
COMP1927 17x1

Computing 2

Complexity

1

Problems, Algorithms, Programs

and Processes
• Problem: A problem that needs to be

solved

• Algorithm: Well defined instructions for

completing the problem

• Program: Implementation of the algorithm

in a particular programming language

• Process: An instance of the program as it

is being executed on a particular machine

Analysis of software
What makes “good” software?

• Correct: returns expected result for all valid inputs

 guaranteed through formal specification

• Reliable: behaves "sensibly" for non-valid inputs/errors and

handled gracefully

 Correctness/Reliability ensured through robust testing

• Maintainable: clear, well-structure code

 Coding style, recommended conventions

• Efficient: produces results quickly (even for large inputs)

 Efficiency determined through algorithm efficiency

We may sometimes also be interested in other

measures

• memory/disk space, network traffic, disk IO etc

Algorithm Efficiency
• The algorithm is by far the most important

determinant of the efficiency of a program

• Algorithm efficiency determined through

algorithm analysis, can save factors of

thousands or millions in the running time

• Small speed ups in terms of operating

systems, compilers, computers and

implementation details are irrelevant. They

may give small speed ups but usually only by

a small constant factor

Algorithm Analysis
Branch of computer science to determine choice of the best

algorithm for a particular task.

• Mathematical Analysis

- Analyse asymptotic time complexity – the limiting behaviour

of the execution time of an algorithm when the size of the

problem goes to infinity

- Usually denoted in big-O notation.

- Can be done at design-stage (pseudo-code)

• Empirical Analysis

- Post-implementation stage

- Once it is implemented and correct, evaluate which

algorithm takes longer e.g., using the time command

Timing

• Note we are not interested in the absolute

time it takes to run.

• We are interested in the relative time it

takes as the problem increases

• Absolute times differ on different machines

and with different languages

Time Complexity Analysis
• Enables us to understand the performance of algorithms

• Define a function to characterize execution cost (≅time)

 - Identify the core operation in the algorithm

 - Identify the value to measure the size of the input (N)

(e.g. #items in data structure, length of input file, no of

chars in string etc)

 - Express cost in terms of #operations = f(n), which is

the time-complexity as a function of input size

• Shows how the cost increases with increase in input size

• Is the algorithm feasible for 100, 10000, 100000 ?

Big O-notation Formal

Definition
The big O-notation is used to classify the work complexity of
algorithms

Definition: A function f(n) is said to be in (the set) O(g(n)) if
there exist constants c and N0 such that f(n) < c * g(n) for all n
> N0

Informal Definition of Big-O

Notation

• Big-O notation represents the asymptotic worst case

(unless stated otherwise) time complexity

• Big-O expressions do not have constants or low-order

terms as when n gets larger these do not matter

• For example: For a problem of size n, if the cost of the

worst case is

 1.5n2 +3n +10

 in Big-O notation would be O(n2)

Exercise: Time Complexity

int findMax(int a[], int N) {

 int i, max = a[0];

 for (i = 1; i < N; i++)

 if (a[i] > max) max = a[i]; return max;

 }

Core operation? ... compare a[i] to max

How many times? ... clearly N-1 ... O(n)

Execution cost grows linearly (i.e. 2 × #elements ⇒

2 × cost)

Example: finding max value in an unsorted array

Exercise: Time Complexity

int findMax(int a[], int N) {

 return a[N-1];

}

No iteration needed; max is always last.

Core operation? ... index into array

How many times? ... once ... O(1)

Execution cost is constant (same regardless of

#elements)

Example: finding max value in a sorted array

Predicting Time
• If I know my algorithm is quadratic and I know that it

takes 1.2 seconds to run on a data set of size 1000

• Approximately how long would you expect to wait

for a data set of size 2000?

• What about 10000?

• What about 100000?

Empirical Analysis

• Use the ‘time’ command in linux.

