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AVL Trees — prototypes of Balanced Trees

In this lecture, unless otherwise mentioned, all trees will be binary.

Moreover, the insertion and deletion algorithms will be the standard

ones for binary search trees.

Binary search trees can suffer from becoming unbalanced after a

sequence of adds and deletes.

Deletions on balanced trees can lead to left-heavy trees.

A major embarrassment is that when a binary search tree is

constructed from an already sorted sequence of keys, we get a long

skinny tree that is isomorphic to a linear list.
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Binary Search Tree Properties

A binary search tree has the following property: For each node

key(node.left.{left, right}∗) < key(node) (1)

key(node.right{left, right}∗) > key(node) (2)

From this one can show the following property:

Inorder projection: Inorder visit of a binary search tree in yields the

sorted sequence of keys.



Comp2011/2711 S1 2002 AVL Tree Oheads 3'

&

$

%

Inorder projection visualized
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Inorder traversal :  LeftSubTree − Node − RightSubTree
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Balanced Search Trees

If there is a way to maintain or restore the balance in search trees,

then we may be able to reduce worst case insert, delete and search

times to O(N log N).

This is possible. The currently popular (and efficient) ways to do this

are:

• Red-Black Trees

• A-A Trees

• Splay Trees

However, all of them are descendants of AVL trees, and the

underlying concepts and algorithms are best introduced via AVL

trees.
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Rotation and Subtree Transfer

The key ideas in all the re-balancing algorithms are the following:

• Allow a small slack in imbalance to postpone re-balancing

• In rebalancing, we may have to “rotate” a subtree, and transfer a

subtree to another parent

• This may have to be repeated

To trigger off these actions, some count of imbalance has to be kept.

It is preferable that these counts be “local”, so that updates are

simple.
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The Single Rotation Idea
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Dual of The Single Rotation Idea
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The Double Rotation Idea – Stage I
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The Double Rotation Idea – Stage II
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Dual of The Double Rotation Idea

Exercise: You draw the pitures!

Observation: These rotations all preserve the binary search tree

property, so inorder projection still works. They do NOT assume

that the tree is balanced.

Checking rotations: To see if a proposed rotation is legitimate, check

for the inorder projection property — this is an invariant. Verify that

it is so for all the rotations so far described.
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AVL Trees

What is an AVL tree?

Definition: The height of a tree is the maximum length of paths

from root to leaves.

Definition: A binary search tree is an AVL tree if the height of the

left and right subtrees of any node differs by at most one.
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Simple AVL Tree properties

If the height of a given node’s left subtree is m, then the height of

this node’s right subtree must be neither lower than m-1 nor higher

than m+1.

Any subtree of an AVL tree is also an AVL tree.

An empty binary search tree and a binary search tree consisting of

exactly one node are AVL trees.

Convention: Call AVL trees balanced, non-AVL trees unbalanced.
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Examples and Counter-examples

NO NO NO YES

"CULPRIT NODES" for not AVL tree
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Insertion and Deletion in AVL Trees

Insertion and Deletion are done as if the AVL tree is a standard

binary search tree.

After insertion/deletion, the AVL tree may become unbalanced.
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To restore it to the AVL condition, we do either one or two rotations.
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When to do One Rotation

Do this in the case when the insertion or deletion causes an

imbalance on the outside, i.e., relative to the lowest culprit node, the

imbalance is in the left subtree of its left child, or the right subtree of

its right child.

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �� � �

Imbalance caused here

The OUTSIDE case
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When to do Two Rotations

Do this in the case when the insertion or deletion causes an

imbalance on the inside, i.e., relative to the lowest culprit node, the

imbalance is in the right subtree of its left child, or the left subtree of

its right child.

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
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Imbalance caused here

The INSIDE case
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Single Rotation Details, Stage I
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Single Rotation, Final
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are at the same depth
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Figure 1: Check the re-balance!
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Double Rotation Details, Stage I
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Double Rotation, Final
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Transfer subtree C to k3

Figure 2: Check the re-balance!


