Sir Tony Hoare

- Pioneer in formal verification
- Invented: Quicksort,
- the null reference (called it his “billion dollar mistake”)
- CSP (formal specification language), and
- Hoare Logic
Summary

- \(\mathcal{L} \): A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Summary

- \(\mathcal{L} \): A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Imperative Programming

imperō

Definition

Imperative programming is where programs are described as a series of *statements* or commands to manipulate mutable *state* or cause externally observable *effects*.

States may take the form of a *mapping* from variable names to their values, or even a model of a CPU state with a memory model (for example, in an *assembly language*).
Consider the vocabulary of basic arithmetic:

- **Constant symbols:** 0, 1, 2, \ldots
- **Function symbols:** +, *, \ldots
- **Predicate symbols:** <, \leq, \geq, |, \ldots
Consider the vocabulary of basic arithmetic:

- Constant symbols: 0, 1, 2, …
- Function symbols: +, *, …
- Predicate symbols: <, ≤, ≥, |, …

An (arithmetic) expression is a term over this vocabulary.
Consider the vocabulary of basic arithmetic:

- **Constant symbols**: 0, 1, 2, \ldots
- **Function symbols**: +, \times, \ldots
- **Predicate symbols**: <, \leq, \geq, |, \ldots

An **(arithmetic) expression** is a term over this vocabulary.

A **boolean expression** is a predicate formula over this vocabulary.
The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x := e$

where x is a variable and e is an arithmetic expression.
The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x := e$

where x is a variable and e is an arithmetic expression.

Sequencing: $P; Q$
The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x := e$

where x is a variable and e is an arithmetic expression.

Sequencing: $P; Q$

Conditional: if g then P else Q fi

where g is a boolean expression.
The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x := e$

where x is a variable and e is an arithmetic expression.

Sequencing: $P;Q$

Conditional: if g then P else Q fi

where g is a boolean expression.

While: while g do P od
Factorial in \mathcal{L}

Example

\[
i := 0; \\
m := 1; \\
\text{while } i < N \text{ do} \\
 i := i + 1; \\
 m := m \times i \\
\text{od}
\]
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
We’ll define a *Hoare Logic* for \mathcal{L} to allow us to prove properties of our program. We write a *Hoare triple* judgement as:

$$\{ \varphi \} \ P \ \{ \psi \}$$

Where φ and ψ are logical formulae about states, called *assertions*, and $P \in \mathcal{L}$. This triple states that if the program P terminates successfully from a starting state satisfying the *precondition* φ, then the final state will satisfy the *postcondition* ψ.
Example

\[(\{x = 0\}) \ x := 1 \ {\{x = 1\}}\]
Hoare triple: Examples

Example

\{(x = 0)\} \ x := 1 \ \{(x = 1)\}

\{(x = 499)\} \ x := x + 1 \ \{(x = 500)\}
Hoare triple: Examples

Example

\[
\begin{align*}
\{(x = 0)\} & \quad x := 1 \quad \{(x = 1)\} \\
\{(x = 499)\} & \quad x := x + 1 \quad \{(x = 500)\} \\
\{(x > 0)\} & \quad y := 0 - x \quad \{(y < 0) \land (x \neq y)\}
\end{align*}
\]
Example

\{ N \geq 0 \}
\begin{align*}
i &:= 0; \\
m &:= 1; \\
\text{while } i < N \text{ do} \\
&\quad i := i + 1; \\
&\quad m := m \times i \\
\text{od} \\
\{ m = N! \}
\end{align*}
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Motivation

Question

We know what we want informally; how do we establish when a triple is valid?
Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics, OR

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.
Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics, OR
- Derive the triple in a syntactic manner (i.e. Hoare proof)

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.
Assignment

\[
\{\varphi[e/x]\} x := e \{\varphi\} \quad \text{(assign)}
\]

Intuition:
If \(x \) has property \(\varphi \) \textit{after} executing the assignment; then \(e \) must have property \(\varphi \) \textit{before} executing the assignment.
Example

