Summary of topics

- Well-formed formulas (SYNTAX)
- Boolean Algebras
- Valuations (SEMANTICS)
- CNF/DNF
- Proof
- Natural deduction
Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction
Well-formed formulas

Let $PROP = \{p, q, r, \ldots\}$ be a set of propositional letters. Consider the alphabet

$$\Sigma = PROP \cup \{\top, \bot, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,)\}.$$

The well-formed formulas (wffs) over $PROP$ is the smallest set of words over Σ such that:

- \top, \bot and all elements of $PROP$ are wffs
- If φ is a wff then $\neg \varphi$ is a wff
- If φ and ψ are wffs then $(\varphi \land \psi), (\varphi \lor \psi), (\varphi \rightarrow \psi)$, and $($\varphi \leftrightarrow \psi)$ are wffs.
Examples

The following are well-formed formulas:

- $(p \land \neg \top)$
- $\neg (p \land \neg \top)$
- $\neg \neg (p \land \neg \top)$

The following are **not** well-formed formulas:

- $p \land \land$
- $p \land \neg \top$
- $(p \land q \land r)$
- $\neg (\neg p)$
To aid readability some conventions and binding rules can and will be used.

- Parentheses omitted if there is no ambiguity (e.g. $p \land q$)
- \neg binds more tightly than \land and \lor, which bind more tightly than \rightarrow and \leftrightarrow (e.g. $p \land q \rightarrow r$ instead of $((p \land q) \rightarrow r)$
Conventions

To aid readability some conventions and binding rules can and will be used.

- Parentheses omitted if there is no ambiguity (e.g. \(p \land q \))
- \(\neg \) binds more tightly than \(\land \) and \(\lor \), which bind more tightly than \(\rightarrow \) and \(\leftrightarrow \) (e.g. \(p \land q \rightarrow r \) instead of \(((p \land q) \rightarrow r) \))

Other conventions (rarely used/assumed in this course):

- \(' \) or \(\bar{\ } \) for \(\neg \)
- \(+ \) for \(\lor \)
- \(\cdot \) or juxtaposition for \(\land \)
- \(\land \) binds more tightly than \(\lor \)
- \(\land \) and \(\lor \) associate to the left: \(p \lor q \lor r \) instead of \((((p \lor q) \lor r) \)
- \(\rightarrow \) and \(\leftrightarrow \) associate to the right: \(p \rightarrow q \rightarrow r \) instead of \((p \rightarrow (q \rightarrow r)) \)
Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a parse tree.

Example

\[((P \land \neg Q) \lor \neg (Q \rightarrow P))\]
Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a parse tree.

Example

\[((P \land \neg Q) \lor \neg(Q \rightarrow P))\]
Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a parse tree.

Example

\[((P \land \neg Q) \lor \neg (Q \rightarrow P))\]
The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.

Example

\[((P \land \neg Q) \lor \neg(Q \rightarrow P)) \]
Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a parse tree.

Example

\[((P \land \neg Q) \lor \neg (Q \rightarrow P))\]
Formally, we can define a parse tree as follows:
A parse tree is either:

- (B) A node containing \top;
- (B) A node containing \bot;
- (B) A node containing a propositional variable;
- (R) A node containing \neg with a single parse tree child;
- (R) A node containing \land with two parse tree children;
- (R) A node containing \lor with two parse tree children;
- (R) A node containing \rightarrow with two parse tree children; or
- (R) A node containing \leftrightarrow with two parse tree children.
Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction
Laws (Week 2 flashback)

Look again at the laws of set operations and boolean equivalences:

\[
\begin{align*}
x \cup y &= y \cup x \\
x \cap y &= y \cap x \\
(x \cup y) \cup z &= x \cup (y \cup z) \\
(x \cap y) \cap z &= x \cap (y \cap z) \\
x \cup (y \cap z) &= (x \cup y) \cap (x \cup z) \\
x \cap (y \cup z) &= (x \cap y) \cup (x \cap z) \\
x \cup \emptyset &= x, \quad x \cap \mathcal{U} = x \\
x \cup x^c &= \mathcal{U}, \quad x \cap x^c = \emptyset \\
x \lor \bot &\equiv x, \quad x \land \top \equiv x \\
x \lor \lnot x &\equiv \top, \quad x \land \lnot x \equiv \bot
\end{align*}
\]

These are the same laws written with different symbols!
Laws (Week 2 flashback)

Look again at the laws of set operations and boolean equivalences:

