
Merge Sort 1© 2004 Goodrich, Tamassia

Merge Sort

7 2 9 4 → 2 4 7 9

7 2 → 2 7 9 4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Merge Sort 2© 2004 Goodrich, Tamassia

Divide-and-Conquer (§ 10.1.1)
Divide-and conquer is a
general algorithm design
paradigm:
 Divide: divide the input data

S in two disjoint subsets S1
and S2

 Recur: solve the subproblems
associated with S1 and S2

 Conquer: combine the
solutions for S1 and S2 into a
solution for S

The base case for the
recursion are subproblems of
size 0 or 1 (sometimes 1 or 2)

Merge-sort is a sorting
algorithm based on the
divide-and-conquer
paradigm
Like heap-sort
 It uses a comparator
 It has O(n log n) running

time
Unlike heap-sort
 It does not use an

auxiliary priority queue
 It accesses data in a

sequential manner
(suitable to sort data on a
disk)

Merge Sort 3© 2004 Goodrich, Tamassia

Merge-Sort (§ 10.1)
Merge-sort on an input
sequence S with n
elements consists of
three steps:
 Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each

 Recur: recursively sort S1
and S2

 Conquer: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S, C)
Input sequence S with n

elements, comparator C
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2) ← partition(S, n/2)
mergeSort(S1, C)
mergeSort(S2, C)
S ← merge(S1, S2)

Merge Sort 4© 2004 Goodrich, Tamassia

Merging Two Sorted Sequences
The conquer step of
merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B
Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes O(n)
time

Algorithm merge(A, B)
Input sequences A and B with

 n/2 elements each

Output sorted sequence of A ∪ B

S ← empty sequence

while ¬A.isEmpty() ∧ ¬B.isEmpty()

if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))

else
S.insertLast(B.remove(B.first()))

while ¬A.isEmpty()
S.insertLast(A.remove(A.first()))
while ¬B.isEmpty()
S.insertLast(B.remove(B.first()))
return S

Merge Sort 5© 2004 Goodrich, Tamassia

Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree
 each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

 the root is the initial call
 the leaves are calls on subsequences of size 1 or 2

7 2 9 4 → 2 4 7 9

7 2 → 2 7 9 4 → 4 9

Merge Sort 6© 2004 Goodrich, Tamassia

Execution Example (cont.)

Recursive call, …, merge, merge

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 7© 2004 Goodrich, Tamassia

Execution Example (cont.)
Merge

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 8© 2004 Goodrich, Tamassia

Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)
 at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)
 we partition and merge 2i sequences of size n/2i

 we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

size#seqsdepth

………

n/2i2ii

n/221

n10

Merge Sort 9© 2004 Goodrich, Tamassia

Nonrecursive Merge-Sort
public static void mergeSort(Object[] orig, Comparator c) { // nonrecursive
 Object[] in = new Object[orig.length]; // make a new temporary array
 System.arraycopy(orig,0,in,0,in.length); // copy the input
 Object[] out = new Object[in.length]; // output array
 Object[] temp; // temp array reference used for swapping
 int n = in.length;
 for (int i=1; i < n; i*=2) { // each iteration sorts all length-2*i runs
 for (int j=0; j < n; j+=2*i) // each iteration merges two length-i pairs
 merge(in,out,c,j,i); // merge from in to out two length-i runs at j
 temp = in; in = out; out = temp; // swap arrays for next iteration
 }
 // the "in" array contains the sorted array, so re-copy it
 System.arraycopy(in,0,orig,0,in.length);
 }
 protected static void merge(Object[] in, Object[] out, Comparator c, int start,
 int inc) { // merge in[start..start+inc-1] and in[start+inc..start+2*inc-1]
 int x = start; // index into run #1
 int end1 = Math.min(start+inc, in.length); // boundary for run #1
 int end2 = Math.min(start+2*inc, in.length); // boundary for run #2
 int y = start+inc; // index into run #2 (could be beyond array boundary)
 int z = start; // index into the out array
 while ((x < end1) && (y < end2))
 if (c.compare(in[x],in[y]) <= 0) out[z++] = in[x++];
 else out[z++] = in[y++];
 if (x < end1) // first run didn't finish
 System.arraycopy(in, x, out, z, end1 - x);
 else if (y < end2) // second run didn't finish
 System.arraycopy(in, y, out, z, end2 - y);
 }

merge two runs
in the in array

to the out array

merge runs of
length 2, then 4,
then 8, and so

on

