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Problems, Algorithms, Programs 

and Processes 
• Problem: A problem that needs to be 

solved 

• Algorithm: Well defined instructions for 

completing the problem 

• Program: Implementation of the algorithm 

in a particular programming language 

• Process: An instance of the program as it 

is being executed on a particular machine 



Analysis of software 
What makes “good” software? 

• Correct:  returns expected result for all valid inputs  

                     guaranteed through formal specification 

• Reliable: behaves "sensibly" for non-valid inputs/errors and 

handled gracefully 

     Correctness/Reliability ensured through robust testing 

• Maintainable: clear, well-structure code 

     Coding style, recommended conventions 

• Efficient: produces results quickly (even for large inputs)   

 Efficiency determined through algorithm efficiency 

We may sometimes also be interested in other 

measures  

• memory/disk space, network traffic, disk IO etc 



Algorithm Efficiency 
• The algorithm is by far the most important 

determinant of the efficiency of a program 

• Algorithm efficiency determined through 

algorithm analysis, can save factors of 

thousands or millions in the running time 

•  Small speed ups in terms of operating 

systems, compilers, computers and 

implementation details are irrelevant. They 

may give small speed ups but usually only by 

a small constant factor  

 



Algorithm Analysis 
Branch of computer science to determine choice of the best 

algorithm for a particular task.   

• Mathematical Analysis 

- Analyse asymptotic time complexity – the limiting behaviour 

of the execution time of an algorithm when the size of the 

problem goes to infinity 

- Usually denoted in big-O notation. 

- Can be done at design-stage (pseudo-code) 

• Empirical Analysis  

- Post-implementation stage 

- Once it is implemented and correct, evaluate which 

algorithm takes longer e.g., using the time command  

 



Timing 

• Note we are not interested in the absolute 

time it takes to run. 

• We are interested in the relative time it 

takes as the problem increases 

• Absolute times differ on different machines 

and with different languages 

 



Time Complexity Analysis 
• Enables us to understand the performance of algorithms 

• Define a function to characterize execution cost (≅time) 

  -  Identify the core operation in the algorithm 

  -  Identify the value to measure the size of the input (N) 

(e.g. #items in data structure, length of input file, no of 

chars in string etc) 

  -  Express cost in terms of #operations = f(n), which is 

the time-complexity as a function of input size 

• Shows how the cost increases with increase in input size  

• Is the algorithm feasible for 100, 10000, 100000 ? 



Big O-notation Formal 

Definition 
The big O-notation is used to classify the work complexity of 
algorithms 

Definition: A function f(n) is said to be in (the set) O(g(n)) if 
there exist constants c and N0 such that f(n) < c * g(n) for all n 
> N0 



Informal Definition of Big-O 

Notation 
 

• Big-O notation represents the asymptotic worst case 

(unless stated otherwise) time complexity 

• Big-O expressions do not have constants or low-order 

terms as when n gets larger these do not matter  

• For example: For a problem of size n, if the cost of the 

worst case is 

 1.5n2 +3n +10 

  in Big-O notation would be O(n2) 

 



Exercise: Time Complexity 

int findMax(int a[], int N) { 

     int i, max = a[0];  

      for (i = 1; i < N; i++)  

                 if (a[i] > max) max = a[i]; return max;  

      }  

Core operation? ... compare a[i] to max 

How many times? ... clearly N-1 ... O(n) 

Execution cost grows linearly   (i.e. 2 × #elements ⇒ 

2 × cost) 

Example: finding max value in an unsorted array 



Exercise: Time Complexity 

int findMax(int a[], int N)  {  

         return a[N-1];  

}  

No iteration needed; max is always last. 

Core operation? ... index into array 

How many times? ... once  ... O(1) 

Execution cost is constant (same regardless of 

#elements) 

Example: finding max value in a sorted array 



Predicting Time 
• If I know my algorithm is quadratic and I know that it 

takes 1.2 seconds to run on a data set of size 1000 

• Approximately how long would you expect to wait 

for a data set of size 2000? 

• What about 10000?  

• What about 100000? 

 



Empirical Analysis 

• Use the ‘time’ command in linux.  

Run on different sized inputs 

time ./prog < input > /dev/null 

not interested in real-time 

interested in user-time 

What is the relationship between 

• input size 

• time 

Size of 

input(n) 
Time 

100000 

1000000 

10000000 

100000000 



Big-O Notation 

• All constant functions are in O(1) 

• All linear functions are in O(n) 

• All logarithmic function are in the same class O(log(n)) 

• O(log2(n)) = O(log3(n))= ....  

