
On the Convergence
of Incremental Knowledge Base Construction

Tri M. Cao1, Eric Martin1,2, and Paul Compton1

1 School of Computer Science and Engineering
University of New South Wales

Sydney 2052, Australia
{tmc,emartin,compton}@cse.unsw.edu.au

2 National ICT Australia Limited�

Abstract. Ripple Down Rules is a practical methodology to build knowledge-
based systems, which has proved successful in a wide range of commercial ap-
plications. However, little work has been done on its theoretical foundations. In
this paper, we formalise the key features of the method. We present the process of
building a correct knowledge base as a discovery scenario involving a user, an ex-
pert, and a system. The user provides data for classification. The expert helps the
system to build its knowledge base incrementally, using the output of the latter in
response to the last datum provided by the user. In case the system’s output is not
satisfactory, the expert guides the system to improve its future performance while
not affecting its ability to properly classify past data. We examine under which
conditions the sequence of knowledge bases constructed by the system eventually
converges to a knowledge base that faithfully represents the target classification
function. Our results are in accordance with the observed behaviour of real-life
systems.

1 Introduction

An expert can be defined as someone who is able to make excellent judgements in some
specific domain; that is, someone who is able to draw appropriate conclusions from the
data available. A central problem for building knowledge-based systems is that although
an ability to draw conclusions from data generally implies some ability to indicate fea-
tures relevant to the conclusion, it does not imply an ability to provide a general model
of the whole domain. That is, the expert will only indicate some distinguishing features
and never all the features that distinguish a particular conclusion from all other conclu-
sions in the domain. Compton and Jansen [5] and Richards and Compton [14] argue that
people cannot give a comprehensive explanation for their decision making, but at most
justify why a decision is preferable to the other alternate decisions under consideration
in the context.

Ripple-Down Rules (RDR) is a knowledge acquisition methodology developed to
deal with this contextual nature of knowledge. It requires experts only to deal with

� National ICT Australia is funded by the Australian Government’s Department of Communi-
cations, Information Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence Program.

E. Suzuki and S. Arikawa (Eds.): DS 2004, LNAI 3245, pp. 207–218, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

208 Tri M. Cao, Eric Martin, and Paul Compton

specific cases and to justify why a specific conclusion applies to a case rather than
some other conclusion. The expert has to identify features in the case that distinguish
it from other specific cases that have the alternate conclusion. The approach is further
grounded in an expert’s concrete experience, by building the knowledge base while it is
in use processing real cases. The expert supervises the output of the system and corrects
it when it makes an inappropriate decision, by identifying the distinguishing features
of the case. The expert only deals with cases and makes no attempt to generalise or
structure the knowledge; the RDR system is responsible for organising the knowledge.
This approach contrasts significantly with conventional knowledge acquisition where
generally the expert and knowledge engineer collaborate to design a knowledge model
of the domain, and it is hoped that this knowledge is effectively complete before being
put into use.

RDR systems have been developed for a range of application areas and tasks. The
first industrial demonstration of this approach was the PEIRS system, which provided
clinical interpretations for reports of pathology testing and had almost 2000 rules built
by pathologist [5, 13]. The approach has also been adapted to a range of tasks: control
[16], heuristic search [2], document management using multiple classification [9], and
configuration [6]. The level of evaluation in these studies varies, but overall they clearly
demonstrate very simple and highly efficient knowledge acquisition. There is now sig-
nificant commercial experience of RDR confirming the efficiency of the approach. Fol-
lowing the PEIRS example, one company, Pacific Knowledge Systems supplies tools
for pathologist to build systems to provide interpretative comments for medical Chemi-
cal Pathology reports. One of their customers now processes up to 14,000 patient reports
per day through their 23 RDR knowledge bases with a total of about 10,000 rules, giving
very highly patient-specific comments. They have a high level of satisfaction from their
general practitioner clients and from the pathologists who keep on building more rules
– or rather who keep on identifying distinguishing features to provide subtle and clini-
cally valuable comments. A pathologist generally requires less than one day’s training
and rule addition is a minor addition to their normal duties of checking reports; it takes
at most a few minutes per rule (Pacific Knowledge Systems, personal communication1).

