
COMP1400
Week 7 - Object oriented programming

Monday, 10 September 12

Program

Code Data
x = 1;
if (...)
while (...)
for (...)

bool isAwake;
int nSheep
float angle;
char initial;

Primitive

Monday, 10 September 12

Program

Code Data
x = 1;
if (...)
while (...)
for (...)

bool isAwake;
int nSheep
float angle;
char initial;

Primitive

Methods
public int sort(
 int[] data)

Arrays
int[][] pixels;
char[] name;

Compound

Monday, 10 September 12

Abstraction
Compound code and data structures provide
us a means of abstraction - i.e dividing the
program into chunks.

Each chunk contains a collection of related
code and/or data. We give the chunk its own
name and identity.

Monday, 10 September 12

Abstraction
Abstraction has several advantages:

• Code re-use

• Clearer design

• Easier debugging

Blocks of duplicated code or data is usually a
sign of a need for abstraction.

Monday, 10 September 12

Example -
One big method

Monday, 10 September 12

Objects
An object is a abstract chunk of code and data
that belong together.

Example: A variable size list of Strings

void add(String item)
void remove(String item)
String get(int pos)

Code
String[] contents;
int size;

Data

Monday, 10 September 12

Program

Code Data
x = 1;
if (...)
while (...)
for (...)

bool isAwake;
int nSheep
float angle;
char initial;

Primitive

Methods
public int sort(
 int[] data)

Arrays
int[][] pixels;
char[] name;

Objects

Monday, 10 September 12

Object-oriented
Programming

Object-oriented programming (OOP) is the
process of designing and implementing
programs as systems of interacting objects.

It is fundamentally based around the ideas of
abstraction and encapsulation.

Monday, 10 September 12

Object-oriented
Programming

Abstraction

• Dividing the program into chunks at
different levels of detail.

Encapsulation

• Each chunk hides its implementation
details from outsiders.

Monday, 10 September 12

Program

Object Object

Object

Object
// primitive
bool isAwake;
int nSheep;

// primitive
bool isAwake;
int nSheep;

Object
// primitive
bool isAwake;
int nSheep;

Object
// primitive
bool isAwake;
int nSheep;

// primitive
bool isAwake;
int nSheep;

Monday, 10 September 12

Program

Object Object

Object

hidden hidden

hidden

Monday, 10 September 12

Encapsulation
Each object has:

• a public interface that describes how it
can be used

• a private implementation that describes
how it works

Monday, 10 September 12

Classes
Objects have types called Classes.

Classes represent all objects of a certain
kind.

All objects in a class share a common
structure but have different details.

Monday, 10 September 12

Example
“Car” is a class.

All cars have data:
 colour
 engine capacity, etc.

and methods:
 drive
 park, etc.

Monday, 10 September 12

Example
My car is an object.
It is an instance of the class Car.

My car has data with specific values:
 colour = yellow
 engine capacity = 1.5 litre

and methods:
 drive
 park, etc.

Monday, 10 September 12

Static data and methods
You usually need a specific instance of a class
(an object) to access data and methods.

Eg: you can’t drive the class “Car” or ask
what colour “Car” is.

However some methods and data belong to
all cars and can be run on the class. These
are called “static”.

Monday, 10 September 12

Java Class Library
Java comes with a large collection of classes for
common object types.

You can browse the library online at:

http://docs.oracle.com/javase/6/docs/api/
index.html?overview-summary.html

Monday, 10 September 12

http://docs.oracle.com/javase/6/docs/api/index.html?overview-summary.html
http://docs.oracle.com/javase/6/docs/api/index.html?overview-summary.html
http://docs.oracle.com/javase/6/docs/api/index.html?overview-summary.html
http://docs.oracle.com/javase/6/docs/api/index.html?overview-summary.html

Random
The Random class is one

Monday, 10 September 12

ArrayList
Another important class is ArrayList.

http://docs.oracle.com/javase/6/docs/api/java/
util/ArrayList.html

This class represents variable length lists.
Internally it is implemented using arrays but it
provides a much more flexible interface.

Monday, 10 September 12

http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html