- \(x \cup y = y \cup x \)
- \(x \cap y = y \cap x \)
- \((x \cup y) \cup z = x \cup (y \cup z) \)
- \((x \cap y) \cap z = x \cap (y \cap z) \)
- \(x \cup (y \cap z) = (x \cup y) \cap (x \lor z) \)
- \(x \cap (y \lor z) = (x \cap y) \cup (x \land z) \)
- \(x \cup \emptyset = x, \quad x \cap \mathbb{U} = x \)
- \(x \cup x^c = \mathbb{U}, \quad x \cap x^c = \emptyset \)

- \(x \lor y \equiv y \lor x \)
- \(x \land y \equiv y \land x \)
- \((x \lor y) \lor z \equiv x \lor (y \lor z) \)
- \((x \land y) \land z \equiv x \land (y \land z) \)
- \(x \lor (y \land z) \equiv (x \lor y) \land (x \lor z) \)
- \(x \land (y \lor z) \equiv (x \land y) \lor (x \land z) \)
- \(x \lor \bot \equiv x, \quad x \land \top \equiv x \)
- \(x \lor \neg x \equiv \top, \quad x \land \neg x \equiv \bot \)

These are the same laws written with different symbols!
Definition: Boolean Algebra

A Boolean algebra is a structure \((T, \lor, \land, \prime, 0, 1)\) where

- \(0, 1 \in T\)
- \(\lor : T \times T \to T\) (called join)
- \(\land : T \times T \to T\) (called meet)
- \(\prime : T \to T\) (called complementation)

and the following laws hold for all \(x, y, z \in T\):

commutativity: \(x \lor y = y \lor x\)
\(x \land y = y \land x\)

associativity: \((x \lor y) \lor z = x \lor (y \lor z)\)
\((x \land y) \land z = x \land (y \land z)\)

distributivity: \(x \lor (y \land z) = (x \lor y) \land (x \lor z)\)
\(x \land (y \lor z) = (x \land y) \lor (x \land z)\)

identity: \(x \lor 0 = x, \quad x \land 1 = x\)

complementation: \(x \lor x' = 1, \quad x \land x' = 0\)
Examples of Boolean Algebras

The set of subsets (power set) of a set \mathcal{U}:

- $\mathcal{T} : \text{Pow}(\mathcal{U})$
- $\land : \cap$
- $\lor : \cup$
- $'$: c
- $0 : \emptyset$
- $1 : \mathcal{U}$
Examples of Boolean Algebras

The two element Boolean Algebra:

\[\mathbb{B} = (\{\text{true, false}\}, \&\&, ||, !, \text{false, true}) \]

where !, &&, || are defined as:

- \(!\text{true} = \text{false}; \!\text{false} = \text{true},\)
- \(\text{true} \&\& \text{true} = \text{true}; \ldots\)
- \(\text{true} || \text{true} = \text{true}; \ldots\)

NB

We will often use \(\mathbb{B}\) for the two element set \{\text{true, false}\}. For simplicity this may also be abbreviated as \{T, F\} or \{1, 0\}.
Examples of Boolean Algebras

Cartesian products of \(\mathbb{B} \), that is \(n \)-tuples of 0’s and 1’s with Boolean operations, e.g. \(\mathbb{B}^4 \):

\[
\begin{align*}
\text{join:} & \quad (1, 0, 0, 1) \lor (1, 1, 0, 0) = (1, 1, 0, 1) \\
\text{meet:} & \quad (1, 0, 0, 1) \land (1, 1, 0, 0) = (1, 0, 0, 0) \\
\text{complement:} & \quad (1, 0, 0, 1)' = (0, 1, 1, 0) \\
0: & \quad (0, 0, 0, 0) \\
1: & \quad (1, 1, 1, 1).
\end{align*}
\]

NB

These are the bitwise operations on 4-bit machine words.
Examples of Boolean Algebras

Functions from any set S to \mathbb{B}; their set is denoted $\text{Map}(S, \mathbb{B})$

If $f, g : S \rightarrow \mathbb{B}$ then

- $(f \lor g) : S \rightarrow \mathbb{B}$ is defined by $s \mapsto f(s) \lor g(s)$
- $(f \land g) : S \rightarrow \mathbb{B}$ is defined by $s \mapsto f(s) \land g(s)$
- $f' : S \rightarrow \mathbb{B}$ is defined by $s \mapsto \neg f(s)$
- $0 : S \rightarrow \mathbb{B}$ is the function $f(s) = \text{false}$
- $1 : S \rightarrow \mathbb{B}$ is the function $f(s) = \text{true}$
All those examples were just the power set example in disguise.

