
Problem Solving
COMP1927 17x1

Sedgewick Chapter 5

Problem-solving
Many people "get stuck" when faced with a new

problem

• where to start? ... what approach should I use?

• is there a known way to solve this problem?

Standard strategies and programming techniques

• recursion ... solve a problem in terms of a simpler version of

itself

• divide-and-conquer ... partition, solve sub-problems, combine

results

• higher-order functions ... package patterns of computation into

generic tools

Recursive Functions

• problems can sometimes be expressed in

terms of a simpler instance of the same

problem

• Example: factorial

• 1! = 1

• 2! = 1 * 2

• ...

• (N-1)! = 1 * 2 * 3 * ... * (N-1)

• N! = 1 * 2 * 3 * ... * (N-1) * N

2! = 1! * 2

N! = (N-1)! * N

Recursive Functions

• Solving problems recursively in a program

involves

• Developing a function that calls itself

• Must include

• Base Case: aka stopping case: so easy no

recursive call is needed

• Recursive Case: calls the function on a ‘smaller’

version of the problem

Iteration vs Recursion
• Compute N! = 1 * 2 * 3 * * N

//An iterative solution

int factorial(int N){

 result = 1;

 for (i = 1; i <= N; i++)

 result = i * result;

 return result;

}

• Alternative Solution: factorial calls itself recursively

int factorial (int N) {

 if (N == 1) {

 return 1;

 } else {

 return N * factorial (N-1);

 }

}

base case

recursive case

Bad Fibonacci

• Sometimes recursive code results in horribly in-efficient

code that re-evaluates things over and over.

• 2n calls: O(kn) - exponential

• Exponential functions can only be used in practice for

very small values of n

 //Code to return the nth fibonacci number

//0 1 1 2 3 5 8 13 21

int badFib(int n){

 if(n == 0) return 0;

 if(n == 1) return 1;

 return badFib(n-1) + badFib(n-2);

}

Why badFib is bad
• Tracing calls on BadFib produces a tree of calls where intermediate

results are recalculated again and again.

Linked Lists
A linked list can be described recursively

• A list is comprised of a

• head (a node)

• a tail (the rest of the list)

typedef struct node * link;

struct node{

 int item;

 link next;

};

Recursive List Functions
• We can define some list operations as recursive

functions:

• length: return the length of a list

• sumOfElems: return the length of a list

• printList: print the list

• printListReverse: print out the list in reverse order

• Recursive list operations are not useful for huge lists

• The depth of recursion may be proportional to the

length of the list

Recursive List Functions
int length (link ls) {

}

base case

recursive case

int sumOfElems (link ls) {

 if (ls == NULL) {

 }

}

base case

recursive case

return 1 + length (ls->next);

 return 0;

return (ls->item + sumOfElems(ls->next));

return 0;

 if (ls == NULL) {

}

Recursive List Functions
void printList(link ls){

 if(ls != NULL){

 printf(“%d\n“,ls->item);

 printList(ls->next);

 }

}

//To print in reverse change the

//order of the recursive call and

//the printf

void printListReverse(link ls){

 if(ls != NULL){

 printListReverse(ls->next);

 printf(“%d\n“,ls->item);

 }

}

Divide and Conquer
Basic Idea:

• divide the input into two parts

• solve the problems recursively on both parts

• combine the results on the two halves into an overall

solution

Divide and Conquer

Divide and Conquer Approach for finding maximum in an

unsorted array:

• Divide array in two halves in each recursive step

 Base case

• subarray with exactly one element: return it

 Recursive case

• split array into two

• find maximum of each half (recursively)

• return maximum of the two sub-solutions

Iterative solution

//iterative solution O(n)

int maximum(int a[], int n){

 int a[N];

 int max = a[0];

 int i;

 for (i=0; i < n; i++){

 if (a[i] > max){

 max = a[i];

 }

 }

 return max;

}

Divide and Conquer Solution

//Divide and conquer recursive solution

int max (int a[], int l, int r) {

 int m1, m2;

 int m = (l+r)/2;

 if (l==r) {

 return a[l];

 }

 //find max of left half

 m1 = max (a,l,m);

 //find max of right half

 m2 = max (a, m+1, r)

 //combine results to get max of both halves

 if (m1 < m2) {

 return m2;

 } else {

 return m1;

 }

}

Complexity Analysis

How many calls of max are necessary for the divide

and conquer maximum algorithm?

• Length = 1

T1 = 1

• Length = N > 1

TN = TN/2 + TN/2 + 1

• Overall, we have

TN = N + 1

In each recursive call, we have to do a fixed number of

steps (independent of the size of the argument)

• O(N)

Recursive Binary Search

Maintain two indices, l and r, to denote leftmost and

rightmost array index of current part of the array

• initially l=0 and r=N-1

Base cases:

• array is empty, element not found

• a[(l+r)/2] holds the element we’re looking for

Recursive cases: a[(l+r)/2] is

• larger than element, continue search on a[l]..a[(l+r)/2-1]

• smaller than element, continue search on a[(l+r)/2+1]..a[r]

O(log(n))

