COMP2111 Week 7
Term 1, 2023
Finite automata
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
Transition systems

A transition system (or state machine) is a pair \((S, \rightarrow)\) where \(S\) is a set and \(\rightarrow \subseteq S \times S\) is a binary relation.

NB

\(S\) is not necessarily finite.

Transition systems may have:

- \(L\)-labelled transitions: \(\rightarrow \subseteq S \times L \times S\)
- A start/initial state \(s_0 \in S\)
- A set of final states \(F \subseteq S\) (where runs terminate)

If \(\rightarrow\) is a partial function (from \(S \times L\) to \(S\)), the transition system is deterministic. If \(\rightarrow\) is a function, the transition system is total.
Reachability and Runs

A state s' is **reachable** from a state s if $(s, s') \in \rightarrow^*$ (the reflexive and transitive closure of \rightarrow).

A **run** from a state s is a sequence s_1, s_2, \ldots such that $s_1 = s$ and $s_i \rightarrow s_{i+1}$ for all i.

NB

In a non-deterministic transition system there may be many (or no) runs from a state. In an unlabelled deterministic transition system there is exactly one maximal run from every state.
Acceptors and Transducers

An acceptor is a transition system with:

- (input-)labelled transitions
- a start/initial state
- a set of final states

A transducer is a transition system with:

- (input & output-)labelled transitions
- a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map sequences of inputs to sequences of outputs.
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
A **deterministic finite automaton (DFA)** is a total, finite state acceptor.

DFAs represent “computation with finite memory”

DFAs are simple, easy to work with and show up all over the place.
Formally, a deterministic finite automaton (DFA) is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- Σ is the input alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states
Deterministic Finite Automata

Formally, a **deterministic finite automaton (DFA)** is a tuple \((Q, \Sigma, \delta, q_0, F)\) where

- **\(Q\)** is a finite set of states: \(Q = \{q_0, q_1, q_2\}\)
- **\(\Sigma\)** is the input alphabet
- **\(\delta : Q \times \Sigma \rightarrow Q\)** is the transition function
- **\(q_0 \in Q\)** is the start state
- **\(F \subseteq Q\)** is the set of final/accepting states
Formally, a **deterministic finite automaton (DFA)** is a tuple \((Q, \Sigma, \delta, q_0, F)\) where

- \(Q\) is a finite set of states: \(Q = \{q_0, q_1, q_2\}\)
- \(\Sigma\) is the input alphabet: \(\Sigma = \{0, 1\}\)
- \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final/accepting states
Deterministic Finite Automata

\[\delta(q_0, 0) = q_0 \]
\[\delta(q_0, 1) = q_1 \]
\[\delta(q_1, 0) = q_2 \]
\[\delta(q_1, 1) = q_1 \]
\[\delta(q_2, 0) = q_1 \]
\[\delta(q_2, 1) = q_1 \]
Deterministic Finite Automata

\[\delta \]

\[
\begin{array}{c|cc}
\delta & 0 & 1 \\
\hline
q_0 & q_0 & q_1 \\
q_1 & q_2 & q_1 \\
q_2 & q_1 & q_1 \\
\end{array}
\]
Formally, a **deterministic finite automaton (DFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines a run in the DFA and the word is accepted if the run ends in a final state.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*
Language of a DFA

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0

w: 1001
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ

A DFA accepts the sequence $w: 1001$
Language of a DFA

\[q_0 \rightarrow 0 \rightarrow q_0 \]
\[q_0 \rightarrow 1 \rightarrow q_1 \]
\[q_1 \rightarrow 0 \rightarrow q_2 \]
\[q_1 \rightarrow 1 \rightarrow q_1 \]

w: 1001

A DFA accepts a sequence of symbols from \(\Sigma \) – i.e. elements of \(\Sigma^* \)

- Start in state \(q_0 \)
- Take the first symbol of \(w \)
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by \(\delta \)
A DFA accepts a sequence of symbols from \(\Sigma \) – i.e. elements of \(\Sigma^* \)