- The two-element algebra with \{true, false\} is just the power set algebra with \(U = \{\emptyset\} \), but with different notation.
- A function \(f : S \to \mathbb{B} \) coincides with the membership relation \((\in) \) of the set \(\{ x : x \in S \text{ and } f(x) = \text{true} \} \)

...
All those examples were just the power set example in disguise.

- The two-element algebra with \{true, false\} is just the power set algebra with \(U = \{\emptyset\}\), but with different notation.
- A function \(f : S \rightarrow \mathbb{B}\) coincides with the membership relation \(\in\) of the set \(\{x : x \in S \text{ and } f(x) = \text{true}\}\)
- ...

In fact, every (finite) boolean algebra is the power set example in disguise!
Every finite Boolean algebra satisfies: $|T| = 2^k$ for some k.
All algebras with the same number of elements are isomorphic, i.e. “structurally similar”, written \simeq. Therefore, studying one such algebra describes properties of all.
The algebras mentioned above are all of this form

- n-tuples $\simeq \mathbb{B}^n$
- $\text{Pow}(S) \simeq \mathbb{B}^{|S|}$
- $\text{Map}(S, \mathbb{B}) \simeq \mathbb{B}^{|S|}$
Duality revisited

If E is an expression made up with $\land, \lor, \lnot, 0, 1$ and variables; then $\text{dual}(E)$ is the expression obtained by replacing \land with \lor and vice-versa; and 0 with 1 and vice-versa.

Theorem (Principle of Duality)

If $E_1 = E_2$ holds in all Boolean Algebras\(^a\), then $\text{dual}(E_1) = \text{dual}(E_2)$ holds in all Boolean Algebras.

\(^a\)i.e. is provable using the Boolean Algebra Laws

In Week 2, we convinced ourselves of this with some handwaving.
Duality revisited

If \((T, \lor, \land, ', 0, 1)\) is a Boolean algebra, then the dual algebra \((T, \land, \lor, ', 1, 0)\) is also a Boolean Algebra. For example:

- \(T : \text{Pow}(X)\)
- \(\land : \cup\)
- \(\lor : \cap\)
- \(' : c\)
- \(0 : X\)
- \(1 : \emptyset\)

The principle of duality follows immediately from this observation.
A Boolean Algebra expression is defined inductively as follows:

- 0, 1 are expressions
- A variable, \(x, y, \ldots \), is an expression.
- If \(E \) is an expression then \(E' \) is an expression.
- If \(E_1 \) and \(E_2 \) are expressions, then \((E_1 \land E_2)\) and \((E_1 \lor E_2)\) are expressions.

Use \(\text{Exp} \) for the set of such expressions.
Dualising, formally

We define dual : \(\text{Exp} \to \text{Exp} \) recursively as follows:

- \(\text{dual}(0) = 1 \), \(\text{dual}(1) = 0 \)
- \(\text{dual}(x) = x \) for all variables \(x \)
- \(\text{dual}(E') = \text{dual}(E)' \) for all expressions \(E \)
- \(\text{dual}((E_1 \land E_2)) = (\text{dual}(E_1) \lor \text{dual}(E_2)) \) for all expressions \(E_1 \) and \(E_2 \)
- \(\text{dual}((E_1 \lor E_2)) = (\text{dual}(E_1) \land \text{dual}(E_2)) \) for all expressions \(E_1 \) and \(E_2 \)
Example dual

\[\text{dual}((x \lor (x \land y))) = (\text{dual}(x) \land \text{dual}((x \land y))))\]
Example dual

\[
dual((x \lor (x \land y))) = (\dual(x) \land \dual((x \land y))) = (x \land \dual((x \land y)))
\]
Example dual

dual((x ∨ (x ∧ y))) = (dual(x) ∧ dual((x ∧ y)))
= (x ∧ dual((x ∧ y)))
= (x ∧ (dual(x) ∨ dual(y))))
Example dual

dual((x ∨ (x ∧ y)))) = (dual(x) ∧ dual((x ∧ y))))
= (x ∧ dual((x ∧ y))))
= (x ∧ (dual(x) ∨ dual(y))))
= (x ∧ (x ∨ y))
Boolean algebras: punchline

- Boolean algebras allow us to talk about set operations, propositions and bitwise operations on machine words at the same time.
- Properties proved in boolean algebra hold for all these instances: no more double labour.
- Calculation with set operations and calculation with propositional logic is, ultimately, the same thing. Therefore, you can freely change between the two perspectives in specifications and proofs.
Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction
A **truth assignment** (or **valuation**, or **model**) is a function

\[\nu : \text{Prop} \to \mathbb{B} \]

In week 2, we said:

*Two formulas \(\phi, \psi \) are **logically equivalent**, denoted \(\phi \equiv \psi \) if they have the same truth value for all truth valuations.*

But we never really defined valuation of formulas—instead, we handwaved it by saying “draw a truth table”.
Valuations

Let \(\nu : \text{PROP} \rightarrow \mathbb{B} \) be a valuation.