Given the success of the knowledge representation scheme and the knowledge re-
vision procedure, it is of interest to investigate the properties of RDR to account for its
success and shape its future developments. We examine the relevance of the approach
in the perspective of formal learning theory (Inductive Inference). A paradigm of for-
mal learning theory investigates under which conditions the sequence of hypotheses
output by an agent, in response to longer and longer finite initial segments of a poten-
tially infinite stream of data, converges to an accurate and finite description of a target
function. A simple learning scenario together with the corresponding concepts of “con-
vergence” and “accuracy” were first defined by Gold in his model of learning in the
limit [8]. This model is well adapted to address the kind of issues we are interested
in. However, further investigation in other learning frameworks, such as PAC learning
or statistical query models [10], would be necessary to provide complementary insight
into the issues.

1 Dr. L. Peters http://www.pks.com.au/main.htm

On the Convergence of Incremental Knowledge Base Construction 209

In this paper, we formalise the process of building a correct knowledge base as a
learning scenario where success is expressed in terms of convergence in the limit. More
precisely, we examine important conditions that do or do not guarantee whether the
sequence of knowledge bases built by the system eventually converges to a knowledge
base that faithfully represents the target classification function.

In Section 2, we give an informal representation of Ripple Down Rules. In Section 3,
we formalise the process of incremental knowledge base construction. The convergence
of the process is investigated in Section 4. We conclude in Section 5.

2 Ripple Down Rules

In this section, we present a knowledge representation and reasoning scheme of RDR
systems. There seems to be two reasonable approaches for translating an RDR knowl-
edge base into a logical theory. The first approach would use prioritised logic, which
would involve a second-order predicate to capture the refinement semantics. The second
approach is presented in more detail since it is our preferred choice.

A binary Ripple Down Rules knowledge base is a finite binary tree with two distinct
types of edges, labelled with either except or if-not, whose nodes are labelled with rules
of the form “if α then C” or “if α then not C”, where α is a formula in a propositional
language and C is a fixed atom outside this language. Figure 1 depicts an example of a
binary RDR knowledge base. We call α the condition and C the conclusion of the rule.

airplane −> fly

except

except

if not if not

except
bird −> fly young,bird −> not fly

penguin −> not fly in−plane −> fly

−> not fly

Fig. 1. An RDR knowledge base.

Note that we only consider binary RDR knowledge bases. (In full generality, knowledge
bases can have n branches and conclusions can be built from different atoms. It is not
difficult to reduce such knowledge bases to the kind of knowledge base we consider
here; details are omitted.)

In the above example, we can identify the following elements of the knowledge
base:

– attributes, namely: bird, young, airplane, penguin, in-plane,...;
– conclusions, namely: fly and not fly.

The binary RDR knowledge base is used as follows. A data case d is passed to the tree
starting from the root. If the data case entails the condition of the current node, the data
case is said to fire the rule and the conclusion is temporarily recorded (and overrides
the previous conclusion). The data case is then passed to the next node in the except
branch. If the case does not entail the condition of the rule, it is passed to the next node

210 Tri M. Cao, Eric Martin, and Paul Compton

in the if-not branch. The process continues until there is no suitable node to pass the
case to. This algorithm defines a path from the root of the tree to a node for each case.

