
COMP1400
Week 7 - Object oriented programming
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Program

Code Data
x = 1;
if (...)
while (...)
for (...) 

bool isAwake;
int nSheep
float angle;
char initial;

Primitive
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Program

Code Data
x = 1;
if (...)
while (...)
for (...) 

bool isAwake;
int nSheep
float angle;
char initial;

Primitive

Methods
public int sort(
     int[] data) 

Arrays
int[][] pixels;
char[] name; 

Compound
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Abstraction
Compound code and data structures provide 
us a means of abstraction - i.e dividing the 
program into chunks.

Each chunk contains a collection of related 
code and/or data. We give the chunk its own 
name and identity.
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Abstraction
Abstraction has several advantages:

• Code re-use

• Clearer design

• Easier debugging

Blocks of duplicated code or data is usually a 
sign of a need for abstraction.
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Example - 
One big method

Monday, 10 September 12



Objects
An object is a abstract chunk of code and data 
that belong together.

Example:  A variable size list of Strings

void add(String item)
void remove(String item)
String get(int pos)

Code
String[] contents;
int size;

Data
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Program

Code Data
x = 1;
if (...)
while (...)
for (...) 

bool isAwake;
int nSheep
float angle;
char initial;

Primitive

Methods
public int sort(
     int[] data) 

Arrays
int[][] pixels;
char[] name; 

Objects
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Object-oriented 
Programming

Object-oriented programming (OOP) is the 
process of designing and implementing 
programs as systems of interacting objects.

It is fundamentally based around the ideas of 
abstraction and encapsulation. 
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Object-oriented 
Programming

Abstraction

• Dividing the program into chunks at 
different levels of detail.

Encapsulation

• Each chunk hides its implementation 
details from outsiders.
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Program

Object Object

Object

Object
// primitive
bool isAwake;
int nSheep;

// primitive
bool isAwake;
int nSheep;

Object
// primitive
bool isAwake;
int nSheep;

Object
// primitive
bool isAwake;
int nSheep;

// primitive
bool isAwake;
int nSheep;
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Program

Object Object

Object

hidden hidden

hidden
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Encapsulation
Each object has: 

• a public interface that describes how it 
can be used

• a private implementation that describes 
how it works
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Classes
Objects have types called Classes. 

Classes represent all objects of a certain 
kind.

All objects in a class share a common 
structure but have different details.
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Example
“Car” is a class.  

All cars have data: 
    colour
    engine capacity, etc.

and methods:
    drive
    park, etc.
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Example
My car is an object. 
It is an instance of the class Car.

My car has data with specific values: 
    colour = yellow
    engine capacity = 1.5 litre

and methods:
    drive
    park, etc.
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Static data and methods
You usually need a specific instance of a class 
(an object) to access data and methods.

Eg: you can’t drive the class “Car” or ask 
what colour “Car” is.

However some methods and data belong to 
all cars and can be run on the class. These 
are called “static”.
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Java Class Library
Java comes with a large collection of classes for 
common object types.

You can browse the library online at:

http://docs.oracle.com/javase/6/docs/api/
index.html?overview-summary.html
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Random
The Random class is one
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ArrayList
Another important class is ArrayList.

http://docs.oracle.com/javase/6/docs/api/java/
util/ArrayList.html

This class represents variable length lists. 
Internally it is implemented using arrays but it 
provides a much more flexible interface.
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