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Problem-solving 
Many people "get stuck" when faced with a new 

problem 

• where to start? ... what approach should I use? 

• is there a known way to solve this problem? 

Standard strategies and programming techniques 

• recursion ... solve a problem in terms of a simpler version of 

itself 

• divide-and-conquer ... partition, solve sub-problems, combine 

results 

• higher-order functions ... package patterns of computation into 

generic tools 

 



Recursive Functions  

• problems can sometimes be expressed in 

terms of a simpler instance of the same 

problem 

• Example: factorial 

• 1!       = 1 

• 2!       = 1 * 2 

• ... 

• (N-1)! = 1 * 2 * 3 * ... * (N-1) 

• N!      = 1 * 2 * 3 * ... * (N-1) * N 

2! = 1! * 2 

N! = (N-1)! * N 



Recursive Functions 

• Solving problems recursively in a program 

involves 

• Developing a function that calls itself 

• Must include 

• Base Case: aka stopping case: so easy no 

recursive call is needed 

• Recursive Case: calls the function on a ‘smaller’ 

version of the problem 



Iteration vs Recursion 
• Compute N! = 1 * 2 * 3 * .... * N 

//An iterative solution  

int factorial(int N){ 

    result = 1;  

    for (i = 1; i <= N; i++) 

       result = i * result;  

    return result; 

} 

• Alternative Solution: factorial calls itself recursively 

int factorial (int N) { 

  if (N == 1) { 

    return 1; 

  } else { 

    return N * factorial (N-1); 

  } 

} 

 

base case 

recursive case 



Bad Fibonacci 

• Sometimes recursive code results in horribly in-efficient 

code that re-evaluates things over and over. 

• 2n calls: O(kn) - exponential  

• Exponential functions can only be used in practice for 

very small values of n 

  //Code to return the nth fibonacci number 

//0 1 1 2 3 5 8 13 21  

int badFib(int n){ 

      if(n == 0) return 0; 

      if(n == 1) return 1; 

      return badFib(n-1) + badFib(n-2); 

} 

 

 

 



Why badFib is bad 
• Tracing calls on BadFib produces a tree of calls where intermediate 

results are recalculated again and again. 

 



Linked Lists  
A linked list can be described recursively  

• A list is comprised of a  

• head (a node) 

• a tail (the rest of the list) 

 

 

 

 

typedef struct node * link; 

 

struct node{ 

    int item; 

    link next; 

}; 



Recursive List Functions 
• We can define some list operations as recursive 

functions: 

• length:  return the length of a list 

• sumOfElems:  return the length of a list 

• printList: print the list 

• printListReverse: print out the list in reverse order 

• Recursive list operations are not useful for huge lists 

• The depth of recursion may be proportional to the 

length of the list 



Recursive List Functions 
int length (link ls) { 

        

 

   

    

 

} 

 

base case 

recursive case 

int sumOfElems (link ls) { 

     

    if (ls == NULL) { 

     

       

    }    

    

} 

base case 

recursive case 

  

     

 
return 1 + length (ls->next); 

     return 0; 

return (ls->item + sumOfElems(ls->next)); 

return 0; 

 if (ls == NULL) { 

} 



Recursive List Functions 
void printList(link ls){ 

    if(ls != NULL){ 

        printf(“%d\n“,ls->item); 

        printList(ls->next);   

    } 

} 

//To print in reverse change the 

//order of the recursive call and 

//the printf  

void printListReverse(link ls){ 

    if(ls != NULL){        

        printListReverse(ls->next); 

        printf(“%d\n“,ls->item);    

    } 

} 



Divide and Conquer 
Basic Idea: 

•  divide the input into two parts 

• solve the problems recursively on both parts 

• combine the results on the two halves into an overall 

solution 



Divide and Conquer 

Divide and Conquer Approach for finding maximum in an 

unsorted array: 

•  Divide array in two halves in each recursive step 

  Base case 

• subarray with exactly one element: return it 

  Recursive case 

• split array into two 

• find maximum of each half (recursively) 

• return maximum of the two sub-solutions 

 



Iterative solution 

//iterative solution O(n) 

int maximum(int a[], int n){ 

    int a[N];             

    int max = a[0];      

    int i; 

    for (i=0; i < n; i++){ 

        if (a[i] > max){ 

            max = a[i]; 

        } 

    } 

    return max; 

} 

 



Divide and Conquer Solution 

 

//Divide and conquer recursive solution 

int max (int a[], int l, int r) { 

    int m1, m2; 

    int m = (l+r)/2; 

    if (l==r) { 

        return a[l]; 

    } 

    //find max of left half 

    m1 = max (a,l,m); 

    //find max of right half 

    m2 = max (a, m+1, r) 

    //combine results to get max of both halves 

    if (m1 < m2) { 

        return m2; 

    } else { 

        return m1; 

    } 

} 

   



Complexity Analysis 
 

How many  calls of  max are necessary for the divide 

and conquer maximum algorithm? 

• Length = 1 

T1 = 1 

• Length = N > 1 

TN = TN/2 + TN/2 + 1 

•  Overall, we have 

TN = N + 1 

In each recursive call, we have to do a fixed number of 

steps (independent of the size of the argument) 

• O(N) 



Recursive Binary Search 

Maintain two indices, l and r, to denote leftmost and 

rightmost array index of current part of the array 

• initially l=0 and r=N-1 

Base cases: 

•  array is empty, element not found 

•  a[(l+r)/2] holds the element we’re looking for 

Recursive cases: a[(l+r)/2] is 

• larger than element, continue search on a[l]..a[(l+r)/2-1] 

• smaller than element, continue search on a[(l+r)/2+1]..a[r] 

O(log(n)) 