Procedures to translate a binary RDR tree into a set of logical rules have been pro-
posed in [15, 11, 4]. One of the results is a representation such that, for any given data
case d, there is a unique rule from the translated set which can be applied to the data
case. For example, the above RDR rule tree can be translated into the following set:

bird ∧ not young ∧ not penguin → fly

not bird ∧ airplane → fly

bird ∧ young → not fly

bird ∧ not young ∧ penguin ∧ not in-plane → not fly

bird ∧ not young ∧ penguin ∧ in-plane → fly

not bird ∧ not airplane → not fly

One of the strengths of the RDR framework is that rule bases are easy to revise. When
an expert spots a rule which gives a wrong conclusion, she only needs to create a new
exception to that rule. A new condition will be required from the expert to distinguish
between the current data case and the past data cases which have been correctly clas-
sified by the rule. In the rule set, this action will break the rule into two rules. The
conditions of the new rules will be the condition of the old rule in conjunction with
the differentiating condition (from the expert) or its negation. For example, if we feed
the RDR knowledge base in Figure 1 with the data case bird ∧ kiwi, the answer from
the system will then be fly, which is undesired, and the rule which gives the wrong
conclusion is

bird ∧ not young ∧ not penguin → fly

Therefore, if the differentiating condition given by the expert is kiwi, then the RDR
knowledge base becomes as represented in Figure 2.

airplane −> fly

except

except

if not if not

if not

penguin −> not fly

kiwi −> not fly

except
−> not fly young,bird −> not flybird −> fly

in−plane −> fly

Fig. 2. The revised RDR knowledge base.

The new translated rule set is

not bird ∧ airplane → fly

bird ∧ young → not fly

bird ∧ not young ∧ penguin ∧ not in-plane → not fly

bird ∧ not young ∧ penguin ∧ in-plane → fly

On the Convergence of Incremental Knowledge Base Construction 211

bird ∧ not young ∧ not penguin ∧ not kiwi → fly

bird ∧ not young ∧ not penguin ∧ kiwi → not fly

not bird ∧ not airplane → not fly

In the next section, we will formalise this kind of translated set of rules and use the
formalisation as the knowledge representation scheme of the system.

3 The Formal Discovery Framework

Our framework can be intuitively described as a scenario which involves: an agent or
user, a system, an expert, and a classification function. The expert knows whether a
given datum is negatively or positively classified by the classification function φ, though
he does not know φ. The user presents the system with a stream of data. The aim of the
system is to correctly classify all data in the stream with the help of the expert. We will
formalise this scenario in Section 3.2 after we have introduced the necessary definitions.

3.1 Basic Concepts

We denote by L the set of propositional formulas built from a fixed countable set of
propositional atoms {a0, a1, . . .}. We choose an arbitrary tautology and refer to it by
�. Depending on the context, we will refer to members of L either as formulas or as
classification functions.

Definition 1. A data case is a finite set of natural numbers.

A data case d can be seen as a model in which finitely many atoms, namely {ai :
i ∈ d}, have the value true. Hence given α ∈ L, we will write d |= α to mean that d is
a model of α. We denote by Truth the binary function that maps every pair of the form
(α, d), where α is a formula and d is a data case, to 1 if d |= α, and to 0 otherwise.

Definition 2. Let a finite set F = {α1, α2, . . . , αn} of formulas be given.

F is said to be independent iff for all data cases d and for all distinct members j, k of
{1 . . . n}, if d |= αj then d |= ¬αk .

F is said to be a coverage of the domain iff for all data cases d, there exists a member
j of {1 . . . n} such that d |= αj .

F is said to be a partition of the domain iff F is both independent and a coverage of the
domain.

We abstract an RDR knowledge base as a finite set of rules whose antecedents are
formulas that represent conditions to be tested against data cases and whose conclusions
are either 1 or 0 depending on whether the data case is positively or negatively classified
by the system. A key condition is that the set of premises of the rules forms a partition
of the domain.

212 Tri M. Cao, Eric Martin, and Paul Compton

Definition 3. A knowledge base is a finite set of the form:

{(α1, c1), (α2, c2), . . . , (αn, cn)}
where α1, . . . , αn are formulas such that {α1, α2, . . . , αn} is a partition of the domain
and c1, . . . , cn are members of {0, 1}.

