
Comp2011/2711 S1 2002 AVL Tree Oheads 1'

&

$

%

AVL Trees — prototypes of Balanced Trees

In this lecture, unless otherwise mentioned, all trees will be binary.

Moreover, the insertion and deletion algorithms will be the standard

ones for binary search trees.

Binary search trees can suffer from becoming unbalanced after a

sequence of adds and deletes.

Deletions on balanced trees can lead to left-heavy trees.

A major embarrassment is that when a binary search tree is

constructed from an already sorted sequence of keys, we get a long

skinny tree that is isomorphic to a linear list.

Comp2011/2711 S1 2002 AVL Tree Oheads 2'

&

$

%

Binary Search Tree Properties

A binary search tree has the following property: For each node

key(node.left.{left, right}∗) < key(node) (1)

key(node.right{left, right}∗) > key(node) (2)

From this one can show the following property:

Inorder projection: Inorder visit of a binary search tree in yields the

sorted sequence of keys.

Comp2011/2711 S1 2002 AVL Tree Oheads 3'

&

$

%

Inorder projection visualized

5

6

8

19

2

10

13

9

2 5 6 8 9 10 13 19

Inorder traversal : LeftSubTree − Node − RightSubTree

Comp2011/2711 S1 2002 AVL Tree Oheads 4'

&

$

%

Balanced Search Trees

If there is a way to maintain or restore the balance in search trees,

then we may be able to reduce worst case insert, delete and search

times to O(N log N).

This is possible. The currently popular (and efficient) ways to do this

are:

• Red-Black Trees

• A-A Trees

• Splay Trees

However, all of them are descendants of AVL trees, and the

underlying concepts and algorithms are best introduced via AVL

trees.

Comp2011/2711 S1 2002 AVL Tree Oheads 5'

&

$

%

Rotation and Subtree Transfer

The key ideas in all the re-balancing algorithms are the following:

• Allow a small slack in imbalance to postpone re-balancing

• In rebalancing, we may have to “rotate” a subtree, and transfer a

subtree to another parent

• This may have to be repeated

To trigger off these actions, some count of imbalance has to be kept.

It is preferable that these counts be “local”, so that updates are

simple.

Comp2011/2711 S1 2002 AVL Tree Oheads 6'

&

$

%

The Single Rotation Idea

k1

k2

T3
T2

T1

T3

T2
T1

k1

k2

<
<

> k1

k2

T1

T2

T3

1. Rotate k1 up, k2 down 2. Transfer T2 to k2

3. Binary search properties
 preserved

>

>

>

Clockwise

Comp2011/2711 S1 2002 AVL Tree Oheads 7'

&

$

%

Dual of The Single Rotation Idea

k1

k2

T1

T2

T3k1

k2

T3
T2

T1

1. Rotate k1 up, k2 down

3. Binary search properties
 preserved

T3

T2
T1

k1

k2

<

>

<

>

>

>

2. Transfer T2 to k2

Counter−clockwise

Comp2011/2711 S1 2002 AVL Tree Oheads 8'

&

$

%

The Double Rotation Idea – Stage I

T2

T1

T3

k3

T4

T1
<

T2

T3

k3

T4

>

<

Child promoted to parent’s role.

Goal: eventually, grandchild will go up to grandparent’s role

k2

k1

k1

k2

Double Rotation −− stage 1: rotate grandchild k1 with child k2;

Counter−clockwise at first stage

Comp2011/2711 S1 2002 AVL Tree Oheads 9'

&

$

%

The Double Rotation Idea – Stage II

T1

T3

k3

T4

k1

k2

T2

k1

k3k2

T1

T2

T4

T3

k1

k3k2

T1

T2

T4T3

Double Rotation, stage 2: rotating k1 and k3. Transfering subtree T3 to k3

subtree T2 given to k2

prepare to give subtree
T3 to k3

Final result still a binary
search tree

Clockwise at stage 2

Comp2011/2711 S1 2002 AVL Tree Oheads 10'

&

$

%

Dual of The Double Rotation Idea

Exercise: You draw the pitures!

