
{P ← Bi} in memory:

2.1 Select a Bi such that

B ∩ (All_Elaborations(Ti) − All_Elaborations(Ti+1)) = ∅

2.2 Construct example using the selected Bi.

3. To construct an example from an atomic predicate P when there is no clause P ← B, add P
to set of predicates representing example.

7. A TYPICAL LEARNING TASK
In this section we will discuss the steps involved in learning the description of an arch. This

time, the description will be slightly more involved than the first version we discussed in section 4.
Marvin will learn that an arch consists of an object of any shape lying on top of two columns of equal
height. The columns are adjacent to each other, but must not touch.

Initially the program’s memory is empty. Since concepts stored in the memory are essential to
performing generalizations, any object shown to Marvin which it cannot recognize, is simply remem-
bered, without any attempt at generalizations. So if the trainer states that x is a brick and x is an exam-
ple of the concept any_shape, Marvin will remember this fact.

When Marvin begins operation, it often starts by learning basic concepts by rote. any_shape and
any_orientation will be learned in this way.

any_shape(X) ← brick(X).
any_shape(X) ← wedge(X).

any_orientation(X) ← standing(X).
any_orientation(X) ← lying(X).

These concepts may be written out to file at the end of one learning session and reloaded at a
later time so that they need not be relearned.

The description of arch will contain references to two quite complex concepts, namely, column
and same_height. A concept, such as arch, cannot be learned unless the other concepts to which it
refers are already in the memory. In an analogy to describing something in English: one cannot ade-
quately describe a table unless one knows about words such as ‘leg’ or ‘flat’. After teaching Marvin
about shape and orientation, the trainer presents examples of columns.

We will leave a discussion of the details of the learning session until the program starts learning
about arches. It is important to note that the description of column is recursive, that is, it refers to
itself. Because of this, the trainer must take care in presenting example of columns. The first example
must teach Marvin about the non-recursive disjunct of the description. That is the first clause shown
below. Having learned this, the program is then able to recognize the recursive nature of more com-
plex examples.

-10-

column(X) ←
brick(X) &
standing(X) &
X is_on Y &
ground(Y).

column(X) ←
brick(X) &
standing(X) &
X is_on Y &
column(Y).

In this learning session, we will allow columns to consists only of bricks. The same consideration for
recursive concepts applies to learning same_height. The heights of two columns may be compared by
scanning down both columns to see if the ground is reached at the same time.

same_height(X, Y) ←
ground(X) &
ground(Y).

same_height(X1, X2) ←
brick(X1) &
standing(X1) &
brick(X2) &
standing(X2) &
X1 is_on Y1 &
X2 is_on Y2 &
same_height(Y1, Y2).

To complete Marvin’s background knowledge so that it can learn about arches, it must also learn
the following concepts:

X adjacent_to Y ← X left_of Y.
X adjacent_to Y ← Y left_of X.

X may_touch Y ← X touches Y.
X may_touch Y ← X does_not_touch Y.

X may_be_on Y ← X is_on Y.
X may_be_on Y ← X is_not_on Y.

Assuming that all the above concepts are now present in Marvin’s memory, we can begin to
teach it what an arch is. The program is presented with the description of an instance of arch, shown
below.

-11-

A part_of X
B part_of X
C part_of X
A is_on B
A is_on C
B is_on D
C is_on E
ground(D)
ground(E)
B left_of C
B does_not_touch C
lying(A)
wedge(A)
standing(B)
brick(B)
standing(C)
brick(C)

Having seen an example of the concept, the pattern matcher determines which objects in the example
belong to concepts in the memory. This recognition process results in the generation of all possible
replacements. These are shown below with the predicates to be replaced on the right hand side of the
arrow and the predicate replacing them on the left.