We can extend \(\nu \) to a function \([\cdot]_\nu : \text{WFFs} \rightarrow \mathbb{B} \) recursively:
Valuations

Let $v : \text{PROP} \to \mathbb{B}$ be a valuation.

We can extend v to a function $[\cdot]_v : \text{WFFs} \to \mathbb{B}$ recursively:

- $[\top]_v = \text{true}$, $[\bot]_v = \text{false}$
Valuations

Let \(\nu : \text{PROP} \rightarrow \mathbb{B} \) be a valuation.

We can extend \(\nu \) to a function \(\cdot \) : \text{WFFs} \rightarrow \mathbb{B} \) recursively:

- \([\top]_\nu = \text{true}\)
- \([\bot]_\nu = \text{false}\)
- \([p]_\nu = \nu(p)\)
Valuations

Let \(\nu : \text{PROP} \rightarrow \mathbb{B} \) be a valuation.

We can extend \(\nu \) to a function \([\cdot]_\nu : \text{WFFs} \rightarrow \mathbb{B}\) recursively:

- \([\top]_\nu = \text{true}\), \([\bot]_\nu = \text{false}\)
- \([p]_\nu = \nu(p)\)
- \([-\varphi]_\nu = !([\varphi]_\nu)\)
Valuations

Let \(\nu : \text{PROP} \rightarrow \mathbb{B} \) be a valuation.

We can extend \(\nu \) to a function \([\cdot]_\nu : \text{WFFs} \rightarrow \mathbb{B} \) recursively:

- \([\top]_\nu = \text{true} \), \([\bot]_\nu = \text{false} \)
- \([p]_\nu = \nu(p) \)
- \([\neg \varphi]_\nu = ![\varphi]_\nu \)
- \([(\varphi \land \psi)]_\nu = [\varphi]_\nu \& [\psi]_\nu \)
- \([(\varphi \lor \psi)]_\nu = [\varphi]_\nu \lor [\psi]_\nu \)
- \([(\varphi \rightarrow \psi)]_\nu = ![\varphi]_\nu \lor [\psi]_\nu \)
- \([(\varphi \leftrightarrow \psi)]_\nu = (![\varphi]_\nu \lor [\psi]_\nu) \& (![\psi]_\nu \lor [\varphi]_\nu) \)
Valuations

Let $\nu : \text{PROP} \rightarrow \mathbb{B}$ be a valuation.

We can extend ν to a function $[\cdot]_\nu : \text{WFFs} \rightarrow \mathbb{B}$ recursively:

- $[\top]_\nu = \text{true}$, $[\bot]_\nu = \text{false}$
- $[p]_\nu = \nu(p)$
- $[\neg \phi]_\nu = ![[\phi]_\nu$
- $[[\phi \land \psi]]_\nu = [\phi]_\nu \land [\psi]_\nu$
- $[[\phi \lor \psi]]_\nu = [\phi]_\nu \lor [\psi]_\nu$
- $[[\phi \rightarrow \psi]]_\nu = ![[\phi]_\nu \lor [\psi]_\nu$
- $[[\phi \leftrightarrow \psi]]_\nu = (![\phi]_\nu \lor [\psi]_\nu) \land ([\phi]_\nu \lor ![[\psi]_\nu \lor [\phi]_\nu)$
Valuations

Let \(\nu : \text{PROP} \rightarrow \mathbb{B} \) be a valuation.

We can extend \(\nu \) to a function \([\cdot]_\nu : \text{WFFs} \rightarrow \mathbb{B}\) recursively:

- \([\top]_\nu = \text{true}, \quad [\bot]_\nu = \text{false}\)
- \([p]_\nu = \nu(p)\)
- \([\neg \varphi]_\nu = ![[\varphi]]_\nu\)
- \([((\varphi \land \psi))]_\nu = [[\varphi]]_\nu \land [[\psi]]_\nu\)
- \([((\varphi \lor \psi))]_\nu = [[\varphi]]_\nu \lor [[\psi]]_\nu\)
- \([((\varphi \rightarrow \psi))]_\nu = ![[\varphi]]_\nu \lor [[\psi]]_\nu\)
Valuations

Let \(\nu : \text{PROP} \rightarrow \mathbb{B} \) be a valuation.