\{(y = 0)\} x := y \{ (x = 0)\}
Example

\{(y = 0)\} x := y \{(x = 0)\}

\{ \} x := y \{(x = y)\}
Assignment: Example

Example

\[\{(y = 0)\} x := y \{(x = 0)\} \]

\[\{(y = y)\} x := y \{(x = y)\} \]
Assignment: Example

Example

\{(y = 0)\} x ::= y \{(x = 0)\}

\{(y = y)\} x ::= y \{(x = y)\}

\{\} x ::= 1 \{(x < 2)\}
Assignment: Example

Example

\[\{(y = 0)\} \ x := y \ {(x = 0)} \]

\[\{(y = y)\} \ x := y \ {(x = y)} \]

\[\{(1 < 2)\} \ x := 1 \ {(x < 2)} \]

\[\{(y = 3)\} \ x := y \ {(x > 2)} \]
Assignment: Example

Example

\{(y = 0)\} \ x := y \ { (x = 0) \}

\{(y = y)\} \ x := y \ { (x = y) \}

\{(1 < 2)\} \ x := 1 \ { (x < 2) \}

\{(y = 3)\} \ x := y \ { (x > 2) \} \ Problem!
Sequence

\[
\begin{array}{c}
\{\varphi\} P \{\psi\} \quad \{\psi\} Q \{\rho\} \\
\{\varphi\} P; Q \{\rho\}
\end{array}
\]

Intuition:
If the postcondition of \(P \) matches the precondition of \(Q \) we can sequentially combine the two program fragments
Sequence: Example

Example

\[
\begin{array}{c}
\{ \} x := 0 \{ \} \quad \{ \} y := 0 \{ (x = y) \} \\
\{ \} x := 0; y := 0 \{ (x = y) \}
\end{array}
\]
Sequence: Example

Example

\[
\begin{align*}
\{ \} x & := 0 \{ (x = 0) \} \\
\{ \} y & := 0 \{ (x = y) \}
\end{align*}
\]

\((seq) \)
Sequence: Example

Example

\[
\begin{align*}
\{(0 = 0)\} & \ x := 0 \ \{(x = 0)\} & \ (x = 0) & \ y := 0 \ \{(x = y)\} \\
(0 = 0) & \ x := 0; \ y := 0 \ \{(x = y)\} & \ (\text{seq})
\end{align*}
\]
Conditional

\[
\{ \varphi \land g \} \ P \ \{ \psi \} \quad \{ \varphi \land \neg g \} \ Q \ {\psi} \\
\quad \{ \varphi \} \ \text{if} \ g \ \text{then} \ P \ \text{else} \ Q \ \text{fi} \ \{ \psi \} \quad \text{(if)}
\]

Intuition:

- When a conditional is executed, either \(P \) or \(Q \) will be executed.
- For the postcondition \(\psi \) to be established, \textit{either} branch must terminate in a state satisfying \(\psi \).
While

\[
\{ \varphi \land g \} \quad P \quad \{ \varphi \} \\
\{ \varphi \} \text{ while } g \text{ do } P \text{ od } \{ \varphi \land \neg g \}
\]

(loop)

Intuition:

- \(\varphi \) is a **loop invariant**. It must be both a pre- and postcondition of \(P \), so that sequences of \(P \)s can be run together.

- If the while loop terminates, \(g \) cannot hold.
Consequence

There is one more rule, called the rule of consequence, that we need to insert ordinary logical reasoning into our Hoare logic proofs:

\[
\varphi' \rightarrow \varphi \quad \{\varphi\} P \{\psi\} \quad \psi \rightarrow \psi' \quad \frac{}{\{\varphi'\} P \{\psi'\}} \quad \text{(cons)}
\]
Consequence

There is one more rule, called the *rule of consequence*, that we need to insert ordinary logical reasoning into our Hoare logic proofs:

\[
\varphi' \rightarrow \varphi \quad \{ \varphi \} \text{P} \quad \{ \psi \} \quad \psi \rightarrow \psi' \\
\{ \varphi' \} \text{P} \quad \{ \psi' \}
\]

(cons)

Intuition:

- Adding assertions to the precondition makes it more likely the postcondition will be reached
- Removing assertions from the postcondition makes it more likely the postcondition will be reached
- If you can reach the postcondition initially, then you can reach it in the more likely scenario
Back to Assignment Example

Example

\{ (y = 3) \} x := y \{ (x > 2) \} \quad Problem!
Back to Assignment Example

Example

\{(y = 3)\} x := y \{(x > 2)\} \textit{Problem!}

\{(y > 2)\} x := y \{(x > 2)\} (assign)
Example

\{(y = 3)\} x := y \{(x > 2)\} \quad Problem!