- Start in state \(q_0 \)
- Take the first symbol of \(w \)
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by \(\delta \)
 - Move to the next symbol in \(w \)
A DFA accepts a sequence of symbols from \(\Sigma \) – i.e. elements of \(\Sigma^* \)

- Start in state \(q_0 \)
- Take the first symbol of \(w \)
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by \(\delta \)
 - Move to the next symbol in \(w \)
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

w: 1001
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
Language of a DFA

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

w: 1001
Language of a DFA

\[w: 1001 \]

A DFA accepts a sequence of symbols from \(\Sigma \) – i.e. elements of \(\Sigma^* \)

- Start in state \(q_0 \)
- Take the first symbol of \(w \)
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by \(\delta \)
 - Move to the next symbol in \(w \)
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the language of \mathcal{A}, $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}.
Language of a DFA

$L(A) = \{1, 01, 11, 101, \ldots\}$

For a DFA $A = (Q, \Sigma, \delta, q_0, F)$, the language of A, $L(A)$, is the set of words from Σ^* which are accepted by A.
For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the language of \mathcal{A}, $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA \mathcal{A} such that $L = L(\mathcal{A})$
Language of a DFA: formally

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$ we define $L_A : Q \to \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_A(q)$
- If $q \xrightarrow{a} q'$ and $w \in L_A(q')$ then $aw \in L_A(q)$
Given a DFA \(\mathcal{A} = (Q, \Sigma, \delta, q_0, F) \) we define \(L_\mathcal{A} : Q \rightarrow \Sigma^* \) inductively as follows:

- If \(q \in F \) then \(\lambda \in L_\mathcal{A}(q) \)
- If \(q \xrightarrow{a} q' \) and \(w \in L_\mathcal{A}(q') \) then \(aw \in L_\mathcal{A}(q) \)

We then define

\[
L(\mathcal{A}) = L_\mathcal{A}(q_0)
\]
Examples

Example

\[
A_1
\]

\[
L(A_1) = ?
\]
Example

\[L(A_1) = \{ w \in \{a, b\}^* : w \text{ ends with } b \} \]
Example

A_2

q_0 q_1

a b

b a

$L(A_2) = ?$
Example

A_2

$L(A_2) = \{ w \in \{a, b\}^* : w \text{ ends with } a \} \cup \{\lambda\}$
Example

Find \mathcal{A}_3 such that $L(\mathcal{A}_3) = \emptyset$

Find \mathcal{A}_4 such that $L(\mathcal{A}_4) = \{\lambda\}$
Example

Find A_3 such that $L(A_3) = \emptyset$

A_3

q_0

a, b

Find A_4 such that $L(A_4) = \{\lambda\}$
Examples

Example

Find A_3 such that $L(A_3) = \emptyset$

A_3

Find A_4 such that $L(A_4) = \{\lambda\}$

A_4
Example

Find A_5 such that $L(A_5) = \{ w \in \{a, b\}^* : \text{every odd symbol is } b \}$
Examples

Example

Find \(A_5 \) such that \(L(A_5) = \{ w \in \{ a, b \}^* : \text{every odd symbol is } b \} \)
Example

Find A_6 such that

$L(A_6) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$
Examples

Example

Find A_6 such that

$L(A_6) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$
Examples

Example

Find A_6 such that

$L(A_6) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
A **non-deterministic finite automaton (NFA)** is a non-deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA
Formally, a **non-deterministic finite automaton (NFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- Σ is the input alphabet
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states
Non-deterministic Finite Automata

Formally, a **non-deterministic finite automaton (NFA)** is a tuple \((Q, \Sigma, \delta, q_0, F)\) where

- \(Q\) is a finite set of states: \(Q = \{q_0, q_1, q_2\}\)
- \(\Sigma\) is the input alphabet
- \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\) is the transition relation
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final/accepting states
Non-deterministic Finite Automata