1 : any_shape(B) ← brick(B)
2 : any_shape(C) ← brick(C)
3 : any_shape(A) ← wedge(A)

4 : any_orientation(B) ← standing(B)
5 : any_orientation(C) ← standing(C)
6 : any_orientation(A) ← lying(A)

7 : column(B) ← brick(B) & standing(B) & B is_on D & ground(D)
8 : column(C) ← brick(C) & standing(C) & C is_on E & ground(E)

9 : same_height(D, E) ← ground(D) & ground(E)
10 : same_height(B, C) ←

brick(B) &
standing(B) &
brick(C) &
standing(C) &
B is_on D &
C is_on E &
same_height(D, E)

11 : B adjacent_to C ← B left_of C

12 : B may_touch C ← B does_not_touch C

13 : A may_be_on B ← A is_on B
14 : A may_be_on C ← A is_on C
15 : B may_be_on D ← B is_on D
16 : C may_be_on E ← C is_on E

-12-

The program takes each replacement in turn and attempts to create a consistent trial. The first replace-
ment attempts to generalize the shape of B. This results in the trial:

A part_of X
B part_of X
C part_of X
A is_on B
A is_on C
B is_on D
C is_on E
ground(D)
ground(E)
B left_of C
B does_not_touch C
lying(A)
wedge(A)
standing(B)
standing(C)
brick(C)
any_shape(B)

To test this, the program asks if the following example is an instance of arch.

A part_of X
B part_of X
C part_of X
A is_on B
A is_on C
B is_on D
C is_on E
ground(D)
ground(E)
B left_of C
B does_not_touch C
lying(A)
wedge(A)
standing(B)
standing(C)
brick(C)
wedge(B)

A new object has been created which differs from the original example by having the shape of B
changed to a wedge. The trainer responds no, indicating that this is an inconsistent trial.

Since the trial is inconsistent, another trial which is more specific must be constructed. This is
done by finding another replacement which involves the predicate brick(B). In the order that the
replacement operations were generated, replacement 7 is selected. This results in the new trial:

-13-

A part_of X
B part_of X
C part_of X
A is_on B
A is_on C
B is_on D
C is_on E
ground(D)
ground(E)
B left_of C
B does_not_touch C
lying(A)
wedge(A)
standing(C)
brick(C)
column(B)

This generates the training example:

A part_of X
B part_of X
C part_of X
A is_on B
A is_on C
C is_on E
ground(E)
B left_of C
B does_not_touch C
lying(A)
wedge(A)
standing(C)
brick(C)
brick(B)
standing(B)
B is_on _1
brick(_1)
standing(_1)
_1 is_on _2
ground(_2)

Since replacement 7 generalizes B to any column, Marvin constructs a new example in which B is a
column, but not the same one as before. B is now a two brick column. _1 and _2 are names generated
by the program to stand for new objects. Since the left and right columns of the arch must be the same
height, the trainer responds no again. Thus, the trial must be specialized even further. Since the right
hand sides of replacements 7 and 10 have a non-empty intersection, replacement 10 is selected to make
the trial more specific. This new trial is:

-14-

A part_of X
B part_of X
C part_of X
A is_on B
A is_on C
B left_of C
B does_not_touch C
lying(A)
wedge(A)
column(B)
same_height(B, C)

The program now constructs a new example in which both columns are two bricks high. The trainer
indicates that this trial is consistent, so Marvin can now resume generalizing.

We will not show in detail the remaining questions which are asked. However, Marvin will go
on to test the shape of A. This can be generalized to any shape. However, A cannot assume any orien-
tation. It must be lying down. Marvin will discover that B is adjacent to C, but must not touch C.
Finally it will conclude that the description of an arch is:

A part_of X
B part_of X
C part_of X
A is_on B
A is_on C
column(B)
same_height(B, C)
column(C)
any_shape(A)
lying(A)
B adjacent_to C
B does_not_touch C

In all, 8 questions are asked before Marvin is finished. However, it should be noted that in gen-
eral, the number of questions asked depends on the number of concepts in memory which match parts
of the example. As the size of the memory increases, so will the number of questions.