• (since logb(a) * loga(n) = logb(n)) 

• We say an algorithm is O(g(n)) if, for an input of size n, 

the algorithm requires T(n) steps, with T(n) in O(g(n)), 
and O(g(n)) minimal 

• binary search is O(log(n)) 

• linear search is O(N) 

• finding maxium in an unsorted sequence is O(N) 

 

 

 



Common Categories 
 

• O(1): constant - instructions in the program are executed a 

fixed number of times, independent of the size of the input 

• O( log N): logarithmic - some divide & conquer algorithms with 

trivial splitting and combining operations 

• O(N) : linear - every element of the input has to be processed, 

usually in a straight forward way 

• O(N * log N): Divide &Conquer algorithms where splitting or 

combining operation is proportional to the input 

• O(N2):  quadratic. Algorithms which have to compare each 

input value with every other input value. Problematic for large 

input 

• O(N3) : cubic, only feasible for very small problem sizes 

• O( 2N): exponential, of almost no practical use  



Complexity Matters 
n log n nlogn n^2 2^n 

10 4 40 100 1024 

100 7 700 10000 1.3E+30 

1000 10 10000 1000000 REALLY 

BIG 

10000 14 140000 100000000 

100000 17 1700000 10000000000 

1000000 20 20000000 1000000000000 



Exercise 
What would be the time complexity of inserting 

an element at the beginning of  

• a linked list 

• an array 

What would be the time complexity of inserting 

an element at the end of  

• a linked list 

• an array 



Searching 
An extremely common application in computing 

- given a (large) collection of items and a key value 

- find the item(s) in the collection containing that key 

- an item is defined as {key, val1, val2}  (i.e. a struct) 

- key = value used to distinguish items  (e.g. student ID) 

Keys may be ... 

- primary ... key value uniquely identifies one item 

- secondary ... many items may have the same key value 

Applications:  Google,  databases, ..... 



Searching (cont) 
If we are dealing largely with primary keys, then search 

problem can be encapsulated as:  

 

Possible return values are: 

• an Item 

• “NOT FOUND” value 

For secondary keys return an array (possibly empty) of 

matching items 

 

Item search(Collection c, Key k) { ... } 

Item *search(Collection c, key k, int *nmatches) {...}  



Searching in Linear Structures 
Search in an unsorted array or list 

 

 

Item searchArray(Key k, Item a[], int n)  { 

          int i; 

           for (i = 0; i < n; i++)  

               { if (a[i].key == k)  

                        return a[i];  

               }  

               return NOT_FOUND;  

   }  

Item searchList(Key k, List L)  {  

    List n;  

    for (n = L; n != NULL; n = n->next)   

        { if (n->key) == k)  

               return n->data;  

        }  

        return NOT_FOUND;  

} 



Linear Search Cost 
- Core operation? … compare a[i].key to k  

- What is the worst cast cost? 

- How many comparisons between data instances were made? 

- How many times does each line run in the worst case? 

C0: line 2: For loop n+1 times 

C1: line 3: n comparisons 

C2: line 4: 0 times (worst case) 

C3: line 5: 1 time (worst case) 

Total: C0(n+1) + C1(n) +  C3 = O(n) 

- For an unsorted sequence that is the best we can do 



Searching in a Sorted Array 
Given an array a of N elements, with a[i] <= a[j] for 

any pair of indices i,j, with i <= j < N, 

- search for a key k in the array  

      Item searchSortedArray(Key k,  Item a[], int n) { 

            int found = 0; 

            int finished = 0; 

            int i = 0; 

            while ((i < N) && (!found) && (!finished)){ 

                        found = (a[i].key == k); 

                        finished = (k < a[i].key);  

                         i++;   

             } 

 

exploit the fact that a is sorted 



Searching in a Sorted Array 

 

How many steps are required to search an 

array of N elements 

• Best case:   TN = 1 

• Worst case: TN = N 

• Average:      TN = N/2 

Still a linear algorithm, like searching in a 

unsorted array 



Binary Search in a sorted array 

 
• We start in the middle of the array: 

•  if a[N/2] == e, we found the element and we’re done 

• and, if necessary, `split’ array in half to continue 

search 

•  if a[N/2] < e, continue search on a[0] to a[N/2 -1] 

•  if a[N/2] > e, continue search on a[N/2+1] to a[N-1] 

• This algorithm is called binary search. 



Binary Search (cont) 
 

• We maintain two indices, l and r, to denote leftmost and 

rightmost array index of current part of the array 

• initially l=0 and r=N-1 

• iteration stops when: 

• left and right index define an empty array, element 

not found 

• Eg l > r 

• a[(l+r)/2] holds the element we’re looking for 

• if: a[(l+r)/2] is larger than element, continue search on 

left 

a[l]..a[(l+r)/2-1] 

       else continue search on right 

    a[(l+r)/2+1]..a[r] 

 



Binary Search 

 

 

 

 

 

 

  

 

 

 

Searching in a Sorted 

Array with Binary Search  

 

 

• How many comparisons do we need for 

• an array of size N? 

•  Best case:  

• TN = 1 

•  Worst case: 

• T1 = 1 

• TN = 1 + TN/2 

• TN =  log2 N + 1 

• O(log n) 

• Binary search is a  

• logarithmic algorithm 0
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