Formally, a **non-deterministic finite automaton (NFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states
Non-deterministic Finite Automata

\[\delta = \begin{cases}
(q_0, 0, q_0), & (q_0, 1, q_0), & (q_0, 1, q_1), \\
(q_1, \epsilon, q_2), & (q_1, 0, q_2), & (q_1, 1, q_1), \\
(q_2, 0, q_1) &
\end{cases} \]
Non-deterministic Finite Automata

\[
\begin{array}{c|ccc}
\delta & \epsilon & 0 & 1 \\
\hline
q_0 & \emptyset & \{q_0\} & \{q_0, q_1\} \\
q_1 & \{q_2\} & \{q_2\} & \{q_1\} \\
q_2 & \emptyset & \{q_1\} & \emptyset \\
\end{array}
\]
Non-deterministic Finite Automata

Formally, a **non-deterministic finite automaton (NFA)** is a tuple \((Q, \Sigma, \delta, q_0, F)\) where

- \(Q\) is a finite set of states: \(Q = \{q_0, q_1, q_2\}\)
- \(\Sigma\) is the input alphabet: \(\Sigma = \{0, 1\}\)
- \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\) is the transition relation
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final/accepting states: \(F = \{q_1\}\)
An NFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines several runs in the NFA and the word is accepted if **at least one run** ends in a final state.

Note 1: Runs can end prematurely (these don’t count)

Note 2: An NFA will always “choose wisely”
Language of an NFA

For each symbol c of w:
- Colour all states reachable by a c-transition followed by 0 or more ϵ-transitions from the coloured states, and uncolour all other states.

Accept if there are no symbols left and a final state is coloured; otherwise, reject.

w: 1000
Language of an NFA

- Colour the state q_0

w: 1000
Language of an NFA

\[w: 1000 \]

- Colour the state \(q_0 \)
- Colour states reachable by one or more \(\epsilon \) transitions from \(q_0 \).
- For each symbol \(c \) of \(w \):
 - Colour all states reachable by a \(c \)-transition followed by 0 or more \(\epsilon \) transitions from the coloured states, and uncolour all other states.
Language of an NFA

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

$w: \text{1000}$
Language of an NFA

1 1

w: 1000

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.
Language of an NFA

w: 1000

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.
Language of an NFA

Colour the state q_0

Colour states reachable by one or more ϵ transitions from q_0.

For each symbol c of w:

- Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.
Language of an NFA

![Diagram of an NFA]

- **Colour the state** q_0
- **Colour states reachable by one or more ϵ transitions from** q_0.
- **For each symbol** c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000
Language of an NFA

![Diagram of an NFA]

w: 1000

- Colour the state q_0.
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

Accept if there are no symbols left and a final state is coloured; otherwise, reject.
Language of an NFA

1

1

1

0, σ

0

q₀

q₁

q₂

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q₀.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.
Language of an NFA

w: 1000

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.
Language of an NFA

- Colour the state \(q_0 \)
- Colour states reachable by one or more \(\epsilon \) transitions from \(q_0 \).
- For each symbol \(c \) of \(w \):
 - Colour all states reachable by a \(c \)-transition followed by 0 or more \(\epsilon \) transitions from the coloured states, and uncolour all other states.

\(w: 1000 \)
Language of an NFA

$w: 1000$

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.
Language of an NFA

Colour the state q_0

Colour states reachable by one or more ϵ transitions from q_0.

For each symbol c of w:

- Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

$w: 1000$
Language of an NFA

\[w: 1000 \]

- Colour the state \(q_0 \)
- Colour states reachable by one or more \(\epsilon \) transitions from \(q_0 \).
- For each symbol \(c \) of \(w \):
 - Colour all states reachable by a \(c \)-transition followed by 0 or more \(\epsilon \) transitions from the coloured states, and uncolour all other states.
- Accept if there are no symbols left and a final state is coloured; otherwise, reject.
Language of an NFA

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.
- Accept if there are no symbols left and a final state is coloured; otherwise, reject.

w: 1000 ✓
For an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the language of \mathcal{A}, $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}.
For an NFA \(\mathcal{A} = (Q, \Sigma, \delta, q_0, F) \), the language of \(\mathcal{A} \), \(L(\mathcal{A}) \), is the set of words from \(\Sigma^* \) which are accepted by \(\mathcal{A} \).
Given an NFA $A = (Q, \Sigma, \delta, q_0, F)$ we define $L_A : Q \rightarrow \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_A(q)$
- If $q \xrightarrow{a} q'$ and $w \in L_A(q')$ then $aw \in L_A(q)$
- If $q \xrightarrow{\epsilon} q'$ and $w \in L_A(q')$ then $w \in L_A(q)$