8. CONCEPTS THAT MARVIN HAS LEARNED
In this section we describe some of the concept which Marvin has been able to learn.

Since concepts are represented as Horn clauses in first order logic, they can be viewed as logic
programs. Thus Marvin is able to perform as an automatic programming system as well as a learning
system. The class of programs that can be synthesized is limited by the way in which variables are cre-
ated. When the trainer presents an example to the program, each object in the example is given a
name. When the description is generalized and turned into a concept, the object names become vari-
ables. Marvin has no ability to invent existentially quantified variables other than those derived from
the example. The program also cannot deal with universal quantification.

Some of the concepts that have been learned are:

• List manipulation.
We can represent lists by a recursive concept much like column. A column is an object with a
top which is a brick and a bottom which is another column. Similarly, a list is an object which
has a head which can be of some specified type and a tail which is another list. Marvin can be
taught to append lists by showing it examples consisting of input/output pairs for the concept
append. using a Prolog-like notation, one example may be: append([], [1], [1]). Another may
be append([1], [2], [1, 2]). These two examples, shown in that order provide Marvin with
enough information to synthesize both clauses of the recursive concept. Once it knows how to

-15-

append lists, Marvin can then be taught to reverse them, again by showing examples of
input/output pairs.

• Arithmetic on numbers represented as strings of binary digits.
A string of bits can be represented as a list of objects which can be either 0 or 1. Marvin can
learn to compare numbers by learning the concept, less. As examples, the program would be
shown pairs of numbers, one less than the other. Input/output pairs can also be presented to the
program in order to teach it about addition and other arithmetic operations.

• Sorting.
Once the program knows how to do arithmetic and manipulate lists, it can learn how to sort lists
of numbers. It is possible to learn a simple insertion sort. However, because of the program’s
inability to invent new existentially quantified variables, learning more efficient sorting algo-
rithms, such as quick-sort, is beyond its capabilities.

• Grammar Rules.
Marvin is capable of learning to recognize sentences in context free grammars. For example, the
program has been taught to recognize a very limited subset of English. A string of words can be
represented as a list. Concepts such as verb, noun, etc are taught first, so that the program can
identify parts of speech. After that, Marvin can learn to recognize noun phrases and verb
phrases and so on until the representation of a complete sentence has been acquired. One of the
interesting problems encountered when teaching such grammatical concepts to Marvin is that
concepts such as noun phrase and verb phrase can refer to each other. Since the concepts are
disjunctive, the concepts can be taught in steps. One concept is partially learned, then part of the
second and then the description of the first concept can be completed (Sammut, 1981). discusses
this problem more fully.

• A more difficult language recognition problem which Marvin has learned is that posed by
Hayes-Roth and McDermott (1977). The task was to learn the rules to transform a sentence in
the active form, such as ‘The little man sang a lovely song’ to the passive form ‘A lovely song
was sung by the little man’.

• Geometrical concepts as described by Michalski (1980) have also been learned.

Marvin has proved to be capable of learning many concepts in a variety of domains. In the next sec-
tion we discuss ways in which the program may be improved.

9. DETECTING ERRORS IN CONCEPT DESCRIPTIONS
We hav e already seen that the trainer has the responsibility for teaching Marvin all the necessary

background knowledge required to describe any new concept that is to be learned. This means that he
must carefully choose the training examples and the order in which they are presented. To see what
happens concepts are not taught in the best order let us return to the description of columns.

We now wish to make the definition slightly more general by allowing cylinders as well as bricks
to make up a column, but not wedges. Suppose that any shape in our blocks world is defined as:

any_shape(X) ← brick(X).
any_shape(X) ← cylinder(X).
any_shape(X) ← wedge(X). (R1)

If Marvin is shown an example of a column, without first learning to distinguish wedges from bricks
and cylinders, it will construct the wrong description for columns. Remember that to generalize a
description, the program replaces predicates which match the right hand side of a clause with the corre-
sponding left hand side. If the example of the column contained bricks, then Marvin would recog-
nize the brick as belonging to any_shape and attempt to generalize. To test the generalization it con-
structs another instance of the concept. In this case, the program could construct a column with cylin-
ders. This would be an instance of the target concept, even though the description it has created is too
general.