Intuitively, if a pair of the form (α, 1) (respect., (α, 0)) belongs to a knowledge base
K , then for every data case d that is a model of α, K positively (respect., negatively)
classifies d.

Our scenario involves infinite sequences of knowledge bases. Two issues have to be
considered: convergence of the sequence and, in case of convergence, correctness of the
limit knowledge base. The next two definitions capture these concepts.

Definition 4. Let a sequence (Ki)i∈N of knowledge bases and a knowledge base K be
given. We say that (Ki)i∈N converges to K iff there exists n ∈ N such that for all i ≥ n,
Ki = K .

Definition 5. Let K = {(α1, c1), (α2, c2), . . . , (αk, ck)} be a knowledge base. K is
said to be correct with respect to a classification function φ iff:

|=
∨

(α,1)∈K

α → φ and |=
∨

(α,0)∈K

α → ¬φ.

In the previous definition, implications can be replaced by equivalences.

Proposition 1. Let K = {(α1, c1), (α2, c2), . . . , (αk, ck)} be a knowledge base. K is
correct with respect to a classification function φ iff

|=
∨

(α,1)∈K

α ↔ φ and |=
∨

(α,0)∈K

α ↔ ¬φ.

Proof. Let d be a data case and assume that d |= φ. By the definition of K , there exists
a unique (γ, c) ∈ K with d |= γ. It suffices to show that c = 1. By way of contradiction,
assume that c = 0. Since |= ∨

(α,0)∈K → ¬φ, γ ∈ {α : (α, 0) ∈ K} and d |= γ, it
follows that d |= ¬φ. So c = 1.

The previous proposition expresses that we can get the normal form of the target
classification function by combining the antecedents of the rules in the correct knowl-
edge base. The next definition abstracts the behaviour of the system which, for a given
data case d, will automatically determine the unique rule in its knowledge base that
applies to d.

Definition 6. The system function is the (unique) function, denoted by S, that maps
any pair of the form (K, d), where K is a knowledge base and d is a data case, to
the unique member (α, c) of K such that d |= α; we denote α by S1(K, d) and c by
S2(K, d).

Two knowledge bases may represent distinct classification functions but from the
user’s point of view, both knowledge bases are equivalent if they agree on that user’s
(finite) set of data. The next definition formalises this notion.

Definition 7. Let a set D of data cases and two knowledge bases K, K ′ be given. We
say that K and K ′ are D-equivalent iff for all members d of D, S2(K, d) = S2(K ′, d).

On the Convergence of Incremental Knowledge Base Construction 213

3.2 The Discovery Scenario

Before we formalise the scenario that has been outlined at the beginning of the previous
section, we describe it in more detail, using the concepts that have been introduced.

1. The user presents the system with some datum d.
2. The system returns S(K, d) = (α, c) where K is the current knowledge base in the

system.
3. The expert analyses (α, c). More precisely, if c = 1 (respect., c = 0) and the expert

considers that d should be positively (respect., negatively) classified, then go back
to step 1; otherwise, go to step 4.

4. The expert E determines a formula δ such that if (α, c) is removed from K and
replaced by the more specific rules (α∧ δ, c) and (α∧¬δ, 1− c), then the resulting
knowledge base K ′ has the following properties:

– if D is the set of data received by the system before d, then K and K ′ are
D-equivalent;

– If the expert positively (respect., negatively) classifies d, then S2(K ′, d) = 1
(respect., S2(K ′, d) = 0).

Go back to step 1.

To fix the knowledge base, the expert essentially breaks the rule that gives wrong
classification on the last datum into two rules by adding a differentiating condition. The
first rule will take care of all the previous data cases that apply to the old rule. The
second rule will apply to the new data case only.

The next lemma is important because it guarantees that the expert can always find a
differentiating condition and thus refine the knowledge base in an incremental manner.
This is one of the strengths of RDR in building knowledge-based systems. Note that the
lemma is just an existence statement. It is a theoretical result that does not impose any
restriction on how an expert might come up with a differentiating condition. In practice,
such a condition is likely to be more complex than the one given here.