We then define $L(A) = L_A(q_0)$
Language of an NFA: formally

Given an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ we define $L_\mathcal{A} : Q \rightarrow \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_\mathcal{A}(q)$
- If $q \xrightarrow{a} q'$ and $w \in L_\mathcal{A}(q')$ then $aw \in L_\mathcal{A}(q)$
- If $q \xrightarrow{\epsilon} q'$ and $w \in L_\mathcal{A}(q')$ then $w \in L_\mathcal{A}(q)$

We then define

$$L(\mathcal{A}) = L_\mathcal{A}(q_0)$$
Example

B_1

$q_0 \xrightarrow[a,b]{\quad} q_0$

$q_0 \xrightarrow[b]{\quad} q_1$

$L(B_1) = ?$
Example

\[L(B_1) = \{ w \in \{a, b\}^* : w \text{ ends with } b \} \]
Examples

Example

B_2

$q_0 \xrightarrow{a,b} q_0 \xrightarrow{b} q_1$

$L(B_2) = ?$
Examples

Example

$B_2 \xrightarrow{a, b} q_0 \xrightarrow{b} q_1$

$L(B_2) = \{a, b\}^*$
Example

Find \mathcal{B}_3 such that $L(\mathcal{B}_3) = \emptyset$

Find \mathcal{B}_4 such that $L(\mathcal{B}_4) = \{\lambda\}$
Examples

Example

Find \mathcal{B}_3 such that $L(\mathcal{B}_3) = \emptyset$

\mathcal{B}_3

Find \mathcal{B}_4 such that $L(\mathcal{B}_4) = \{\lambda\}$
Example

Find B_3 such that $L(B_3) = \emptyset$

$B_3

\rightarrow q_0$

Find B_4 such that $L(B_4) = \{\lambda\}$

$B_4

\rightarrow q_0$
Example

Find \mathcal{B}_5 such that $L(\mathcal{B}_5) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$
Example

Find \mathcal{B}_5 such that $L(\mathcal{B}_5) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$
NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that $L(A) = L(B)$.

Theorem

For any NFA B there is a DFA A such that $L(A) = L(B)$.

Proof sketch: (Subset construction)

Given $B = (Q, \Sigma, \delta, q_0, F)$, construct $A = (Q', \Sigma, \delta', q'_0, F')$ as follows:

- $Q' = \text{Pow}(Q)$
- $\delta'(X, a) = \{ q' \in Q : \exists q \in X, q'' \in Q. qa \xrightarrow{\epsilon} q'' \}$
- $q'_0 = \{ q' \in Q : q_0 \xrightarrow{\epsilon} q' \}$
- $F' = \{ X \in Q' : X \cap F \neq \emptyset \}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.
NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that $L(A) = L(B)$.

Theorem

For any NFA B there is a DFA A such that $L(A) = L(B)$.
NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that $L(A) = L(B)$.

Theorem

For any NFA B there is a DFA A such that $L(A) = L(B)$.

Proof sketch: (Subset construction)

Given $B = (Q, \Sigma, \delta, q_0, F)$, construct $A = (Q', \Sigma, \delta', q'_0, F')$ as follows:

- $Q' = \text{Pow}(Q)$
- $\delta'(X, a) = \{ q' \in Q : \exists q \in X, q'' \in Q. q \xrightarrow{a} q'' \xrightarrow{\epsilon}^* q' \}$
- $q'_0 = \{ q' \in Q : q_0 \xrightarrow{\epsilon}^* q' \}$
- $F' = \{ X \in Q' : X \cap F \neq \emptyset \}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.
Example

