
Inheritance
COMP1400 - Week 12

Uno Game
Consider the card game Uno:

http://en.wikipedia.org/wiki/Uno_(card_game)

There are 6 kinds of cards:

• number cards

• draw two

• skip

• reverse

• wild

• wild draw four

http://en.wikipedia.org/wiki/Uno_(card_game
http://en.wikipedia.org/wiki/Uno_(card_game

Game class
We have a Game class which defines the rules
of the game:

• Players take turns playing a card

• A valid play must be the same number or
symbol or a wild card

• If you cannot play, draw a card.

• First player with no cards wins.

Card interface
Each kind of card has different properties and
effects so belongs in a different class.

However they share a common interface.

They all support the methods of:

• can I play this card now?

• play this card.

public interface Card {

 // get the colour
 public int getColour();

 // get the symbol
 public char getSymbol();

 // test if it can be played
 public boolean canPlayOn(
 Card card);

 // implement any effects
 public void play(Game g);

}

Card classes
There are six classes that implement the Card
interface:

 NumberCard DrawCard

 SkipCard ReverseCard

 WildCard WildDrawCard

Card classes

Common code
Looking at the card classes we notice a lot of
common data and code, e.g.:

private int myColour;

public boolean canPlayOn(Card c) {

 return c.getSymbol() == 'S'
 || myColour == c.getColour();

}

Abstraction
The design principles of abstraction and
encapsulation prompt us to ask:

Is there a way to factor out this common data
and code into a single, reusable chunk?

The techniques we've seen so far do not apply
very well.

We need a new idea: inheritance.

Inheritance
A Java class can extend another class:

// based class
public class Parent {

}

// derived class
public class Child
 extends Parent {

}

Inheritance
A derived class (child) inherits:

• All the fields of its base class (parent)

• All the methods of its base class

However it cannot access the private fields or
methods on its base.

Extending
An extended child class may:

• Add new fields

• Add new methods

• Override old methods on its parent.

public class Turtle {

 private Point myPos;

 public Point getPos() {

 return myPos;

 }

 public void move(int dist) {

 // move forward

 }

}

public class ColourTurtle
 extends Turtle {

 // add a field

 private Color myColour;

 // add a method

 public Color getColour() {

 return myColour;

 }
}

public class TurningTurtle
 extends Turtle {

 private double myTurnSpeed;

 // override method

 public void move(int dist) {

 // move forward
 // while turning

 }

}

Example

Turtle
 myPos
 getPos()
 move()

ColourTurtle

 myColour
 getColour()

Turtle
 myPos
 getPos()
 move()

TurningTurtle

 myTurnSpeed
 move()

Turtle
 myPos
 getPos()
 move()

Calling methods
When you call a method on a derived class Java
searches up the inheritance hierarchy until it
finds a class that implements it.

Example
ColouredTurtle ct =
 new ColouredTurtle();

ct.getColour();
// on ColouredTurtle

ct.move(100);
// on Turtle

Example
TurningTurtle tt =
 new TurningTurtle();

tt.getPos();
// on Turtle

tt.move(100);
// on TurningTurtle

super
A method on a subclass can use the keyword
super to refer to its parent class.

public class TurningTurtle
 extends Turtle {

 public void move(int dist) {

 // move forward

 super.move();
 // while turning

public class TurningTurtle
 extends Turtle {

 public void move(int dist) {

 // call parent
 // to move forward

 super.move();

 // now turn...

 myAngle += turnSpeed;
 }
}

Constructors
When we constructor a derived class we must
first construct its parent.

We use the notation:

 super()

Or if the super-constructor has parameters:

 super(value1, value2, ...)

The super-constructor must always come first.

Constructor
public class Turtle {

 private Point myPos;

 public Turtle() {

 myPos = new Point(0,0);

 }

}

Constructors
public class ColourTurtle {

 private Color myColour;

 public ColourTurtle(
 Color colour) {

 super(); // call parent's
 // constructor first

 myColour = colour;
 }
}

Abstract
Sometimes several classes are based on the
same parent, but the parent is incomplete or
does not make sense as a usable object on its
own.

In these cases it is appropriate to make the
parent class abstract.

public abstract class
 AbstractCard {

 public boolean canPlayOn(Card c) {

 return mySymbol == c.getSymbol()
 || myColour == c.getColour();

 }

 // method not implemented:

 abstract public void play(Game g);

}

Abstract classes
An abstract class cannot be instantiated. It only
exists to provide a base for other classes:

 AbstractCard card =
 new AbstractCard(
 'X', Card.COLOUR_BLUE);

 // ERROR!

Advantages
The advantages of inheritance:

 abstraction: common code is chunked

 encapsulation:
 parent code is hidden from children

 extendability:
 extra features can be added to classes

 polymorphism:
 child classes all inherit the same interface

