
Creating Classes
COMP1400 Week 9

Monday, 17 September 12

Grouping data
Often we want to group a collection of data
together as a single object.

E.g. A book may have the data:

• Author

• Title

• Year published

Monday, 17 September 12

Defining a class
We can define a Book class:

public class Book {

 // definition goes here

}

Each class must be defined in a separate file,
with matching name, e.g. Book.java.

Monday, 17 September 12

Defining a class
We can define a Book class:

public class Book {

 // definition goes here

}

Each class must be defined in a separate file,
with matching name, e.g. Book.java.

access
modifier

Monday, 17 September 12

Defining a class
We can define a Book class:

public class Book {

 // definition goes here

}

Each class must be defined in a separate file,
with matching name, e.g. Book.java.

‘class’
keyword

access
modifier

Monday, 17 September 12

Defining a class
We can define a Book class:

public class Book {

 // definition goes here

}

Each class must be defined in a separate file,
with matching name, e.g. Book.java.

class
name

‘class’
keyword

access
modifier

Monday, 17 September 12

Defining a class
We can define a Book class:

public class Book {

 // definition goes here

}

Each class must be defined in a separate file,
with matching name, e.g. Book.java.

class
name

braces

‘class’
keyword

access
modifier

Monday, 17 September 12

Fields
To store the data we create fields in the
class.

Fields are variables that belong to the object.

Fields can be read or written like any other
variable. They are accessible anywhere
within the defining class.

Monday, 17 September 12

Defining fields
public class Book {

 private String myAuthor;

 private String myTitle;

 private int myYearPublished;

}

Monday, 17 September 12

Defining fields
public class Book {

 private String myAuthor;

 private String myTitle;

 private int myYearPublished;

}

Access
modifier

Monday, 17 September 12

Defining fields
public class Book {

 private String myAuthor;

 private String myTitle;

 private int myYearPublished;

}

Access
modifier

type

Monday, 17 September 12

Defining fields
public class Book {

 private String myAuthor;

 private String myTitle;

 private int myYearPublished;

}

Access
modifier

type
field
name

Monday, 17 September 12

Access modifiers
We give classes, fields and methods an access
modifier to show who can use them.

Public classes, fields and methods are
accessible by any object.

Private classes, fields and methods are only
accessible by the defining object.

We usually make fields private and classes
public.

Monday, 17 September 12

Style
Fields are variables so we give them
meaningful bumpyCaps names starting with a
lowercase letter.

It is good practice to give your fields a
distinctive naming convention to distinguish
them from normal variables.

I call all my fields “my...”

Monday, 17 September 12

Constructors
We need to initialise the fields when the
object is created.

This is the job of the constructor.

Monday, 17 September 12

Constructors
public Book(String author,
 String title,
 int year) {

 myAuthor = author;

 myTitle = title;

 myYearPublished = year;

}

Monday, 17 September 12

Constructors
public Book(String author,
 String title,
 int year) {

 myAuthor = author;

 myTitle = title;

 myYearPublished = year;

}

Access
modifier

Monday, 17 September 12

Constructors
public Book(String author,
 String title,
 int year) {

 myAuthor = author;

 myTitle = title;

 myYearPublished = year;

}

Access
modifier

Class
name

Monday, 17 September 12

Constructors
public Book(String author,
 String title,
 int year) {

 myAuthor = author;

 myTitle = title;

 myYearPublished = year;

}

Access
modifier

Class
name

parameters

Monday, 17 September 12

Constructors
public Book(String author,
 String title,
 int year) {

 myAuthor = author;

 myTitle = title;

 myYearPublished = year;

}

Access
modifier

Class
name

parameters

initialisation
code

Monday, 17 September 12

Calling a constructor
We can now call this constructor with the
‘new’ keyword as we’ve seen before:

Book alice =

 new Book(
 "Lewis Carroll",
 "Alice in Wonderland",
 1788);

Monday, 17 September 12

Multiple constructors
We can have multiple constructors with
different parameters on the same class.

Java chooses whichever one matches the
parameters given when it is called.

This is useful for providing default values for
some fields.

Monday, 17 September 12

Multiple constructors
A second Book constructor with a default
value for author:

public Book(String title,
 int year) {

 myAuthor = "Anon.";
 myTitle = title;
 myYearPublished = year;

}

Monday, 17 September 12

Multiple constructors
// use first constructor

Book nineteen84 =
 new Book("George Orwell",
 "1984", 1949);

// use second constructor

Book beowulf =
 new Book("Beowulf", 900);

Monday, 17 September 12

Accessor methods
Private fields can only be accessed within the
object. This provides encapsulation.

We write accessor methods to allow other
objects to read private fields (but not change
them).

Monday, 17 September 12

Accessor methods
public String getAuthor() {

 return myAuthor;

}

public int getYearPublished() {

 return myYearPublished;

}

Monday, 17 September 12

Calling methods
We call these methods in the same way as we've
seen before:

String title =
 beowulf.getTitle();

// returns "Beowulf"

String who = beowulf.getAuthor():

// returns "Anon."

Monday, 17 September 12

Static
The “static” keyword is used to indicate
methods and fields that belong to the class
as a whole, not to individual instances
(objects).

Monday, 17 September 12

Static
See example in BlueJ...

Monday, 17 September 12

Constants
Often you want to use certain constant
values in your code.

It is better to define these values as named
constants.

We use the 'final' keyword to indicate a
variable is a constant. It cannot change.

We write constant names in a different style
- all uppercase with underscores.

Monday, 17 September 12

Constants
public static final
 String ANONYMOUS = "Anon.";

public Book(String title,
 int year) {

 myAuthor = ANONYMOUS;
 myTitle = title;
 myYearPublished = year;

}

Monday, 17 September 12

Magic numbers
Named constants avoid the “magic number”
problem.

Magic numbers are values in our code with
no obvious meaning.

They should be avoided. Use constants to
give them meaningful names.

Monday, 17 September 12

Magic numbers (bad)
Random rng = new Random(499);

int dice = new int[10];

for (int i = 0; i < 10; i++) {

 dice[i] = rng.nextInt(6) + 1;

}

Monday, 17 September 12

Magic numbers (bad)
Random rng = new Random(499);

int dice = new int[10];

for (int i = 0; i < 10; i++) {

 dice[i] = rng.nextInt(6) + 1;

}

Monday, 17 September 12

Constants (good)
Random rng = new Random(SEED);

int dice = new int[NUM_DICE];

for (int i = 0;
 i < NUM_DICE; i++) {

 data[i] =
 rng.nextInt(NUM_SIDES) + 1;

}

Monday, 17 September 12