NFA to DFA Example

Example

\[B_5 \]

\[q_0 \quad b \quad q_1 \quad a, b \quad q_2 \]
NFA to DFA Example

Example

\[\delta' \]

\[
\begin{array}{c|cc}
\emptyset & a & b \\
\{ q_0 \} & & \\
\{ q_1 \} & & \\
\{ q_2 \} & & \\
\{ q_0, q_1 \} & & \\
\{ q_0, q_2 \} & & \\
\{ q_1, q_2 \} & & \\
\{ q_0, q_1, q_2 \} & & \\
\end{array}
\]
NFA to DFA Example

Example

\[\mathcal{B}_5 \]

\[
\begin{array}{c c c c}
\delta' & a & b \\
\emptyset & \emptyset & \emptyset \\
\{q_0\} & \emptyset & \emptyset \\
\{q_1\} & \emptyset & \emptyset \\
\{q_2\} & \emptyset & \emptyset \\
\{q_0, q_1\} & \emptyset & \emptyset \\
\{q_0, q_2\} & \emptyset & \emptyset \\
\{q_1, q_2\} & \emptyset & \emptyset \\
\{q_0, q_1, q_2\} & \emptyset & \emptyset \\
\end{array}
\]
NFA to DFA Example

Example

\[B_5 \]

\[
\begin{array}{ccc}
q_0 & b & q_1 \\
q_1 & a, b & q_2 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & \emptyset & \emptyset \\
\{q_0\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1\} & \{q_0\} & \{q_0, q_1\} \\
\{q_2\} & \{q_0\} & \{q_0, q_1\} \\
\{q_0, q_1\} & \{q_0\} & \{q_0, q_1\} \\
\{q_0, q_2\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1, q_2\} & \{q_0\} & \{q_0, q_1\} \\
\{q_0, q_1, q_2\} & \{q_0\} & \{q_0, q_1\} \\
\end{array}
\]
NFA to DFA Example

Example

\[\mathcal{B}_5 \]

\[
\begin{array}{ccc}
q_0 & b & q_1 \\
\rightarrow & b & \rightarrow \\
q_0 & \rightarrow & q_1 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & \emptyset & \emptyset \\
\{q_0\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1\} & \{q_2\} & \{q_2\} \\
\{q_2\} & \{q_2\} & \{q_2\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_1\} \\
\{q_0, q_2\} & \{q_0, q_2\} & \{q_0, q_2\} \\
\{q_1, q_2\} & \{q_1, q_2\} & \{q_1, q_2\} \\
\{q_0, q_1, q_2\} & \{q_0, q_1, q_2\} & \{q_0, q_1, q_2\}
\end{array}
\]
NFA to DFA Example

Example

Example

\[B_5 \]

\[\begin{array}{c|cc}
\delta' & a, b & b \\
\hline
\emptyset & \emptyset & \emptyset \\
\{q_0\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1\} & \{q_2\} & \{q_2\} \\
\{q_2\} & \emptyset & \emptyset \\
\{q_0, q_1\} & \emptyset & \emptyset \\
\{q_0, q_2\} & \emptyset & \emptyset \\
\{q_1, q_2\} & \emptyset & \emptyset \\
\{q_0, q_1, q_2\} & \emptyset & \emptyset \\
\end{array} \]
NFA to DFA Example

Example

\[\mathcal{B}_5 \]

\[q_0 \quad b \quad q_1 \quad a, b \quad q_2 \]

\[
\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & \emptyset & \emptyset \\
\{ q_0 \} & \{ q_0 \} & \{ q_0, q_1 \} \\
\{ q_1 \} & \{ q_2 \} & \{ q_2 \} \\
\{ q_2 \} & \emptyset & \emptyset \\
\{ q_0, q_1 \} & \{ q_0, q_2 \} & \{ q_0, q_1, q_2 \} \\
\{ q_0, q_2 \} & & \\
\{ q_1, q_2 \} & & \\
\{ q_0, q_1, q_2 \} & & \\
\end{array}
\]
NFA to DFA Example

Example

\[\mathcal{B}_5 \]

\[q_0 \] \quad b \quad \[q_1 \] \quad a, b \quad \[q_2 \]