Lemma 1. Let a knowledge base K , a classification function φ, and a finite set D of
data cases be such that for all members d of D, S2(K, d) = Truth(φ, d). Let a data
case d that does not belong to D be given. Let (α, c) = S(K, d). Then there exists a
formula δ with the following properties. Set:

K ′ = K\{(α, c)} ∪ {(α ∧ δ, c), (α ∧ ¬δ, 1 − c)}.
Then:

– K ′ is a knowledge base;
– K and K ′ are D-equivalent;
– Truth(δ, d) = c.

Proof. Define Dα = {d′ ∈ D : d′ |= α} to be the support data of the rule (α, c). We
will construct a formula δ such that d |= α∧ δ and for all d′ ∈ Dα, d′ |= α∧¬δ. Given
a data case d′, define:

Diff(d, d′) = {a ∈ L : d |= a ∧ d′ |= ¬a}.

214 Tri M. Cao, Eric Martin, and Paul Compton

In case d′ is a data case that is distinct from d then the set Diff(d, d′) ∪ Diff(d′, d) is
not empty. For all d′ ∈ Dα, let

δd′ =
∧

a∈Diff(d,d′)

a ∧
∧

a∈Diff(d′,d)

¬a.

Let δ =
∧

d′∈Dα
δd′ . Then δ satisfies the claims of the lemma.

We are now ready to formalise the learning scenario outlined at the beginning of this
section. For a given sequence of data cases and a given target classification function, it
defines:

– a sequence of formulas that represent the expert’s strategy in response to the data
received so far, and the way these data are classified by the system;

– a sequence of knowledge bases that are built incrementally by the system following
the expert’s guidance.

Definition 8. Let a sequence (dn)n∈N\{0} of data cases and a classification function φ
be given. An admissible scenario for (dn)n∈N\{0} and φ is a pair

((δn)n∈N\{0}, (Kn)n∈N)

where (δn)n∈N\{0} is a sequence of formulas and (Kn)n∈N is a sequence of knowledge
bases such that K0 = {(�, 1)} and for all n ∈ N, the following holds. Let (α, c) =
S(dn+1, Kn) and D = {d1, . . . , dn}. Then:

– if Truth(φ, dn+1) = c then δn+1 = �;
– Kn+1 = Kn\{(α, c)} ∪ {(α ∧ δn+1, c), (α ∧ ¬δn+1, 1 − c)};
– Kn and Kn+1 are D-equivalent;
– Truth(δn+1, dn+1) = c.

Let a sequence (dn)n∈N\{0} of data cases and a classification function φ be given. In
Definition 8, the existence of at least one admissible scenario for (dn)n∈N\{0} and φ is
justified by Lemma 1. Intuitively, δn+1 is the expert’s opinion in response to dn+1, α
and c. In the above definition, if the expert agrees with the system on the classification
of data case dn then δ is assigned � (the tautology) and as a result, Kn+1 is the same
as Kn.

Technically, it is convenient to be able to refer to the sequence of knowledge bases,
with no mention of the sequence of formulas put forward by the expert:

Definition 9. Let a sequence (dn)n∈N\{0} of data cases and a classification function φ
be given. A knowledge base refinement for (dn)n∈N\{0} and φ is a sequence (Kn)n∈N

of knowledge bases for which there exists a sequence (δn)n∈N\{0} of formulas such that
((δn)n∈N\{0}, (Kn)n∈N) is an admissible scenario for (dn)n∈N\{0} and φ.

4 Convergence Properties

To explore the scenario we described in the previous section, we need to introduce an
additional notion. As in standard learning paradigms, we assume that data are noise-free
and complete in the following sense.

On the Convergence of Incremental Knowledge Base Construction 215

Definition 10. We say an enumeration of data cases is complete iff it contains at least
one occurrence of every data case.

