System Modelling and Design
COMP2111

Johannes Åman Pohjola

+ tutors:
 Zhuo (Zoey) Chen
 Raphael Douglas Giles
 Charran Kethees
System Modelling and Design
COMP2111

Johannes Åman Pohjola

+ tutors:
 Zhuo (Zoey) Chen
 Raphael Douglas Giles
 Charran Kethees
System Modelling and Design
COMP2111

Credit for the material also goes to:
Paul Hunter,
Christine Rizkallah,
Liam O’Connor,
and Carroll Morgan

+ tutors:
Zhuo (Zoey) Chen
Raphael Douglas Giles
Charran Kethee

Johannes Åman Pohjola
We’ll learn to model systems in a way that’s unambiguous and mathematically precise.

We’ll be able to say what it means for a system to satisfy its specification, and prove that it does so.

We’ll need a substantial toolbox of discrete math and formal logic.

Don’t worry; we’ll teach it, not assume it.
Non-examples

3.9. Event Processing

The processing depicted in this section is an example of one possible implementation. Other implementations may have slightly different processing sequences, but they should differ from those in this section only in detail, not in substance.

The activity of the TCP can be characterized as responding to events. The events that occur can be cast into three categories: user calls, arriving segments, and timeouts. This section describes the processing the TCP does in response to each of the events. In many cases the processing required depends on the state of the connection.

Events that occur:

User Calls

OPEN
SEND
RECEIVE
CLOSE
ABORT
STATUS

Arriving Segments

SEGMENT ARRIVES

Timeouts

USER TIMEOUT
RETRANSMISSION TIMEOUT
TIME-WAIT TIMEOUT

The model of the TCP/user interface is that user commands receive an immediate return and possibly a delayed response via an event or pseudo interrupt. In the following descriptions, the term "signal" means cause a delayed response.

Error responses are given as character strings. For example, user commands referencing connections that do not exist receive "error: connection not open".

Please note in the following that all arithmetic on sequence numbers, acknowledgment numbers, windows, et cetera, is modulo 2^{32} the size of the sequence number space. Also note that "$<=$" means less than or equal to (modulo 2^{32}).
Non-examples

This RFC is a specification in English.

Natural language specs tend to have:

- Ambiguities
- Room for interpretation
- Important details in the writer’s head absent from actual text.

3.9. Event Processing

The processing depicted in this section is an example of one possible implementation. Other implementations may have slightly different processing sequences, but they should differ from those in this section only in detail, not in substance.

The activity of the TCP can be characterized as responding to events. The events that occur can be cast into three categories: user calls, arriving segments, and timeouts. This section describes the processing the TCP does in response to each of the events. In many cases the processing required depends on the state of the connection.

Events that occur:

User Calls

- OPEN
- SEND
- RECEIVE
- CLOSE
- ABORT
- STATUS

Arriving Segments

- SEGMENT ARRIVES

Timeouts

- USER TIMEOUT
- RETRANSMISSION TIMEOUT
- TIME-WAIT TIMEOUT

The model of the TCP/user interface is that user commands receive an immediate return and possibly a delayed response via an event or pseudo interrupt. In the following descriptions, the term "signal" means cause a delayed response.

Error responses are given as character strings. For example, user commands referencing connections that do not exist receive "error: connection not open".

Please note in the following that all arithmetic on sequence numbers, acknowledgment numbers, windows, et cetera, is modulo 2^{32} the size of the sequence number space. Also note that "<" means less than or equal to (modulo 2^{32}).
Non-examples

```java
DrawPolygons
- polygonsArray(Polygon)
+ paint(g:Graphics):void
+ main(args: String[]): void

Polygon
# center: Point
- Polygon(p: Point)
+ Polygon(x: int, y: int)
+ paint(g: Graphics): void

Point

Rectangle
+ Rectangle(x: int, y: int)

Circle
+ Circle(x: int, y: int)

Square
+ Square(x: int, y: int)
```
Non-examples

This UML diagram describes the **structure** of the system, not its behaviour.
Resources

Course website: http://www.cse.unsw.edu.au/~cs2111
- Lecture slides
- Assignment instructions
- ...

Ed forum: https://edstem.org/au/courses/7621
- General announcements
- Class discussion, announcements
- E-mail cs2111@cse.unsw.edu.au if you haven’t been invited!

