
Classes and Objects
COMP1400/INFS1609

Week 8

Monday, 10 September 12

Object-oriented
Programming

Abstraction

• Dividing the program into chunks at
different levels of detail.

Encapsulation

• Each chunk hides its implementation
details from outsiders.

Monday, 10 September 12

Public/private
Each object has:

• a public interface that describes how it
can be used

• a private implementation that describes
how it works

Monday, 10 September 12

Classes
Objects have types called Classes.

Classes represent all objects of a certain
kind.

All objects in a class share a common
structure but have different details.

Monday, 10 September 12

Example
“Car” is a class.

All cars have data:
 colour
 engine capacity, etc.

and methods:
 drive
 park, etc.

Monday, 10 September 12

Example
My car is an object.
It is an instance of the class Car.

My car has data with specific values:
 colour = yellow
 engine capacity = 1.5 litre

and methods:
 drive
 park, etc.

Monday, 10 September 12

Static data and methods
You usually need a specific instance of a class
(an object) to access data and methods.

Eg: you can’t drive the class “Car” or ask
what colour “Car” is.

However some methods and data belong to
all cars and can be run on the class. These
are called “static”.

Monday, 10 September 12

Java Class Library
Java comes with a large collection of classes for
common object types.

You can browse the library online at:

http://docs.oracle.com/javase/6/docs/api/
index.html?overview-summary.html

Monday, 10 September 12

http://docs.oracle.com/javase/6/docs/api/index.html?overview-summary.html
http://docs.oracle.com/javase/6/docs/api/index.html?overview-summary.html
http://docs.oracle.com/javase/6/docs/api/index.html?overview-summary.html
http://docs.oracle.com/javase/6/docs/api/index.html?overview-summary.html

Random
The Random class:

http://docs.oracle.com/javase/6/docs/api/java/util/
Random.html

Implements a random number generator.

Monday, 10 September 12

http://docs.oracle.com/javase/6/docs/api/java/util/Random.html
http://docs.oracle.com/javase/6/docs/api/java/util/Random.html
http://docs.oracle.com/javase/6/docs/api/java/util/Random.html
http://docs.oracle.com/javase/6/docs/api/java/util/Random.html

JCL docs
Things to notice in the docs for Random:

• The package - java.util.Random

• The constructors

• The methods

Monday, 10 September 12

Creating objects
To use an object we must first create an
instance of the class.

We do this by calling one of the constructors.

The constructor creates the object and
initialises it so it is ready to use.

Monday, 10 September 12

JCL in BlueJ
Select Tools > Use Library Class...

Monday, 10 September 12

Methods
Each Random object has a number of methods:

Monday, 10 September 12

Importing
If we want to use a JCL class in our code, we
need to import it first.

Syntax:

 import java.util.Random;

‘import’
keyword

Full class name.

Monday, 10 September 12

Calling constructors
To create an object in code we call the
constructor as:

 new Random();

or:

 new Random(100);

‘new’ keyword class parameters

Monday, 10 September 12

Classes are types
Classes are types and can be used in the same
way as primitive types like int and double to
create variables.

int years = 100;

Random rng = new Random(100);

Monday, 10 September 12

State
Objects have state -- internal private data
which describe their current configuration.

E.g. the state of a Car object would include:

• the amount of fuel it has left,

• the number of miles it has been driven,

• what gear it is in,

• etc....

Monday, 10 September 12

Calling methods
To call methods on an object:

Random rng = new Random(100);

int roll = rng.nextInt(6);

object dot method parameters

Monday, 10 September 12

Accessing state
An object’s state is private (encapsulated).

The class may provide public methods to access
state and manipulate it in proscribed ways.

Eg:

 rng.setSeed(100);

Monday, 10 September 12

Random seed
The seed of a random number generator
determines the values it creates. Two Random
objects with the same seed produce the same
sequence:

Random rng1 = new Random(100);

Random rng2 = new Random(100);

Monday, 10 September 12

References
When we create an object it is allocated as a
block of data in memory. The value the
constructor returns is a reference to that
block.

A reference is like an address. It is a piece of
information that tells us where the object is.

Monday, 10 September 12

Reference
When we assign an object variable to another
variable, we copy the reference not the object.

Random rng1 = new Random(100);

Random rng2 = rng1;

// both now refer to the same
// object

Monday, 10 September 12

Random rng1 = new Random(100);

Random rng2 = new Random(110);

rng2 = rng1;

rng2.setSeed(50);

Monday, 10 September 12

Random rng1 = new Random(100);

Random rng2 = new Random(110);

rng2 = rng1;

rng2.setSeed(50);

Random
 seed = 100

Monday, 10 September 12

Random rng1 = new Random(100);

Random rng2 = new Random(110);

rng2 = rng1;

rng2.setSeed(50);

rng1
Random
 seed = 100

Monday, 10 September 12

Random rng1 = new Random(100);

Random rng2 = new Random(110);

rng2 = rng1;

rng2.setSeed(50);

rng1
Random
 seed = 100

Random
 seed = 110

Monday, 10 September 12

Random rng1 = new Random(100);

Random rng2 = new Random(110);

rng2 = rng1;

rng2.setSeed(50);

rng1
Random
 seed = 100

rng2
Random
 seed = 110

Monday, 10 September 12

Random rng1 = new Random(100);

Random rng2 = new Random(110);

rng2 = rng1;

rng2.setSeed(50);

rng1
Random
 seed = 100

rng2
Random
 seed = 110

Monday, 10 September 12

Random rng1 = new Random(100);

Random rng2 = new Random(110);

rng2 = rng1;

rng2.setSeed(50);

rng1
Random
 seed = 50

rng2
Random
 seed = 110

Monday, 10 September 12

Random rng1 = new Random(100);

Random rng2 = new Random(110);

rng2 = rng1;

rng2.setSeed(50);

rng1
Random
 seed = 50

rng2
Random
 seed = 110

Garbage
collected

Monday, 10 September 12

Random rng1 = new Random(100);

Random rng2 = new Random(110);

rng2 = rng1;

rng2.setSeed(50);

rng1
Random
 seed = 50

rng2
Garbage
collected

Monday, 10 September 12