Though enumerations of data might not be complete in practice, completeness is
one of the main assumptions in all basic paradigms of formal learning theory. A good
understanding of scenarios based on this assumption paves the way to more realistic
descriptions where data can be noisy or incomplete. So we apply the scenario to the case
where (dn)n∈N\{0} is a complete enumeration of data cases. Since the knowledge base
correctly classifies all the observed data cases, it performs no worse than the expert on
those cases. Hence even if the stream of data is not complete, the sequence of generated
knowledge bases is practically valuable; the completeness assumption is not necessary
to guarantee the consistency of the knowledge bases with past data.

We now investigate the conditions under which the sequence of knowledge bases
built by the system converges. The reason we are interested in the convergence is that
the limit knowledge base correctly classifies all data cases with respect to the target
classification function, as expressed in the next proposition.

Proposition 2. Let a complete sequence (dn)n∈N\{0} of data cases and a classification
function φ be given. Let (Kn)n∈N be a knowledge base refinement for (dn)n∈N\{0} and
φ. If (Kn)n∈N converges to some knowledge base K then K is correct w.r.t. φ.

Proof. For all n ∈ N, if Kn+1 = Kn then Kn correctly classifies dn+1. Moreover, for
all n ∈ N, Kn correctly classifies d0, . . . , dn by construction. The proposition follows.
The next proposition shows that some real expertise is needed in order to help the
system to converge to some knowledge base.

Proposition 3. For every classification function φ, there exists uncountably many com-
plete enumerations of data (dn)n∈N\{0} for which some knowledge base refinement for
(dn)n∈N\{0} and φ does not converge to any knowledge base.

Proof. We show that there exists an enumeration of data on which the knowledge base
is not guaranteed to converge. Let’s assume without loss of generality that the classifi-
cation function φ is a0. Let {ni}i∈N be an increasing sequence of numbers with n0 > 0.
Let

pni = Odd(i)

n0−1︷ ︸︸ ︷
0 . . . 0 1

n1−n0−1︷ ︸︸ ︷
0 . . . 0 1 . . .

denote the data case where the 0th attribute is classified as positive (resp. classified
as negative) if i is odd (resp. even) and only the nth

0 , . . . , nth
i attributes are positive. We

construct a complete enumeration (dj)j∈N\{0} of data cases from the sequence (pni)i∈N

as follows:
d1 = pn0 = 00 . . . 010 . . .

A0

dj1 = pn1 = 10 . . . 010 . . .10 . . .
A1

. . .

where for all i ∈ N, Ai is an enumeration of all data cases d such that for all k ≥ ni,
d |= ¬ak. Remember from Definition 8 that K0 = {(�, 1)}. When the user presents

216 Tri M. Cao, Eric Martin, and Paul Compton

d1 to the system, the system misclassifies d1 (positively instead of negatively). In or-
der to correctly classify d1, the expert can choose the formula ¬an0 as the differ-
entiating condition, in which case the system updates its knowledge base to K1 =
{(¬an0 , 1), (an0 , 0)}. Some of the member of A0 will be misclassified by K1. In or-
der to remedy these misclassifications, the expert will need to break the first rule of
K1 (namely, (¬an0 , 1)) and subsequently break some of the derived rules; indeed, the
expert cannot break the rule (an0 , 0) since none of the members of A0 is a model of
an0 . When dj1 is presented to the system by the user, the faulty rule (an0 , 0) has to be
broken into two rules so that the system correctly classifies dj1 . Suppose that the expert
chooses the formula ¬an1 . The two new rules are (an0 ∧ ¬an1 , 0) and (an0 ∧ an1 , 1).
Then the pattern described before repeats itself: the rule (an0 ∧an1 , 1) is left untouched
until dj2 (which is pn2) shows up, etc. For all i ∈ N \ {0}, the knowledge base will
be changed in view of dji and the sequence of knowledge bases does not converge.
Since there are uncountably many increasing sequences {ni}i∈N, it follows that there
are uncountably many data enumerations that can fail the expert.

