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Grouping data
Often we want to group a collection of data 
together as a single object.

E.g.  A book may have the data:

• Author

• Title

• Year published
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Defining a class
We can define a Book class:

public class Book {

   // definition goes here

}

Each class must be defined in a separate file, 
with matching name, e.g. Book.java.
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Fields
To store the data we create fields in the 
class.

Fields are variables that belong to the object.

Fields can be read or written like any other 
variable.  They are accessible anywhere 
within the defining class.
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Defining fields
public class Book {

  private String myAuthor;

  private String myTitle;

  private int myYearPublished;

}
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Access modifiers 
We give classes, fields and methods an access 
modifier to show who can use them.

Public classes, fields and methods are 
accessible by any object.

Private classes, fields and methods are only 
accessible by the defining object.

We usually make fields private and classes 
public.
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Style
Fields are variables so we give them 
meaningful bumpyCaps names starting with a 
lowercase letter.

It is good practice to give your fields a 
distinctive naming convention to distinguish 
them from normal variables.

I call all my fields “my...”
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Constructors
We need to initialise the fields when the 
object is created.

This is the job of the constructor.
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Constructors
public Book(String author,
            String title,
            int year) {

   myAuthor = author;

   myTitle = title;

   myYearPublished = year;

}
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Calling a constructor
We can now call this constructor with the 
‘new’ keyword as we’ve seen before:

Book alice =

  new Book(
     "Lewis Carroll",
     "Alice in Wonderland",
     1788);
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Multiple constructors
We can have multiple constructors with 
different parameters on the same class.

Java chooses whichever one matches the 
parameters given when it is called.

This is useful for providing default values for 
some fields.
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Multiple constructors
A second Book constructor with a default 
value for author:

public Book(String title,
            int year) {

   myAuthor = "Anon.";
   myTitle = title;
   myYearPublished = year;

}
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Multiple constructors
// use first constructor

Book nineteen84 = 
   new Book("George Orwell",
        "1984", 1949);

// use second constructor

Book beowulf = 
   new Book("Beowulf", 900);
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Accessor methods
Private fields can only be accessed within the 
object.  This provides encapsulation. 

We write accessor methods to allow other 
objects to read private fields (but not change 
them).
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Accessor methods
public String getAuthor() {

   return myAuthor;

}

public int getYearPublished() {

   return myYearPublished;

}
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Calling methods
We call these methods in the same way as we've 
seen before:

String title = 
    beowulf.getTitle();

// returns "Beowulf"

String who = beowulf.getAuthor():

// returns "Anon."
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Static
The “static” keyword is used to indicate 
methods and fields that belong to the class 
as a whole, not to individual instances 
(objects). 
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Static
See example in BlueJ...
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Constants
Often you want to use certain constant 
values in your code.

It is better to define these values as named 
constants.

We use the 'final' keyword to indicate a 
variable is a constant. It cannot change.

We write constant names in a different style 
- all uppercase with underscores.
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Constants
public static final 
   String ANONYMOUS = "Anon.";

public Book(String title,
            int year) {

   myAuthor = ANONYMOUS;
   myTitle = title;
   myYearPublished = year;

}
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Magic numbers
Named constants avoid the “magic number” 
problem.

Magic numbers are values in our code with 
no obvious meaning.

They should be avoided. Use constants to 
give them meaningful names.
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Magic numbers (bad)
Random rng = new Random(499);

int dice = new int[10];

for (int i = 0; i < 10; i++) {

   dice[i] = rng.nextInt(6) + 1;

}
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Constants (good)
Random rng = new Random(SEED);

int dice = new int[NUM_DICE];

for (int i = 0; 
     i < NUM_DICE; i++) {

   data[i] = 
      rng.nextInt(NUM_SIDES) + 1;

}
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