If Marvin had first learned a concept such as flat_top, defined as:

-16-

flat_top(X) ← brick(X).
flat_top(X) ← cylinder(X).

then the correct description of column could be learned. The problem we discuss here is: how can we
determine that a concept description has been learned incorrectly?

Let us suppose that we are carrying on an extended dialogue with Marvin and at some point, we
see that the program has incorrectly stated that an object is a tee ev en though it is not. Marvin’s
description of tee must be incorrect. However, suppose that a tee is now defined as a brick lying on a
column, is the bug the description of tee itself or in one of the concepts that it refers to, such as col-
umn? We can ‘debug’ the concept by using a method similar to Shapiro’s backtrace (Shaprio, 1981).
To illustrate this method, let us continue with the tees and columns. Assume that the concept descrip-
tion any_shape, above, has been learned as well as the following:

column(X) ← (R2)
ground(Y).

column(X) ← (R3)
any_shape(X) &
standing(X) &
X is_on_Y &
column(Y).

tee(T) ← (R4)
X is_part_of T &
Y is_part_of T &
brick(X) &
lying(X) &
X is_on Y &
column(Y).

The first clause in this version of column has been simplified to make the explanation easier.

Now suppose that the following object, X, has been incorrectly recognized as a tee:

1: A part_of X
3: B part_of X
4: A is_on B
5: B is_on C
6: brick(A)
7: lying(A)
8: wedge(B)
9: standing(B)
10: ground(C)

We will debug the concept descriptions by tracing through the steps which Marvin took to incor-
rectly recognize this object as an tee. Let us first list those steps.

1. Predicate 8 matches R1, the third clause of any_shape. Performing a replacement, this leaves us
with:

-17-

1: A part_of X
3: B part_of X
4: A is_on B
5: B is_on C
6: brick(A)
7: lying(A)
9: standing(B)
10: ground(C)
11: any_shape(B)

2. Predicate 10 matches R2, the first clause of column. Replacing predicate 10 with the corre-
sponding predicate in the left hand side of that clause:

1: A part_of X
3: B part_of X
4: A is_on B
5: B is_on C
6: brick(A)
7: lying(A)
9: standing(B)
11: any_shape(B)
12: column(C)

3. Predicates 5, 9, 11 and 12 match R3, the second clause of column. The replacement leaves:

1: A part_of X
3: B part_of X
4: A is_on B
6: brick(A)
7: lying(A)
13: column(B)

4. All of the remaining predicates match R4, the description of tee. Leaving:

14: tee(X)

Thus, the object has been incorrectly recognized as a tee.

When the trainer has told Marvin that this derivation is incorrect, the program retraces its steps,
asking the trainer to confirm that each replacement should have taken place. The following questions
correspond to each of the steps above.

1. The first replacement is checked for correctness by asking the trainer: ‘‘Is B an example of
any_shape?’’ If the answer is ‘‘yes’’, then the program continues. In this case, a wedge is an
example of any_shape.

2. Checking step 2, Marvin asks: ‘‘Is C an example of a column?’’. Again the answer is ‘‘yes’’.

3. Finally, checking the third replacement, Marvin asks: ‘‘Is B an example of column?’’ This time,
the trainer answer ‘‘no’’. Thus the offending clause, R3, has been identified.

Note that the description of any_shape is not incorrect. It is the definition of column which is
too general. The next step in debugging the concept, is to identify the predicate within the clause
which is incorrect.

Since the object, B, was incorrectly classified as a column, Marvin asks the trainer to change the
description of B so that it becomes a column. The trainer should make the least number of changes
possible. Assume that the description is changed to a brick standing on the ground. Now the program
may consider why the new object, X, is a column, while B is not. The two descriptions are:

-18-

wedge(B) brick(X)
standing(B) standing(X)
B is_on C X is_on Y
ground(C) ground(Y)

The properties which the two objects have in common can be ignored, leaving only the shape. The
replacement, R1, caused wedge(B) to be generalized to any_shape(B). Since this replacement resulted
in a misclassification, it should not be used in the clause R3. Marvin can now tell the trainer that it has
located the bug, and ask him to teach it about columns again, this time not using any_shape. More
specifically, the program can ask, ‘‘Is there a distinction between brick(B) and wedge(B) that you
haven’t explained yet?’’