<table>
<thead>
<tr>
<th>[\delta']</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\emptyset]</td>
<td>[\emptyset]</td>
<td>[\emptyset]</td>
</tr>
<tr>
<td>[{ q_0 }]</td>
<td>[{ q_0 }]</td>
<td>[{ q_0, q_1 }]</td>
</tr>
<tr>
<td>[{ q_1 }]</td>
<td>[{ q_2 }]</td>
<td>[{ q_2 }]</td>
</tr>
<tr>
<td>[{ q_2 }]</td>
<td>[\emptyset]</td>
<td>[\emptyset]</td>
</tr>
<tr>
<td>[{ q_0, q_1 }]</td>
<td>[{ q_0, q_2 }]</td>
<td>[{ q_0, q_1, q_2 }]</td>
</tr>
<tr>
<td>[{ q_0, q_2 }]</td>
<td>[{ q_0 }]</td>
<td>[{ q_0, q_1 }]</td>
</tr>
<tr>
<td>[{ q_1, q_2 }]</td>
<td>[{ q_0 }]</td>
<td>[{ q_0, q_1 }]</td>
</tr>
<tr>
<td>[{ q_0, q_1, q_2 }]</td>
<td>[{ q_0, q_1, q_2 }]</td>
<td>[{ q_0, q_1, q_2 }]</td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\[B_5 \]

\[
\begin{array}{c}
\delta' \\
\emptyset \\
\{ q_0 \} \\
\{ q_1 \} \\
\{ q_2 \} \\
\{ q_0, q_1 \} \\
\{ q_0, q_2 \} \\
\{ q_1, q_2 \} \\
\{ q_0, q_1, q_2 \}
\end{array}
\begin{array}{c|c|c}
\text{a} & \{ q_0 \} & \{ q_0, q_1 \} \\
\text{b} & \{ q_2 \} & \{ q_2 \} \\
\end{array}
\begin{array}{c}
\emptyset \\
\emptyset \\
\{ q_0 \} \\
\{ q_0, q_1 \} \\
\{ q_0 \} \\
\{ q_0 \} \\
\{ q_0, q_1 \} \\
\{ q_0, q_1, q_2 \}
\end{array}
\]
NFA to DFA Example

Example

B_5

δ'

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${q_0}$</td>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
</tr>
<tr>
<td>${q_1}$</td>
<td>${q_2}$</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>${q_2}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
</tr>
<tr>
<td>${q_1, q_2}$</td>
<td>${q_2}$</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_2}$</td>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_2}$</td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\[\mathcal{B}_5 \]

\[
\begin{array}{ccc}
q_0 & \xrightarrow{b} & q_1 & \xrightarrow{a, b} & q_2 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & A & A \\
\{q_0\} & B & E \\
\{q_1\} & C & D \\
\{q_2\} & D & A \\
\{q_0, q_1\} & E & H \\
\{q_0, q_2\} & F & E \\
\{q_1, q_2\} & G & D \\
\{q_0, q_1, q_2\} & H & H \\
\end{array}
\]
NFA to DFA Example

Example

\[\delta' \]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>({ q_0 })</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>({ q_1 })</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>({ q_2 })</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>({ q_1, q_2 })</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>({ q_0, q_1, q_2 })</td>
<td>H</td>
<td>F</td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\[\delta' \]

\begin{tabular}{c|cc}
 & \(a \) & \(b \) \\
\hline
\(\emptyset \) & A & A \\
\{ q_0 \} & B & E \\
\{ q_1 \} & C & D \\
\{ q_2 \} & D & A \\
\{ q_0, q_1 \} & E & H \\
\{ q_0, q_2 \} & F & E \\
\{ q_1, q_2 \} & G & D \\
\{ q_0, q_1, q_2 \} & H & H \\
\end{tabular}

Diagram:

- \(B_5 \)
- States: \(q_0, q_1, q_2 \)
- Transitions:
 - \(a, b \) from \(q_0 \) to \(q_1 \)
 - \(b \) from \(q_1 \) to \(q_2 \)
NFA to DFA Example

Example

\[\mathcal{B}_5 \]

- Transition from \(q_0 \) to \(q_1 \) on \(b \)
- Transition from \(q_1 \) to \(q_2 \) on \(a, b \)
- Transition from \(q_0 \) to \(q_2 \) on \(a, b \)

