
Feedback

“I was pretty scared of starting computing in a uni setting but I’ve
been enjoying how it’s taught and now it’s my ”fun” subject this
term! :D”

• Putting lecture notes single screen

• Releasing labs earlier

• Repeating questions that are asked

• Challenge lab exercises

4. C Conditions

In this lecture we will cover:

• More on linux commands

• Making Choices

• Relational Operators

• Logical Operators

• If/Else Statements

Linux Command: cp

• Linux Command cp: copies files and directories.

• cp sourceFile destination

• If the destination is an existing file, the file is overwritten

• if the destination is an existing directory
the file is copied into the directory

• To copy a directory use cp -r sourceDir destination

Linux Command: mv

• Linux Command mv moves or renames a file.

• mv source destination

• If the destination is an existing file, the file is overwritten

• if the destination is an existing directory
the file is moved into the directory.

Linux Command: rm

• Linux Command rm removes a file.

• Usually no undo or recycle bin - be careful & have backups

• rm filename

• rm -r directoryName
I This will delete a whole directory.
I Be extra careful with this command

Control Flow

Problem: “read an integer and tell me if it’s between 5 and 10.”

• We know how to read in an integer

• But how can we say whether it’s less than 5?

What we need is a way of making choices in our programs. This
functionality is known as control flow or branching and is provided
by the if statement.

int x;

scanf("%d", &x);

if (x > 5 && x < 10) {

printf("Between 5 and 10!");

}

Before we can use if statements properly we need to understand
relational operators and logical expressions.

Relational Operators

C has the usual operators to compare numbers:

> greater than
>= greater than or equal to
< less than
<= less than or equal to
!= not equal to
== equal to

• Don’t confuse equality (==) with assignment (=)

• Be careful comparing doubles for equality using == or !=.
Remember doubles are approximations.

Relational Operators

• Many languages have specific ”boolean” types for TRUE and
FALSE

• C does not have this type, so we just use int

• C convention is zero is false, other numbers true.

• All relational and logical operators return a ”boolean”:
the int 0 for false
the int 1 for true

• For example:
5 > 4 7→ 1

5 >= 4 7→ 1

5 < 4 7→ 0

5 <= 4 7→ 0

5 != 4 7→ 1

5 == 4 7→ 0

Logical Operators

Logical operators allow us to combine Boolean expressions (e.g.,
comparisons, etc.). We use them to answer questions like “Is x
greater than y and less than z?”

The logical operators are:

and (&&) true if both operands are true

or (||) true if either operand is true

not (!) true if its operand is false

Here are some examples:

(2 > 0) && (2 < 2) 7→ 1 && 0 7→ 0 and
(0 > 1) || (2 < 10) 7→ 0 || 1 7→ 1 or
!(0 > 1) 7→ !0 7→ 1 not

Logical Operators

Truth tables show the results of logical operators with all different
combinations of inputs

X Y X && Y

0 0 0
0 1 0
1 0 0
1 1 1

X Y X ||Y
0 0 0
0 1 1
1 0 1
1 1 1

Logical Operators / De Morgan’s Law

These two conditions are logically equivalent

!(height <= 130 && width <= 240)

.. is the same as ..

height > 130 || width > 240

Logical Operators / Short Circuit Evaluation

This is an important concept, the operators && and || evaluate
their left-hand-side operand first and only evaluate their
right-hand-side operand if necessary.
Operator && only evaluates its RHS if the LHS is true.

Operator || only evaluates its RHS if the LHS is false.

This is very useful because we can safely write:

(x != 0) && (y / x > 10)

Precedence

A list of all operators in order of precedence, from high to low:

• !x, -x

• x * y, x / y, x % y

• x + y, x - y

• x < y, x <= y, x > y, x >= y

• x == y, x != y

• x && y (short-circuit left to right)

• x || y (short-circuit left to right)

• x = y

Explicit Order

The evaluation order can be changed and/or made explicit via
parentheses, e.g., 7 * (4 + 3).

Don’t Do This

Something like: 10 > x > 0 will compile (albeit with a compiler
warning), but what does it mean? Suppose x = -1.

• ((10 > -1) > 0)

• (1 > 0)

• 1

What you probably mean to write is (10 > x) && (x > 0)

• (10 > -1) && (-1 > 0)

• 1 && (-1 > 0)

• 1 && 0

• 0

The if Statement

This is the structure of the if statement:

if (expression evaluates non-zero) {

statement1;

statement2;

....

}

• statement1, statement2, ... are executed
if expression is non-zero.

• statement1, statement2, ... are NOT executed
if expression is zero.

The else keyword

if (expression evaluates non-zero) {

statement1;

statement2;

....

} else if (expression evaluates non-zero) {

statement3;

statement4;

....

} else {

statement5;

statement6;

....

}

• statement1, statement2 executed if expression is non-zero.

• statement3, statement4 executed if expression is zero.

The if Statement

We can also have nested if statements. ie if statements inside if
statements

printf("%d is a ", a);

if (a < 0) {

if (a < -100) {

printf("big");

} else if (a > -10){

printf("small");

} else {

printf("medium");

}

printf(" negative");

} else {

printf(" positive");

}

printf(" number.\n");

The if Statement

This syntax is also valid:

if (a == 0)

printf("a is zero\n");

a = 1; // this does not belong to if-block

If the braces ({}) are not supplied then the if statement controls
only the statement that immediately follows.

Always use braces!

Doing this will ensure that you avoid bugs and ambiguity. The
style guide requires it.