\{(y = 3)\} x := y \{(x > 2)\} (assign, cons)
\{(y > 2)\} x := y \{(x > 2)\} (assign)
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

\{N \geq 0\}

\quad i := 0;
\quad m := 1;

while \ i < \ N \ do

\quad i := i + 1;
\quad m := m \times i

od

\{m = N!\}

\{\varphi \wedge g\} \quad \{\psi\} \quad \{\varphi \wedge \neg g\} \quad \{\psi\}

\{\varphi\} \ if \ g \ then \ P \ else \ Q \ fi \ \{\psi\}

\{\varphi[x := e]\} \quad \{\varphi\}

\{\varphi \wedge g\} \quad \{\varphi\}

\{\varphi\} \ while \ g \ do \ P \ od \ \{\varphi \wedge \neg g\}

\{\varphi\} \quad \{\alpha\} \quad \{\alpha\} \quad \{\psi\}

\{\varphi\} \ P; \ Q \ \{\psi\}

\varphi' \Rightarrow \varphi \quad \{\varphi\} \ P \ \{\psi\} \quad \psi \Rightarrow \psi'

\{\varphi'\} \ P \ \{\psi'\}
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

\[
\{ N \geq 0 \} \\
i := 0; \\
m := 1; \\
\text{while } i < N \text{ do} \\
i := i + 1; \\
m := m \times i \\
\text{od} \{ m = i! \land N \geq 0 \land i = N \} \\
\{ m = N! \} \\
\]
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

\[
\{N \geq 0\}
\]

\[
i := 0;
\]

\[
m := 1;
\]

\[
\{m = i! \land N \geq 0\}
\]

while \(i < N\) do

\[
i := i + 1;
\]

\[
m := m \times i
\]

od \(\{m = i! \land N \geq 0 \land i = N\}\)

\(\{m = N!\}\)

\[
\{\varphi \land g\} P \{\psi\} \quad \{\varphi \land \neg g\} Q \{\psi\}
\]

\(\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}\)

\[
\{\varphi[x := e]\} x := e \{\varphi\}
\]

\[\{\varphi \land g\} P \{\varphi\}\]

\(\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}\)

\[
\{\varphi\} P \{\alpha\} \quad \{\alpha\} Q \{\psi\}
\]

\(\{\varphi\} P; Q \{\psi\}\)

\[\varphi' \Rightarrow \varphi \quad \{\varphi\} P \{\psi\}\]

\(\psi \Rightarrow \psi' \quad \{\varphi'\} P \{\psi'\}\)

\[\text{note: } (i+1)! = i! \times (i+1)\]
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

\[
\{ N \geq 0 \} \\
\quad \quad i := 0; \\
\quad \quad m := 1; \\
\{ m = i! \land N \geq 0 \} \\
\text{while } i < N \text{ do} \\
\quad \quad i := i + 1; \\
\quad \quad m := m \times i \\
\{ m = i! \land N \geq 0 \} \\
\text{od} \{ m = i! \land N \geq 0 \land i = N \} \\
\{ m = N! \} \\
\]

\[
\{ \varphi \land g \} \quad P \quad \{ \psi \} \\
\{ \varphi \land \neg g \} \quad Q \quad \{ \psi \} \\
\{ \varphi \} \quad \text{if } g \text{ then } P \text{ else } Q \text{ fi } \{ \psi \} \\
\]

\[
\{ \varphi[x := e] \} \quad x := e \quad \{ \varphi \} \\
\]

\[
\{ \varphi \land g \} \quad P \quad \{ \varphi \} \\
\{ \varphi \} \quad \text{while } g \text{ do } P \text{ od } \{ \varphi \land \neg g \} \\
\]

\[
\{ \varphi \} \quad P \quad \{ \alpha \} \\
\{ \alpha \} \quad Q \quad \{ \psi \} \\
\{ \varphi \} \quad P ; Q \quad \{ \psi \} \\
\]

\[
\varphi' \Rightarrow \varphi \quad \{ \varphi \} \quad P \quad \{ \psi \} \\
\psi \Rightarrow \psi' \\
\quad \quad \{ \varphi' \} \quad P \quad \{ \psi' \} \\
\]

\[
\text{note: } (i + 1)! = i! \times (i + 1) \\
\]

\[
\]
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

{\(N \geq 0 \)}

\[i := 0; \]
\[m := 1;\]

{\(m = i! \land N \geq 0 \)}

while \(i < N \) do \{ \(m = i! \land N \geq 0 \land i < N \) \}

\[i := i + 1; \]

\[m := m \times i \]