Moodle: https://moodle.telt.unsw.edu.au/
- Lecture recordings
- Weekly quizzes
Examination

- Weekly quizzes: 15 credits total
 - After the lectures of every week (except W6 and W10).
 - Will appear on Moodle.
 - Deadline: Monday 10AM (before start of next week’s lectures)

- Three assignments (individual or pair, written): 10*3=30 credits

- Final exam (online, format TBA): 55 credits
Introduction to “Formal” Logic

Start here

This is a (draft) textbook for COMP6721 (In-)Formal Methods by Carroll Morgan

It’s on the course website.
Introduction to “Formal” Logic

\[x \in S \quad \text{element} \]
\[x \notin S \quad \text{set} \]
\[x \in A \cap B \quad \text{intersection} \]

membership

defined?
Introduction to “Formal” Logic

\[x \in A \cap B \] if and only if \[x \in A \] and \[x \in B \]
Introduction to “Formal” Logic

<table>
<thead>
<tr>
<th>Operation</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection</td>
<td>$A \cap B$</td>
</tr>
<tr>
<td>Union</td>
<td>$A \cup B$</td>
</tr>
<tr>
<td>Subset</td>
<td>$A \subseteq B$</td>
</tr>
</tbody>
</table>

Q: Subset is not like others in an important way. How?

\[
x \in A \cup B \quad \text{if and only if} \quad x \in A \quad \text{or} \quad x \in B
\]

\[
A \subseteq B \quad \text{if and only if} \quad x \in A \quad \text{implies} \quad x \in B
\]
Introduction to “Formal” Logic

Where is $A \cap B$ now?
Introduction to “Formal” Logic

Let’s prove $A \subseteq A \cup B$
Why so pedantic?

\[\{ y \mid y \subseteq x \} \quad \text{The set of all subsets of } x \]

\[\{ y \mid y \in x \} \quad x \]
Why so pedantic?

\[x \in x \quad \text{You can write it,} \\
But it’s never true \\
Does it make sense to write?

Is it ever true?

\[\{ x \mid x \in x \} \quad \text{Empty set} \]
Why so pedantic?

\[\{ x \mid x \not\in x \} \]

\[y = \{ x \mid x \not\in x \} \]

\[y \in y \Rightarrow y \not\in y \]

\[y \not\in y \Rightarrow y \in y \]

“There is just one point where I have encountered a difficulty”
- Bertrand Russell

Q: Why does this matter?
The language of logic

<table>
<thead>
<tr>
<th>Layers!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional formulae</td>
</tr>
<tr>
<td>Simple formulae</td>
</tr>
<tr>
<td>Terms</td>
</tr>
</tbody>
</table>
A term is either
(a) a variable, or
(b) a constant symbol, or
(c) a function symbol applied to the correct number of other terms.

A function’s number of arguments is its arity.
A term is either
(a) a variable, or
(b) a constant symbol, or
(c) a function symbol applied to the correct
 number of other terms.

A function’s number of arguments is its arity.
The language of logic

Propositional formulae

Simple formulae

Terms

Layers!

Terms have values:

0
x+1
x
\sin(x/2)

Not terms:

x y
x+
x++
The language of logic

Propositional formulae

Simple formulae

Terms

A *simple formula* is a predicate symbol applied to the correct number of (term) arguments.

A *simple formula* can be true or false.

$t < u$
$t = u$
$t \geq u$
$even(t)$
$t \in u$
false
The language of logic

Propositional formulae

Simple formulae

Terms

Layers!

false

$x \in y$

$\pi \in \mathbb{IR}$

$1 \leq a/2$

Simple formulae

$x \in (y \in z)$

$x + 5$

Not formulae
A propositional formula is either
(a) a simple formula
(b) a propositional connective applied to
 the right number of arguments.
The language of logic

Propositional formulae

Simple formulae

Terms

Layers!

Q: Is this formula True?

false

\[x \in y \land x \geq 2 \]

\[n! = n \leftrightarrow (n = 1 \lor n = 3) \]
Truth tables

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A \land B</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A \lor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A \rightarrow B</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A \iff B</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
The language of logic: summary

<table>
<thead>
<tr>
<th>Propositional formulae</th>
<th>Propositional connectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple formulae</td>
<td>Predicate symbols</td>
</tr>
<tr>
<td>Terms</td>
<td>Constants, functions, variables</td>
</tr>
</tbody>
</table>

Truth tables define what the propositional connectives mean.

Q: Did the layered, systematic approach help against Russell’s paradox?
Calculating with logic

D The arithmetic of conditions
D.1 Introduction and rationale .. 207
D.2 Why is my program correct? 207
D.3 How do I write my program in the first place? 209
D.4 Calculating with conditions 210
D.5 Simple calculations in logic 212
D.6 Terms ... 213
D.7 Simple formulae ... 214
D.8 Propositions, and propositional formulae 215
D.9 Operator precedence .. 215
D.10 Calculation with logical formulae 217
D.11 Exercises on propositions ... 218
D.12 Quantifiers ... 221
D.13 Exercises on quantifiers .. 222
D.14 (General) formulae .. 223

E Some helpful logical identities
E.1 Some basic propositional rules 225
E.2 Some basic predicate rules .. 228
E.3 Exercises on rules for logic ... 232
E.4 Epilogue on notation and terminology 232
Calculating with logic

Propositional formulae

Are like the conditions in if-then-else, while

Terms

are like the RHS of assignment statements

We can *calculate* with logic as a thinking tool for programming,

...just as we can use mathematical calculation as a thinking tool for physics.
Calculating with logic

```python
if l <= m < h:
    ...
else:
    ... #what’s true here?
```

(let’s calculate)
Calculating with logic

Are these programs the same?

(let's calculate)