A coding scheme is said to be *instantaneously decodable* if encoded text using it can be decoded into the original text by scanning the encoded text from left to right (no back-tracking), picking off the decoded symbols the moment a symbol code is scanned.

The *prefix property* — no code for a symbol is a prefix of the code for another symbol — is a necessary and sufficient condition for instantaneous decoding.

The remarkable thing is that there is a simple arithmetical condition on the length of the codes for the scheme to be instantaneously decodable. This is the *Kraft Inequality*.

The Kraft Inequality

Suppose there are n symbols s_1, \ldots, s_n. Let them be encoded into codes c_1, \ldots, c_n. By $|c|$ we mean the length of code c.

$$\sum_{i=1}^{i=n} 2^{-|c_i|} \leq 1$$

This is known as the *Kraft Inequality*.

Theorem: A coding scheme is instantaneously decodable implies the code lengths satisfy the Kraft Inequality. Conversely, if the Kraft Inequality holds, there exists an instantaneously decodable code of those lengths.

The 0-1 Interval and 0-1 Codes I

$0.101101...$ interpret as: RLRRLR...

$0.0000...$ 0.1000... 0.1111...

$LL...$ 0.000... to 0.001...

$RL...$ 0.100... to 0.101...

$RR...$ 0.110... to 0.111...

$0.101101...$ interpret as: RLRRLR...

where $0 = Left$ half; $1 = Right$ half

The 0-1 Interval and 0-1 Codes II

A CONCISE REPRESENTATION FOR INFINITE STRINGS

$0.101101...$ interpret as: RLRRLR...

where $0 = Left$ half; $1 = Right$ half

$\{a,b\}^\omega$ means an infinite string of a’s and b’s, e.g. $aabbbbaabbbbaaab...$
0-1 Prefix Codes and Trees

Real-time decodable code = can read codes off from the left w/o back-tracking

Prefix code iff all codes are in leaves of code assignment tree

Excluded Strings

Lemma A
If \(a_1a_2 \ldots a_k \) is a chosen prefix code, then all strings of the form \(a_1a_2 \ldots a_k \{0,1\}^+ \) are excluded as codes.

Corollary B
In particular, if this is so, then no string whose initial segment is in the sub-interval \([0.a_1a_2 \ldots a_k0^\infty, 0.a_1a_2 \ldots a_k1^\infty]\) can be used as another code.

As the difference between the ends of this sub-interval is \(0.0^k1^\infty\), its length is \(2^{-k}\).

Prefix Trees and Excluded Sub-trees

Once 00, 10 and 011 chosen as codes:

Each leaf of a prefix tree is a "root" of an implicit exclusion subtree! Say that the code there "covers" the excluded codes in its subtree.

Uniqueness of Exclusion

Lemma C
\(a_1a_2 \ldots a_k \) excludes \(c_1c_2 \ldots c_l \) if and only if \(a_1a_2 \ldots a_k \) is a prefix of \(c_1c_2 \ldots c_l \), i.e., \(a_1 = c_1, a_2 = c_2, \ldots a_k = c_k \) where \(k < l \).

Corollary D
No two distinct prefix codes can exclude the same code.

Proof
Suppose distinct prefix codes \(a_1a_2 \ldots a_k \) and \(b_1b_2 \ldots b_j \) both exclude \(c_1c_2 \ldots a_l \). Then by the lemma, both \(a_1a_2 \ldots a_k \) and \(b_1b_2 \ldots b_j \) are prefixes of \(c_1c_2 \ldots a_l \). Thus if \(k \leq j, a_i = c_i = b_i \) for \(1 \leq i \leq k \), and therefore \(a_1a_2 \ldots a_k \) is a prefix of \(b_1b_2 \ldots b_j \), a contradiction. The other case \(l \leq k \) is similar.
Lemma E
If s_1, s_2, \ldots, s_n are prefix $0 - 1$ codes, then they exclude codes whose prefixes occupy disjoint sub-intervals of lengths $|s_1|, |s_2|, \ldots, |s_n|$.

Proof
From the previous lemmas.

Corollary F — one half of the Kraft Inequality
If s_1, s_2, \ldots, s_n are prefix codes, then
\[\sum_{i=1}^{n} 2^{-|s_i|} \leq 1 \]
(2)

Existence of Prefix Codes
We now argue that if there are numbers x_1, x_2, \ldots, x_n such that
\[\sum_{i=1}^{n} 2^{-x_i} \leq 1 \]
(3)
then there is a set of prefix codes s_1, s_2, \ldots, s_n such that $|s_i| = x_i$ for $1 \leq i \leq n$. Without loss of generality we may assume that $x_1 \leq x_2 \leq \ldots \leq x_n$.

Algorithm for Trie Construction
We construct a trie for the codes as follows.
Start with a (binary) tree of depth j_1. To the leaves of this tree, assign j of them to the shortest $N(j_1)$ desired codes. Then extend the unassigned leaves as follows: make them the roots of subtrees that extend the original tree to the next depth j_2. Assign $N(j_2)$ of those new leaves to the next shortest codes.

After the i-th stage of the algorithm the tree has been extended to a depth of j_i and at that new frontier $N(j_i)$ of its leaves have been assigned.

The feasibility (correctness) of the algorithm is proved if we can show that at any stage it is the case that enough leaves are left over to extend for the codes of the next higher length to be assigned.
Code Construction — A Sketch

Suppose 00, 10 and 011 are the chosen prefix codes so far.

At level j_k there are 2^{j_k} virtual nodes. These are the total number of nodes available for codes if no ancestors were “used up” at higher levels.

At level j_1, N_{j_1} are used up by assigning codes to them. Therefore the number of “lost” virtual nodes at level j_k is $N_{j_k} \cdot 2^{j_k - j_1}$.

Generally, the number of lost virtual nodes at level j_k due to N_{j_h} assignments at higher level j_h ($j_h < j_k$) is $N_{j_h} \cdot 2^{j_k - j_h}$.

Hence the number $F(k)$ of free nodes at level j_k is $2^{j_k} - 2^{j_k} (N_{j_1} \cdot 2^{-j_1} + \ldots + N_{j_{k-1}} \cdot 2^{-j_{k-1}})$.

Thus, there is space for the N_{j_k} nodes at level j_k if $N_{j_k} \leq F(k)$, i.e. $N_{j_k} \leq 2^{j_k} (1 - N_{j_1} \cdot 2^{-j_1} + \ldots + N_{j_{k-1}} \cdot 2^{-j_{k-1}})$.

But the last expression is precisely the Kraft Inequality!