States:
- \(B \)
- \(F \)
- \(H \)
- \(E \)
- \(G \)
- \(C \)
- \(A \)
- \(D \)

Transitions:
- From \(B \) to \(E \) on \(a \)
- From \(B \) to \(F \) on \(b \)
- From \(F \) to \(B \) on \(a \)
- From \(F \) to \(H \) on \(b \)
- From \(H \) to \(B \) on \(a \)
- From \(H \) to \(F \) on \(b \)
- From \(E \) to \(B \) on \(a \)
- From \(E \) to \(H \) on \(b \)

Final States:
- \(B \)
- \(C \)
- \(A \)
NFAs vs DFAs

Theorem

- For any NFA with n states there exists a DFA with at most 2^n states that accepts the same language.
- There exist NFAs with n states such that the smallest DFA that accepts the same language has at least 2^n states.
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
A language \(L \subseteq \Sigma^* \) is regular if there is some DFA \(\mathcal{A} \) such that \(L = L(\mathcal{A}) \).
A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA A such that $L = L(A)$

Equivalently, there is some NFA B such that $L = L(B)$
Non-regular languages

Are there languages which are not regular?

"Simple" counting argument: there are uncountably many languages, and only countably many DFAs. An example of a non-regular language: \{0^n1^n : n \in \mathbb{N}\}. Intuitively: need arbitrary large memory to "remember" the number of 0's.
Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many languages, and only countably many DFAs
Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many languages, and only countably many DFAs

An example of a non-regular language: \(\{0^n1^n : n \in \mathbb{N}\}\)

Intuitively: need arbitrary large memory to “remember” the number of 0’s
Complementation

Theorem

If \(L \) is a regular language then \(L^c = \Sigma^* \setminus L \) is a regular language.

Proof:

- Let \(A = (Q, \Sigma, \delta, q_0, F) \) be a DFA such that \(L(A) = L \)
- Consider \(A' = (Q, \Sigma, \delta, q_0, Q \setminus F) \)
- For any word \(w \in \Sigma^* \), the corresponding run in \(A \) is unique, so:
 - If \(w \in L(A) \) then \(w \notin L(A') \), and
 - If \(w \notin L(A) \) then \(w \in L(A') \),
- Therefore \(L(A') = \Sigma^* \setminus L(A) = L^c \)

NB

This argument does not apply for NFAs (see \(\mathcal{B}_1 \) and \(\mathcal{B}_2 \))
Union

Theorem

If \(L_1 \) *and* \(L_2 \) *are regular languages, then* \(L_1 \cup L_2 \) *is regular.*

Proof:

- Let \(B_1 \) *and* \(B_2 \) *be NFAs such that* \(L(B_1) = L_1 \) *and* \(L(B_2) = L_2 \).
- Construct an NFA \(B \) *by having a new start state with* \(\epsilon \)-transitions to the start states of \(B_1 \) *and* \(B_2 \).
- Consider \(w \in L_1 \cup L_2 \):
 - If \(w \in L_1 \) *then there is a run in* \(B_1 \), *and hence in* \(B \), *which ends in a final state.*
 - If \(w \in L_2 \) *then there is a run in* \(B_2 \), *and hence in* \(B \), *which ends in a final state.*
 - In either case \(w \in L(B) \).
- Conversely, any accepting run in \(B \) *will be either an accepting run in* \(B_1 \) *or in* \(B_2 \); *so if* \(w \in L(B) \) *then* \(w \in L_1 \cup L_2 \).
Intersection

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is regular.

Proof:
Intersection

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is regular.