{\(m = i! \land N \geq 0 \)}

od \{ \(m = i! \land N \geq 0 \land i = N \) \}

{\(m = N! \)}
Factorial Example

Let's verify the Factorial program using our Hoare rules:

\[
\begin{align*}
\{N \geq 0\} & \quad i := 0; \\
\{m = i! \land N \geq 0\} & \quad m := 1; \\
\text{while } i < N \text{ do } \{m = i! \land N \geq 0 \land i < N\} & \\
\quad i := i + 1; \\
\quad \{m \times i = i! \land N \geq 0\} & \\
\quad m := m \times i \\
\text{od } \{m = i! \land N \geq 0 \land i = N\} & \\
\{m = N!\} &
\end{align*}
\]

\[
\begin{align*}
\{\varphi \land g\} & \quad P \{\psi\} \quad \{\varphi \land \neg g\} & \quad Q \{\psi\} \\
\{\varphi\} & \quad \text{if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\} \\
\{\varphi[x := e]\} & \quad x := e \{\varphi\} \\
\{\varphi \land g\} & \quad P \{\varphi\} \\
\{\varphi\} & \quad \text{while } g \text{ do } P \text{ od } \{\varphi \land \neg g\} \\
\{\varphi\} & \quad P \{\alpha\} \quad \{\alpha\} \quad Q \{\psi\} \\
\{\varphi\} & \quad P; Q \{\psi\} \\
\varphi' \Rightarrow \varphi & \quad \{\varphi\} \quad P \{\psi\} \quad \psi \Rightarrow \psi' \\
\{\varphi'\} & \quad P \{\psi'\}
\end{align*}
\]

\(\text{note: } (i + 1)! = i! \times (i + 1)\)
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

\[
\{N \geq 0\} \\
\text{ } \\
\text{ } \\
\{m = i! \land N \geq 0\} \\
\text{while } i < N \text{ do } \{m = i! \land N \geq 0 \land i < N\} \\
\text{ } \\
\text{ } \\
\{m \times (i + 1) = (i + 1)! \land N \geq 0\} \\
i := i + 1; \\
\{m \times i = i! \land N \geq 0\} \\
m := m \times i \\
\{m = i! \land N \geq 0\} \\
\text{od } \{m = i! \land N \geq 0 \land i = N\} \\
\{m = N!\}
\]
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

\[
\begin{align*}
\{N \geq 0\} & \\
& \quad i := 0; \\
& \quad m := 1; \\
\{m = i! \land N \geq 0\} & \\
\text{while } i < N \text{ do } \{m = i! \land N \geq 0 \land i < N\} & \\
& \quad \{m \times (i + 1) = (i + 1)! \land N \geq 0\} \\
& \quad i := i + 1; \\
& \quad \{m \times i = i! \land N \geq 0\} \\
& \quad m := m \times i \\
\text{od } \{m = i! \land N \geq 0 \land i = N\} \\
\{m = N!\}
\end{align*}
\]

note: \((i + 1)! = i! \times (i + 1)\)
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

{ \(N \geq 0 \) }

\[
i := 0;
\]
\[
m := 1; \{ m = i! \land N \geq 0 \}
\]

\[
\text{while } i < N \text{ do } \{ m = i! \land N \geq 0 \land i < N \}
\]
\[
\{ m \times (i+1) = (i+1)! \land N \geq 0 \}
\]
\[
i := i + 1;
\]
\[
\{ m \times i = i! \land N \geq 0 \}
\]
\[
m := m \times i
\]
\[
\{ m = i! \land N \geq 0 \}
\]
\[\text{od } \{ m = i! \land N \geq 0 \land i = N \}
\]
\[
\{ m = N! \}
\]

Note: \((i + 1)! = i! \times (i + 1)\)
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

\[
\begin{align*}
\{N \geq 0\} & \quad i := 0; \quad \{1 = i! \land N \geq 0\} \quad m := 1; \quad \{m = i! \land N \geq 0\} \\
\{m = i! \land N \geq 0\} & \quad \text{while } i < N \text{ do } \{m = i! \land N \geq 0 \land i < N\} \\
& \quad \{m \times (i + 1) = (i + 1)! \land N \geq 0\} \\
& \quad i := i + 1; \\
& \quad \{m \times i = i! \land N \geq 0\} \\
& \quad m := m \times i \\
& \quad \{m = i! \land N \geq 0\} \\
\od & \quad \{m = i! \land N \geq 0 \land i = N\} \\
\{m = N!\} \\ \\
\end{align*}
\]

note: \((i + 1)! = i! \times (i + 1)\)
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