We can extend \(\nu \) to a function \([\cdot]_\nu : \text{WFFs} \rightarrow \mathbb{B} \) recursively:

- \([\top]_\nu = \text{true} \), \([\bot]_\nu = \text{false} \)
- \([p]_\nu = \nu(p) \)
- \([\neg \phi]_\nu = ![[\phi]_\nu] \)
- \([(\phi \land \psi)]_\nu = [\phi]_\nu \land [\psi]_\nu \)
- \([(\phi \lor \psi)]_\nu = [\phi]_\nu \lor [\psi]_\nu \)
- \([(\phi \rightarrow \psi)]_\nu = ![[\phi]_\nu \lor [\psi]_\nu] \)
- \([(\phi \leftrightarrow \psi)]_\nu = (![[\phi]_\nu \lor [\psi]_\nu]) \land (![[\psi]_\nu \lor [\phi]_\nu]) \)
A formula φ is

- **satisfiable** if $[\varphi]_v = \text{true}$ for some model v (v satisfies φ)
- **valid** or a **tautology** if $[\varphi]_v = \text{true}$ for all models v
- **unsatisfiable** or a **contradiction** if $[\varphi]_v = \text{false}$ for all models v
Logical equivalence

Two formulas, φ and ψ, are **logically equivalent**, $\varphi \equiv \psi$, if $[\varphi]_v = [\psi]_v$ for all models v.

Theorem

\equiv is an equivalence relation.
Logical equivalence

Two formulas, \(\varphi \) and \(\psi \), are **logically equivalent**, \(\varphi \equiv \psi \), if \([\varphi]_v = [\psi]_v\) for all models \(v \).

Theorem

\(\equiv \) is an equivalence relation.

Example

- Commutativity: \((p \lor q) \equiv (q \lor p)\)
- Double negation: \(\neg\neg p \equiv p\)
- Contrapositive: \((p \rightarrow q) \equiv (\neg q \rightarrow \neg p)\)
- De Morgan’s: \((p \lor q)' \equiv p' \land q'\)
Logical equivalence

Two formulas, φ and ψ, are logically equivalent, $\varphi \equiv \psi$, if $[\varphi]_v = [\psi]_v$ for all models v.

Theorem

\equiv is an equivalence relation.

Example

- Commutativity: $(p \lor q) \equiv (q \lor p)$
- Double negation: $\neg\neg p \equiv p$
- Contrapositive: $(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$
- De Morgan’s: $(p \lor q)' \equiv p' \land q'$

Theorem

$\varphi \equiv \psi$ if, and only if, $(\varphi \leftrightarrow \psi)$ is a tautology.
Theories and entailment

A set of (well-formed) formulas is a **theory**

A model \(v \) **satisfies** a theory \(T \) if \([\varphi]_v = \text{true} \) for all \(\varphi \in T \)

A theory \(T \) **entails** a formula \(\varphi \), \(T \models \varphi \), if \([\varphi]_v = \text{true} \) for all models \(v \) which satisfy \(T \)

Example

- \(T_1 = \{ p \} \), \(T_2 = \emptyset \), \(T_3 = \{ \bot \} \)
- \(v : p \mapsto \text{true} \) satisfies \(T_1 \) and \(T_2 \) but not \(T_3 \)
- \(T_1 \models (p \lor p) \) and \(T_3 \models (p \lor p) \) but \(T_2 \) does not entail \((p \lor p) \)
Theories and entailment

A set of (well-formed) formulas is a **theory**

A model \(\nu \) *satisfies* a theory \(T \) if \([\varphi]_\nu = \text{true}\) for all \(\varphi \in T \)

A theory \(T \) **entails** a formula \(\varphi \), \(T \models \varphi \), if \([\varphi]_\nu = \text{true}\) for all models \(\nu \) which satisfy \(T \)

Theorem

The following are equivalent:

1. \(\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi \)
2. \(\emptyset \models ((\varphi_1 \land \varphi_2) \land \ldots \varphi_n) \rightarrow \psi \)
3. \(((\varphi_1 \land \varphi_2) \land \ldots \varphi_n) \rightarrow \psi \) is a tautology
4. \(\emptyset \models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\ldots \rightarrow \varphi_n \rightarrow \psi)) \ldots \)
Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF (tomorrow)
- Proof
- Natural deduction