Proof:

$$L_1 \cap L_2 = (L_1^c \cup L_2^c)^c$$
Concatenation

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

Proof:

- Let B_1 and B_2 be NFAs such that $L(B_1) = L_1$ and $L(B_2) = L_2$
- Construct an NFA B by adding ϵ-transitions from the final states of B_1 to the start state of B_2. Let the start state of B be the start state of B_1; and let the final states of B be the final states of B_2.
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in B_1 and v has an accepting run in B_2, so wv has an accepting run in B.
- Conversely, any word w with an accepting run in B can be broken up into an accepting run in B_1 followed by an accepting run in B_2. Thus w can be broken up into two words $w = xy$ where $x \in L_1$ and $y \in L_2$.
Kleene star

Recall for a language X:
$X^* = \{w : w \text{ is the concatenation of 0 or more words in } X\}$

Theorem

If L is regular languages, then L^ is regular.*

Proof:

- Let B be an NFA such that $L(B) = L$
- Construct an NFA B' by:
 - creating a new start state which is accepting;
 - adding an ϵ-transition from the new start state to the start state of B
 - adding ϵ-transitions from the final states of B to the new start state.
- Similar arguments as before show that $L(B') = L(B)^*$
Regular operations

Concatenation, union, and Kleene star are collectively known as the regular operations.
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
Regular expressions

Regular expressions are a way of describing “finite automaton” patterns:

- Second-last letter is \textit{b}
- Every odd symbol is \textit{b}

Many applications in CS:

- Lexical analysis in compiler construction
- Search facilities provided by text editors and databases; utilities such as \texttt{grep} and \texttt{awk}
- Pattern matching on strings
Regular expressions

Given a finite set Σ, a regular expression (regexp) over Σ is defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- a is a regular expression for all $a \in \Sigma$
- If E_1 and E_2 are regular expressions, then $E_1 E_2$ is a regular expression
- If E_1 and E_2 are regular expressions, then $E_1 + E_2$ is a regular expression
- If E is a regular expression, then E^* is a regular expression

We use parentheses to disambiguate regexps, though \ast binds tighter than concatenation, which binds tighter than \pm.
Examples

Example

The following are regular expressions over $\Sigma = \{0, 1\}$:

- \emptyset
- $101 + 010$
- $(\epsilon + 10)^*01$
A regexp defines a language over Σ: the set of words which “match” the expression:

- Concatenation = sequences of expressions
- Union = choice of expressions
- Star = 0 or more occurrences of an expression

Example

The following words match $(000 + 10)^*01$:

- 01
- 101001
- 000101000001
Language of a Regular Expression

Formally, given a regexp, E, over Σ, we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If $E = a$ where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

$L(010 + 101) =$?

$L((\epsilon + 10)^*01) =$?
Language of a Regular Expression

Formally, given a regexp, E, over Σ, we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If $E = a$ where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

$L(010 + 101) = \{010, 101\}$

$L((\epsilon + 10)^*01) = ?$
Language of a Regular Expression

Formally, given a regexp, E, over Σ, we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If $E = a$ where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

$L(010 + 101) = \{010, 101\}$

$L((\epsilon + 10)^*01) = \{01, 1001, 101001, \ldots\}$
Regular expressions vs NfAs

Theorem (Kleene’s theorem)

- For any regular expression E, $L(E)$ is a regular language.
- For any regular language L, there is a regular expression E such that $L = L(E)$
Proof of Kleene’s theorem

Given E, $L(E)$ is a regular language. Proof by induction on E.
Proof of Kleene’s theorem

Given E, $L(E)$ is a regular language. Proof by induction on E.

Given L, find E such that $L = L(E)$

- Let
 $$L^X_{q,q'} = \{ w \in \Sigma^* : q \xrightarrow{w}^* q' \text{ with all intermediate states in } X \}$$

- Define $E^X_{q,q'}$ such that $L(E^X_{q,q'}) = L^X_{q,q'}$:
 - When $q = q'$: $E^\emptyset_{q,q'} = \epsilon + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_i} q$
 - When $q \neq q'$: $E^\emptyset_{q,q'} = \emptyset + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_i} q'$
 - For $X \neq \emptyset$:
 $$E^X_{q,q'} = \underbrace{E^X_{q,q'} - \{ r \}}_{(1)} + \underbrace{E^X_{q,r} \cdot (E^X_{r,r} - \{ r \})^* \cdot E^X_{r,q'}}_{(2)}$$

- The required expression is then $E = \sum_{q \in F} E^Q_{q_0,q}$