10. CONCLUSION
When we characterize learning as a search process we assume the following:

1. There is a language which is used to describe concepts.

2. A state in the search space is a collection of descriptions written in this language. Given a set of
examples, a goal state is a set of descriptions such that each positive example satisfies some
description and no negative example satisfies any description.

3. There is a set of generalization rules for transforming states into new states.

4. A strategy for using the set of examples as a guide to choose a useful sequence of transforma-
tions which leads one to the goal state.

The problem of learning is to search through the space with a sequence of generalizations until a
path to the goal is found. The search space is determined by the language used to describe concepts.
Learning systems such as LEX (Mitchell, 1982), INDUCE (Michalski, 1983) and MIS (Shapiro, 1981),
have languages which are fixed at the start of the learning task. In programs such as Marvin (Sammut,
1981) and its predecessor, CONFUCIUS (Cohen, 1978) we have inv estigated learning systems in
which the description language changes depending on the state, i.e. on the set of descriptions learned.
Put another way, while in previous work the transformations operated on single sentences in the state,
in our work the rules take the whole state into consideration. This makes for a significant difference in
the efficiency of the descriptions learned and, under many circumstances, on the efficiency of the
search process itself.

Marvin is able to easily extend its language because it uses sets of Horn clauses as descriptions,
just as MIS does. The program is designed to emulate teacher/student learning. Unlike LEX, it is not
given a hierarchy of concepts initially. The relationships between concepts are built up as the trainer
presents new concepts. As in human teacher/student interactions, it is expected that simple concepts
will be taught before complex ones. For example, addition is taught as a concept before multiplication
is taught, since the description of multiplication may use addition. The collection of concepts as a
whole forms a model of the world in which the program exists.

Marvin does not passively accept data from the trainer. It ‘performs experiments’ to test its
hypotheses by constructing its own training examples. This provides the trainer with feedback which
indicates how well Marvin has ‘understood’ the concept. With improvements which will allow it to
detect and correct misconceptions, a learning system, such as Marvin, could find applications in the
interactive acquisition of knowledge for expert systems. However, its main contributions have been in
demonstrating a program whose language grows in descriptive power as it learns new concepts and in
being able to use those concepts as procedures to perform actions, that is, to build objects.

ACKNOWLEDGEMENTS
This paper was written while the first author was with the Department of Computer Science,

University of Illinois at Urbana-Champaign. We thank R.S. Michalski for his help during the stay at
Illinois. We also thank Ian Hayes for his helpful comments on a draft of this paper.

-19-

References
Banerji, R. B., “A Language for the Description of Concepts,” General Systems, 9 (1964).

Cohen, B. L., A Theory of Structural Concept Formation and Pattern Recognition, Ph.D. Thesis, Dept.
of Computer Science, University of N.S.W (1978).

Hayes-Roth, F. and McDermott, J., “An Interference Matching Technique for Inducing Abstractions,”
Communications of the ACM, 21, pp. 401-411 (1978).

Michalski, R. S., “Pattern Recognition as Rule-Guided Inference,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2, 4, pp. 349-361 (1980).

Michalski, R.S., “A Theory and Methodology of Inductive Learning” in Machine Learning: An Artifi-
cial Intelligence Approach, ed. Michalski, Carbonell, Mitchell, Tioga, Palo Alto (1983).

Robinson, J. A., “A Machine Oriented Logic Based on the Resolution Principle,” Journal of the ACM,
12, 1, pp. 23-41 (1965).

Sammut, C. A., Learning Concepts by Performing Experiments, Ph.D. thesis, Department of Computer
Science, University of New South Wales (1981).

Shapiro, Ehud Y., “Inductive Inference of Theories From Facts,” 192, Yale University (1981).

Utgoff, Paul E. and Mitchell, Tom M., “Acquisition of Appropriate Bias for Inductive Concept Learn-
ing” in Proceedings of the National Conference on Artificial Intelligence, pp. 414-417, Pitts-
burgh (1982).