The proof of Proposition 3 shows that experts who can correctly classify a single
data case, but who are unable to select the relevant attributes, will induce the system to
produce infinitely many knowledge bases. At any given time, the number of attributes
occurring in the data cases observed so far is finite. When the expert has to revise the
current knowledge base, he could take into consideration only the finite set of observed
attributes, and converge to a correct knowledge base. The problem with the expert de-
fined in the proof of the previous proposition is not that the number of attributes is
potentially infinite (with more and more of them being observed as more and more data
come in), but the fact that he chooses the wrong attribute from the finite set of available
ones. It should also be noted that the behaviour of experts described in the proof is in
accordance with practical RDR based systems.

Theorem 1. Let a complete enumeration of data (dn)n∈N\{0}, a classification function
φ, a sequence (δn)n∈N\{0} of formulas, and a sequence (Kn)n∈N of knowledge bases
be such that:

– ((δn)n∈N\{0}, (Kn)n∈N) is an admissible scenario for (dn)n∈N\{0} and φ;
– there exists a finite set A of propositional atoms such that for all n ∈ N, δn is built

from members of A only.

Then (Kn)n∈N converges to some knowledge base.

Proof. Let n ∈ N be given. By Definition 3, for all distinct members (α1, c1), (α2, c2)
of Kn, α1 and α2 are not logically equivalent. Moreover, it follows from Definition 8
that for all (α, c) ∈ Kn, α is built from members of A only. Hence there exists N ∈
N such that for all n ∈ N, the number of rules in Kn is bounded by N . Also from
Definition 8, the number of rules in Kn+1 is greater than or equal to the number of
rules in Kn, for all n ∈ N. This immediately implies the sequence (Kn)n∈N converges.

The theorem states that if the expert bases his judgement of the classification on
a finite set of attributes, then the knowledge base will eventually converge to some
limiting knowledge base. Proposition 2 guarantees that the limit knowledge base is
correct with respect to the target classification function.

On the Convergence of Incremental Knowledge Base Construction 217

One of the possible implications of the previous theorem can be applied to the do-
main of web page classification. If the keywords are taken as attributes, then it is possi-
ble to assume that the number of distinct attributes in the domain is large (infinite). On
the other hand, the number of attributes that occur in a given web page is small (finite).
Hence a web page can be identified as a data case in the sense of our framework. There-
fore, if we assume that the classification function can be defined in terms of a finite
number of attributes (keywords), then a good expert, namely, an expert who considers
new attributes only when she is forced to, will eventually construct a good classifier.

There are alternative approaches for building knowledge bases from a stream of
cases, some of these approaches might be conceptually simpler, and enjoy a straight-
forward convergence result. It is beyond the scope of this paper to compare RDR with
competing approaches. RDR has turned out to be very valuable in practice, in particular
because it not only classifies cases but also encodes knowledge that supports classifi-
cation. Hence RDR is a useful tool for explanation and teaching. For this reason, it is
important that the convergence property of the RDR approach is guaranteed.

Feature selection is the problem of removing irrelevant or redundant features from
a given set [3] and is often formalised as a search problem. It is considered as a hard
problem (even if the number of attributes is small) that has attracted lots of attention
recently [7, 12]. Our work is related to this problem in the sense that it analyses how
expertise can be used in the selection process. RDR has proved useful in acquiring
search knowledge [2] and could provide some insight to the feature selection problem.

5 Conclusion and Further Work

Ripple Down Rules has proved successful in practice as a methodology to build knowl-
edge based systems. However, there has been so far no systematic analysis of the fun-
damental features that make it successful. In this paper, we have presented a crude
but accurate formalisation of RDR methodology. We have shown that concepts from
learning theory can be fruitfully applied and capture a desirable property of practical
systems, namely that they eventually stabilise to an accurate representation of a target
classification function. In practice, the number of potential attributes is very large and
neither the expert nor the system knows the small number of those that are relevant. The
number of attributes that appear in a data case as well as the number of attributes on the
basis of which the target classification function can be expressed is small. We have ex-
amined the consequences of this asymmetry and shown that it might prevent the system
from converging to a correct knowledge base, but that experts can apply some strategy
to ensure convergence. We also showed that convergence guarantees correctness.