Observation: These rotations all preserve the binary search tree

property, so inorder projection still works. They do NOT assume

that the tree is balanced.

Checking rotations: To see if a proposed rotation is legitimate, check

for the inorder projection property — this is an invariant. Verify that

it is so for all the rotations so far described.

Comp2011/2711 S1 2002 AVL Tree Oheads 11'

&

$

%

AVL Trees

What is an AVL tree?

Definition: The height of a tree is the maximum length of paths

from root to leaves.

Definition: A binary search tree is an AVL tree if the height of the

left and right subtrees of any node differs by at most one.

Comp2011/2711 S1 2002 AVL Tree Oheads 12'

&

$

%

Simple AVL Tree properties

If the height of a given node’s left subtree is m, then the height of

this node’s right subtree must be neither lower than m-1 nor higher

than m+1.

Any subtree of an AVL tree is also an AVL tree.

An empty binary search tree and a binary search tree consisting of

exactly one node are AVL trees.

Convention: Call AVL trees balanced, non-AVL trees unbalanced.

Comp2011/2711 S1 2002 AVL Tree Oheads 13'

&

$

%

Examples and Counter-examples

NO NO NO YES

"CULPRIT NODES" for not AVL tree

Comp2011/2711 S1 2002 AVL Tree Oheads 14'

&

$

%

Insertion and Deletion in AVL Trees

Insertion and Deletion are done as if the AVL tree is a standard

binary search tree.

After insertion/deletion, the AVL tree may become unbalanced.

6

3

2 5

4

8

7

6

3

2 5

4

7

delete this

AVL (balanced) not AVL (unbalanced)

To restore it to the AVL condition, we do either one or two rotations.

Comp2011/2711 S1 2002 AVL Tree Oheads 15'

&

$

%

When to do One Rotation

Do this in the case when the insertion or deletion causes an

imbalance on the outside, i.e., relative to the lowest culprit node, the

imbalance is in the left subtree of its left child, or the right subtree of

its right child.

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �� � �

Imbalance caused here

The OUTSIDE case

Comp2011/2711 S1 2002 AVL Tree Oheads 16'

&

$

%

When to do Two Rotations

Do this in the case when the insertion or deletion causes an

imbalance on the inside, i.e., relative to the lowest culprit node, the

imbalance is in the right subtree of its left child, or the left subtree of

its right child.

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

Imbalance caused here

The INSIDE case

Comp2011/2711 S1 2002 AVL Tree Oheads 17'

&

$

%

Single Rotation Details, Stage I

k1

k2

A

B

C

<

<

A

B

Single rotation; stage 1 −− "pick up k1, let k2 drop"

k1 goes up 1 level, k2 drops 1 level; subtree levels as shown

> k1

C

k2

Comp2011/2711 S1 2002 AVL Tree Oheads 18'

&

$

%

Single Rotation, Final

A C

k2
<

<

transfer subtree B to k2; when done all subtrees
are at the same depth

k1

B

A B C

k1

k2

Single rotation, stage 2;

Figure 1: Check the re-balance!

Comp2011/2711 S1 2002 AVL Tree Oheads 19'

&

$

%

Double Rotation Details, Stage I

A
B C

D

k3

k2

k1

[One of B or C is at bottom depth]
Double rotation; stage 1: lift k2, drop k1
Transfer subtree B to k1

k3

D

k1

k2

A
B

C

Comp2011/2711 S1 2002 AVL Tree Oheads 20'

&

$

%

Double Rotation, Final

k3

D

k1

k2

A
B

C

k1

k2

A
B C

k3

D

Double rotation; stage 2 −− drop k3 below k2;
Transfer subtree C to k3

Figure 2: Check the re-balance!