Run on different sized inputs

time ./prog < input > /dev/null

not interested in real-time

interested in user-time

What is the relationship between

• input size

• time

Size of

input(n)
Time

100000

1000000

10000000

100000000

Big-O Notation

• All constant functions are in O(1)

• All linear functions are in O(n)

• All logarithmic function are in the same class O(log(n))

• O(log2(n)) = O(log3(n))=

• (since logb(a) * loga(n) = logb(n))

• We say an algorithm is O(g(n)) if, for an input of size n,

the algorithm requires T(n) steps, with T(n) in O(g(n)),
and O(g(n)) minimal

• binary search is O(log(n))

• linear search is O(N)

• finding maxium in an unsorted sequence is O(N)

Common Categories

• O(1): constant - instructions in the program are executed a

fixed number of times, independent of the size of the input

• O(log N): logarithmic - some divide & conquer algorithms with

trivial splitting and combining operations

• O(N) : linear - every element of the input has to be processed,

usually in a straight forward way

• O(N * log N): Divide &Conquer algorithms where splitting or

combining operation is proportional to the input

• O(N2): quadratic. Algorithms which have to compare each

input value with every other input value. Problematic for large

input

• O(N3) : cubic, only feasible for very small problem sizes

• O(2N): exponential, of almost no practical use

Complexity Matters
n log n nlogn n^2 2^n

10 4 40 100 1024

100 7 700 10000 1.3E+30

1000 10 10000 1000000 REALLY

BIG

10000 14 140000 100000000

100000 17 1700000 10000000000

1000000 20 20000000 1000000000000

Exercise
What would be the time complexity of inserting

an element at the beginning of

• a linked list

• an array

What would be the time complexity of inserting

an element at the end of

• a linked list

• an array

Searching
An extremely common application in computing

- given a (large) collection of items and a key value

- find the item(s) in the collection containing that key

- an item is defined as {key, val1, val2} (i.e. a struct)

- key = value used to distinguish items (e.g. student ID)

Keys may be ...

- primary ... key value uniquely identifies one item

- secondary ... many items may have the same key value

Applications: Google, databases,

Searching (cont)
If we are dealing largely with primary keys, then search

problem can be encapsulated as:

Possible return values are:

• an Item

• “NOT FOUND” value

For secondary keys return an array (possibly empty) of

matching items

Item search(Collection c, Key k) { ... }

Item *search(Collection c, key k, int *nmatches) {...}

Searching in Linear Structures
Search in an unsorted array or list

Item searchArray(Key k, Item a[], int n) {

 int i;

 for (i = 0; i < n; i++)

 { if (a[i].key == k)

 return a[i];

 }

 return NOT_FOUND;

 }

Item searchList(Key k, List L) {

 List n;

 for (n = L; n != NULL; n = n->next)

 { if (n->key) == k)

 return n->data;

 }

 return NOT_FOUND;

}

Linear Search Cost
- Core operation? … compare a[i].key to k

- What is the worst cast cost?

- How many comparisons between data instances were made?

- How many times does each line run in the worst case?

C0: line 2: For loop n+1 times

C1: line 3: n comparisons

C2: line 4: 0 times (worst case)

C3: line 5: 1 time (worst case)

Total: C0(n+1) + C1(n) + C3 = O(n)

- For an unsorted sequence that is the best we can do

Searching in a Sorted Array
Given an array a of N elements, with a[i] <= a[j] for

any pair of indices i,j, with i <= j < N,

- search for a key k in the array

 Item searchSortedArray(Key k, Item a[], int n) {

 int found = 0;

 int finished = 0;

 int i = 0;

 while ((i < N) && (!found) && (!finished)){

 found = (a[i].key == k);

 finished = (k < a[i].key);

 i++;

 }

exploit the fact that a is sorted

Searching in a Sorted Array

How many steps are required to search an

array of N elements

• Best case: TN = 1

• Worst case: TN = N

• Average: TN = N/2

Still a linear algorithm, like searching in a

unsorted array

Binary Search in a sorted array

• We start in the middle of the array:

• if a[N/2] == e, we found the element and we’re done

• and, if necessary, `split’ array in half to continue

search

• if a[N/2] < e, continue search on a[0] to a[N/2 -1]

• if a[N/2] > e, continue search on a[N/2+1] to a[N-1]

• This algorithm is called binary search.

Binary Search (cont)

• We maintain two indices, l and r, to denote leftmost and

rightmost array index of current part of the array

• initially l=0 and r=N-1

• iteration stops when:

• left and right index define an empty array, element

not found

• Eg l > r

• a[(l+r)/2] holds the element we’re looking for

• if: a[(l+r)/2] is larger than element, continue search on

left

a[l]..a[(l+r)/2-1]

 else continue search on right

 a[(l+r)/2+1]..a[r]

Binary Search

Searching in a Sorted

Array with Binary Search

• How many comparisons do we need for

• an array of size N?

• Best case:

• TN = 1

• Worst case:

• T1 = 1

• TN = 1 + TN/2

• TN = log2 N + 1

• O(log n)

• Binary search is a

• logarithmic algorithm 0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 10

linear log (N)