Our aim is to come up with formalisations of general classes of strategies, and eval-
uate their chance of success. This paper represents a first step in this direction, and
illustrates the potential of the approach. It paves the way to more fine-grained mod-
els where the behaviour of the agents involved (user, expert, system) can be described
more realistically. In particular, further models will incorporate possibly noisy or in-
complete data, and consider less stringent classification criteria. We will also consider
under which conditions the convergence of the sequence of knowledge bases is subject
to an ordinal mind change bound [1]. Finally, alternative models should be investigated
to shed light on other issues, e.g., speed of convergence.

218 Tri M. Cao, Eric Martin, and Paul Compton

References

1. A. Ambainis, R. Freivalds, and C. Smith. Inductive inference with procrastination: back to
definitions. Fundam. Inf., 40(1):1–16, 1999.

2. G. Beydoun and A. Hoffmann. Incremental acquisition of search knowledge. Journal of
Human-Computer Studies, 52:493–530, 2000.

3. A. Blum and P. Langley. Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97(1-2):245–271, 1997.

4. R. Colomb. Representation of propositional expert systems as partial functions. Artificial
Intelligence, 109(1-2):187–209, 1999.

5. P. Compton and G. Edwards. A philosophical basis for knowledge acquisition. Knowledge
Acquisition, 2:241–257, 1990.

6. P. Compton, Z. Ramadan, P. Preston, T. Le-Gia, V. Chellen, and M. Mullholland. A trade-off
between domain knowledge and problem solving method power. In B. Gaines and M. Musen,
editors, 11th Banff KAW Proceeding, pages 1–19, 1998.

7. M. Dash and H. Liu. Consistency-based search in feature selection. Artificial Intelligence,
151(1-2):155–176, 2003.

8. M. E. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

9. B. Kang, K. Yoshida, H. Motoda, and P. Compton. A help desk system with intelligence
interface. Applied Artificial Intelligence, 11:611–631, 1997.

10. M. J. Kearns. Efficient noise-tolerant learning from statistical queries. In Proceedings of the
25th ACM Symposium on the Theory of Computing, pages 392–401. ACM Press, 1993.

11. R. Kwok. Translation of ripple down rules into logic formalisms. In Rose Dieng and Olivier
Corby, editors, EKAW 2000, volume 1937 of Lecture Notes in Computer Science. Springer,
2000.

12. H. Motoda and H. Liu. Data reduction: feature aggregation. In Handbook of data mining
and knowledge discovery, pages 214–218. Oxford University Press, Inc., 2002.

13. P. Preston, G. Edwards, and P. Compton. A 2000 rule expert system without a knowledge
engineer. In B. Gaines and M. Musen, editors, 8th Banff KAW Proceeding, 1994.

14. D. Richards and P. Compton. Taking up the situated cognition challenge with ripple down
rules. Journal of Human-Computer Studies, 49:895–926, 1998.

15. T. Scheffer. Algebraic foundation and improved methods of induction of ripple down rules.
In Pacific Rim Workshop on Knowledge Acquisition Proceeding, 1996.

16. G. Shiraz and C. Sammut. Combining knowledge acquisition and machine learning to con-
trol dynamic systems. In Proceedings of the 15th International Joint Conference in Artificial
Intelligence (IJCAI’97), pages 908–913. Morgan Kaufmann, 1997.

	1 Introduction
	2 Ripple Down Rules
	3 The Formal Discovery Framework
	3.1 Basic Concepts
	3.2 The Discovery Scenario

	4 Convergence Properties
	5 Conclusion and Further Work
	References

