Problem Solving

COMP1927 17x1

Sedgewick Chapter 5

Problem-solving

Many people "get stuck" when faced with a new problem

- where to start? ... what approach should I use?
- is there a known way to solve this problem?

Standard strategies and programming techniques

- recursion ... solve a problem in terms of a simpler version of itself
- divide-and-conquer ... partition, solve sub-problems, combine results
- higher-order functions ... package patterns of computation into generic tools

Recursive Functions

- problems can sometimes be expressed in terms of a simpler instance of the same problem
- Example: factorial

$$
\begin{array}{lll}
\bullet 1! & =1 \\
\bullet & 2! & 2!=1!* 2 \\
\bullet & \ldots & \\
\text { - } & (\mathrm{N}-1)!=1 * 23^{*} 3^{*}(\mathrm{~N}-1) \\
-\mathrm{N}! & 1^{*} 2^{*} 3^{*} \ldots{ }^{*}(\mathrm{~N}-1){ }^{*} \mathrm{~N} & \mathrm{~N}!=(\mathrm{N}-1)!{ }^{*} \mathrm{~N}
\end{array}
$$

Recursive Functions

- Solving problems recursively in a program involves
- Developing a function that calls itself
- Must include
- Base Case: aka stopping case: so easy no recursive call is needed
- Recursive Case: calls the function on a 'smaller' version of the problem

Iteration vs Recursion

- Compute $\mathrm{N}!=1$ * 2 * 3 * * N

```
//An iterative solution
int factorial(int N) {
    result = 1;
    for (i = 1; i <= N; i++)
        result = i * result;
    return result;
}
```

- Alternative Solution: factorial calls itself recursively

```
int factorial (int N) {
    if (N == 1) { {
    } else { N * (N-1)
    return N * factorial (N-1); }recursive case
```


Bad Fibonacci

- Sometimes recursive code results in horribly in-efficient code that re-evaluates things over and over.
- 2^{n} calls: $O\left(k^{n}\right)$ - exponential
- Exponential functions can only be used in practice for very small values of n

```
//Code to return the nth fibonacci number
//0}10112% 3 5 8 13 21
int badFib(int n) {
    if(n == 0) return 0;
    if(n == 1) return 1;
    return badFib(n-1) + badFib(n-2);
}
```


Why badFib is bad

- Tracing calls on BadFib produces a tree of calls where intermediate results are recalculated again and again.

Linked Lists

A linked list can be described recursively

- A list is comprised of a
- head (a node)
- a tail (the rest of the list)

```
typedef struct node * link;
struct node{
    int item;
    link next;
};
```


Recursive List Functions

- We can define some list operations as recursive functions:
- length: return the length of a list
- sumOfElems: return the length of a list
- printList: print the list
- printListReverse: print out the list in reverse order
- Recursive list operations are not useful for huge lists
- The depth of recursion may be proportional to the length of the list

Recursive List Functions

```
int length (link ls)
    if (ls == NULL) { 
    }
    return 1 + length (ls->next); }recursive case
```

int sumOfElems (link ls) \{
$\left.\begin{array}{c}\text { if }\left(\begin{array}{l}\text { ls }== \\ \text { return } 0 ;\end{array}\right\} \text { base case }\end{array}\right\}$
return (ls->item + sumOfElems (ls->next)) $\}$ recursive case

Recursive List Functions

```
void printList(link ls){
    if(ls != NULL) {
        printf("%d\n",ls->item);
        printList(ls->next);
    }
}
//To print in reverse change the
//order of the recursive call and
//the printf
void printListReverse(link ls){
    if(ls != NULL) {
        printListReverse(ls->next);
        printf("%d\n",ls->item);
    }
}
```


Divide and Conquer

Basic Idea:

- divide the input into two parts
- solve the problems recursively on both parts
- combine the results on the two halves into an overall solution

Divide and Conquer

Divide and Conquer Approach for finding maximum in an unsorted array:

- Divide array in two halves in each recursive step

Base case

- subarray with exactly one element: return it Recursive case
- split array into two
- find maximum of each half (recursively)
- return maximum of the two sub-solutions

Iterative solution

```
//iterative solution O(n)
int maximum(int a[], int n){
    int a[N];
    int max = a[0];
    int i;
    for (i=0; i < n; i++) {
        if (a[i] > max){
        max = a[i];
        }
    }
    return max;
}
```


Divide and Conquer Solution

```
//Divide and conquer recursive solution
int max (int a[], int l, int r) {
    int m1, m2;
    int m = (l+r)/2;
    if (l==r) {
        return a[l];
    }
    //find max of left half
    m1 = max (a,l,m);
    //find max of right half
    m2 = max (a, m+1, r)
    //combine results to get max of both halves
    if (m1 < m2) {
        return m2;
    } else {
        return m1;
    }
}
```


Complexity Analysis

How many calls of max are necessary for the divide and conquer maximum algorithm?

- Length $=1$

$$
T_{1}=1
$$

- Length $=N>1$

$$
T_{N}=T_{N / 2}+T_{N / 2}+1
$$

- Overall, we have

$$
T_{N}=N+1
$$

In each recursive call, we have to do a fixed number of steps (independent of the size of the argument)

- $\mathrm{O}(\mathrm{N})$

Recursive Binary Search

Maintain two indices, I and r, to denote leftmost and rightmost array index of current part of the array

- initially $\mathrm{l}=0$ and $\mathrm{r}=\mathrm{N}-1$

Base cases:

- array is empty, element not found
- $\mathrm{a}[(1+\mathrm{r}) / 2]$ holds the element we're looking for

Recursive cases: a[(1+r)/2] is

- larger than element, continue search on a[l]..a[(l+r)/2-1]
- smaller than element, continue search on $a[(1+r) / 2+1] . . a[r]$

O(log(n))