\[
\{N \geq 0\} \\
\quad i := 0; \{1 = i! \land N \geq 0\} \\
\{1 = i! \land N \geq 0\} \ m := 1; \{m = i! \land N \geq 0\} \\
\{m = i! \land N \geq 0\} \text{ while } i < N \text{ do } \{m = i! \land N \geq 0 \land i < N\} \\
\quad \{m \times (i + 1) = (i + 1)! \land N \geq 0\} \\
\quad i := i + 1; \\
\quad \{m \times i = i! \land N \geq 0\} \\
\quad m := m \times i \\
\quad \{m = i! \land N \geq 0\} \\
\text{ od } \{m = i! \land N \geq 0 \land i = N\} \\
\{m = N!\}
\]

\[
\begin{align*}
\{\varphi \land g\} & \text{ } P \{\psi\} & \{\varphi \land \neg g\} & \text{ } Q \{\psi\} \\
\{\varphi\} & \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\} \\
\{\varphi[x := e]\} & \times := e \{\varphi\} \\
\{\varphi \land g\} & \text{ } P \{\varphi\} \\
\{\varphi\} & \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\} \\
\{\varphi\} & \text{ } P \{\alpha\} & \{\alpha\} & \text{ } Q \{\psi\} \\
\{\varphi\} & \text{ } P; Q \{\psi\} \\
\varphi' & \Rightarrow \varphi & \{\varphi\} & \text{ } P \{\psi\} & \psi \Rightarrow \psi' \\
\{\varphi'\} & \text{ } P \{\psi'\}
\end{align*}
\]

note: \((i + 1)! = i! \times (i + 1)\)
Factorial Example

Let’s verify the Factorial program using our Hoare rules:

\[
\begin{align*}
\{ N \geq 0 \} \\
\{ 1 = 0! \land N \geq 0 \} i := 0; \{ 1 = i! \land N \geq 0 \} \\
\{ 1 = i! \land N \geq 0 \} m := 1; \{ m = i! \land N \geq 0 \} \\
\{ m = i! \land N \geq 0 \} \\
\text{while } i < N \text{ do } \{ m = i! \land N \geq 0 \land i < N \} \\
\{ m \times (i + 1) = (i + 1)! \land N \geq 0 \} \\
i := i + 1; \\
\{ m \times i = i! \land N \geq 0 \} \\
m := m \times i; \\
\{ m = i! \land N \geq 0 \} \\
\text{od } \{ m = i! \land N \geq 0 \land i = N \} \\
\{ m = N! \} \\
\end{align*}
\]

\[
\begin{align*}
\{ \varphi \land g \} P \{ \psi \} & \quad \{ \varphi \land \neg g \} Q \{ \psi \} \\
\{ \varphi \} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{ \psi \} \\
\{ [x := e] \} x := e \{ \varphi \} \\
\{ \varphi \land g \} P \{ \varphi \} \\
\{ \varphi \} \text{ while } g \text{ do } P \text{ od } \{ \varphi \land \neg g \} \\
\{ \varphi \} P \{ \alpha \} \quad \{ \alpha \} Q \{ \psi \} \\
\{ \varphi \} P; Q \{ \psi \} \\
\end{align*}
\]

\[
\begin{align*}
\varphi' & \Rightarrow \varphi \\
\{ \varphi \} P \{ \psi \} & \quad \psi \Rightarrow \psi' \\
\{ \varphi' \} P \{ \psi' \} \\
\end{align*}
\]

note: \((i + 1)! = i! \times (i + 1)\)
Practice Exercise

Example

\[
m := 1;
n := 1;
i := 1;
\]
\[
\text{while } i < N \text{ do}
\]
\[
\quad t := m;
\quad m := n;
\quad n := m + t;
\quad i := i + 1
\]
\[
\text{od}
\]

What does this program compute?

What is a valid Hoare triple \{ϕ\} P \{ψ\} of this program?

Prove using the inference rules and consequence axiom that this Hoare triple is valid.
Practice Exercise

Example

\[m := 1;\]
\[n := 1;\]
\[i := 1;\]
while \(i < N \) do
\[t := m;\]
\[m := n;\]
\[n := m + t;\]
\[i := i + 1\]
od

- What does this \(\mathcal{L} \) program \(P \) compute?
- What is a valid Hoare triple \(\{ \varphi \} P \{ \psi \} \) of this program?
- Prove using the inference rules and consequence axiom that this Hoare triple is valid.
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Semantics

Nope. That’s a topic for another lecture.