
Merge Sort 1© 2004 Goodrich, Tamassia

Merge Sort

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Merge Sort 2© 2004 Goodrich, Tamassia

Divide-and-Conquer (§ 10.1.1)
Divide-and conquer is a
general algorithm design
paradigm:
 Divide: divide the input data

S in two disjoint subsets S1
and S2

 Recur: solve the subproblems
associated with S1 and S2

 Conquer: combine the
solutions for S1 and S2 into a
solution for S

The base case for the
recursion are subproblems of
size 0 or 1 (sometimes 1 or 2)

Merge-sort is a sorting
algorithm based on the
divide-and-conquer
paradigm
Like heap-sort
 It uses a comparator
 It has O(n log n) running

time
Unlike heap-sort
 It does not use an

auxiliary priority queue
 It accesses data in a

sequential manner
(suitable to sort data on a
disk)

Merge Sort 3© 2004 Goodrich, Tamassia

Merge-Sort (§ 10.1)
Merge-sort on an input
sequence S with n
elements consists of
three steps:
 Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each

 Recur: recursively sort S1
and S2

 Conquer: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S, C)
Input sequence S with n

elements, comparator C
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2) ← partition(S, n/2)
mergeSort(S1, C)
mergeSort(S2, C)
S ← merge(S1, S2)

Merge Sort 4© 2004 Goodrich, Tamassia

Merging Two Sorted Sequences
The conquer step of
merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B
Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes O(n)
time

Algorithm merge(A, B)
Input sequences A and B with

 n/2 elements each

Output sorted sequence of A ∪ B

S ← empty sequence

while ¬A.isEmpty() ∧ ¬B.isEmpty()

if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))

else
S.insertLast(B.remove(B.first()))

while ¬A.isEmpty()
S.insertLast(A.remove(A.first()))
while ¬B.isEmpty()
S.insertLast(B.remove(B.first()))
return S

Merge Sort 5© 2004 Goodrich, Tamassia

Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree
 each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

 the root is the initial call
 the leaves are calls on subsequences of size 1 or 2

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

Merge Sort 6© 2004 Goodrich, Tamassia

Execution Example (cont.)

Recursive call, …, merge, merge

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 7© 2004 Goodrich, Tamassia

Execution Example (cont.)
Merge

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 8© 2004 Goodrich, Tamassia

Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)
 at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)
 we partition and merge 2i sequences of size n/2i

 we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

size#seqsdepth

………

n/2i2ii

n/221

n10

Merge Sort 9© 2004 Goodrich, Tamassia

Nonrecursive Merge-Sort
public static void mergeSort(Object[] orig, Comparator c) { // nonrecursive
 Object[] in = new Object[orig.length]; // make a new temporary array
 System.arraycopy(orig,0,in,0,in.length); // copy the input
 Object[] out = new Object[in.length]; // output array
 Object[] temp; // temp array reference used for swapping
 int n = in.length;
 for (int i=1; i < n; i*=2) { // each iteration sorts all length-2*i runs
 for (int j=0; j < n; j+=2*i) // each iteration merges two length-i pairs
 merge(in,out,c,j,i); // merge from in to out two length-i runs at j
 temp = in; in = out; out = temp; // swap arrays for next iteration
 }
 // the "in" array contains the sorted array, so re-copy it
 System.arraycopy(in,0,orig,0,in.length);
 }
 protected static void merge(Object[] in, Object[] out, Comparator c, int start,
 int inc) { // merge in[start..start+inc-1] and in[start+inc..start+2*inc-1]
 int x = start; // index into run #1
 int end1 = Math.min(start+inc, in.length); // boundary for run #1
 int end2 = Math.min(start+2*inc, in.length); // boundary for run #2
 int y = start+inc; // index into run #2 (could be beyond array boundary)
 int z = start; // index into the out array
 while ((x < end1) && (y < end2))
 if (c.compare(in[x],in[y]) <= 0) out[z++] = in[x++];
 else out[z++] = in[y++];
 if (x < end1) // first run didn't finish
 System.arraycopy(in, x, out, z, end1 - x);
 else if (y < end2) // second run didn't finish
 System.arraycopy(in, y, out, z, end2 - y);
 }

merge two runs
in the in array

to the out array

merge runs of
length 2, then 4,
then 8, and so

on

