COMP2111 Week 7
Term 1, 2024
Finite automata
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
Transition systems

A transition system (or state machine) is a pair \((S, \rightarrow)\) where \(S\) is a set and \(\rightarrow \subseteq S \times S\) is a binary relation.

NB
\(S\) is not necessarily finite.

Transition systems may have:

- \(L\)-labelled transitions: \(\rightarrow \subseteq S \times L \times S\)
- A start/initial state \(s_0 \in S\)
- A set of final states \(F \subseteq S\) (where runs terminate)

If \(\rightarrow\) is a partial function (from \(S \times L\) to \(S\)), the transition system is deterministic. If \(\rightarrow\) is a function, the transition system is total.
Reachability and Runs

A state s' is **reachable** from a state s if $(s, s') \in \rightarrow^*$ (the reflexive and transitive closure of \rightarrow).

A **run** from a state s is a sequence s_1, s_2, \ldots such that $s_1 = s$ and $s_i \rightarrow s_{i+1}$ for all i.

NB

In a non-deterministic transition system there may be many (or no) runs from a state. In an unlabelled deterministic transition system there is exactly one maximal run from every state.
Acceptors and Transducers

An acceptor is a transition system with:
- (input-)labelled transitions
- a start/initial state
- a set of final states

A transducer is a transition system with:
- (input & output-)labelled transitions
- a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map sequences of inputs to sequences of outputs.
Summary

- Recap
- **Deterministic Finite Automata**
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
A deterministic finite automaton (DFA) is a total, finite state acceptor.

DFAs represent “computation with finite memory”

DFAs are simple, easy to work with and show up all over the place.
Formally, a deterministic finite automaton (DFA) is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- Σ is the input alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states
Formally, a deterministic finite automaton (DFA) is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states
Formally, a **deterministic finite automaton (DFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states
Deterministic Finite Automata

\[
\delta(q_0, 0) = q_0 \\
\delta(q_0, 1) = q_1 \\
\delta(q_1, 0) = q_2 \\
\delta(q_1, 1) = q_1 \\
\delta(q_2, 0) = q_1 \\
\delta(q_2, 1) = q_1
\]
Deterministic Finite Automata

Formally, a deterministic finite automaton (DFA) is a tuple \((Q, \Sigma, \delta, q_0, F)\) where

- \(Q\) is a finite set of states: \(Q = \{q_0, q_1, q_2\}\)
- \(\Sigma\) is the input alphabet: \(\Sigma = \{0, 1\}\)
- \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final/accepting states: \(F = \{q_1\}\)
Language of a DFA

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines a run in the DFA and the word is accepted if the run ends in a final state.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*
Language of a DFA

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0

w: 1001
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
Language of a DFA

\[
\begin{array}{c}
\text{State} & 0 & 1 \\
\hline
q_0 & \rightarrow & \rightarrow \\
q_1 & 1 & 0 \\
q_2 & 0,1 & 0,1 \\
\end{array}
\]

\[w: 1001\]

A DFA accepts a sequence of symbols from \(\Sigma\) – i.e. elements of \(\Sigma^*\)

- Start in state \(q_0\)
- Take the first symbol of \(w\)
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by \(\delta\)
 - Move to the next symbol in \(w\)
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

w: 1001
Language of a DFA

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

$w: 1001$
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the language of \mathcal{A}, $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}.
Language of a DFA

For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the language of \mathcal{A}, $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}.

$L(\mathcal{A}) = \{1, 01, 11, 101, \ldots\}$

![Diagram of a DFA with states q_0, q_1, and q_2 with transitions on 0 and 1]
Language of a DFA

For a DFA $A = (Q, \Sigma, \delta, q_0, F)$, the language of A, $L(A)$, is the set of words from Σ^* which are accepted by A.

A language $L \subseteq \Sigma^*$ is regular if there is some DFA A such that $L = L(A)$.
Language of a DFA: formally

Given a DFA \(A = (Q, \Sigma, \delta, q_0, F) \) we define \(L_A : Q \to \Sigma^* \) inductively as follows:

- If \(q \in F \) then \(\lambda \in L_A(q) \)
- If \(q \xrightarrow{a} q' \) and \(w \in L_A(q') \) then \(aw \in L_A(q) \)
Language of a DFA: formally

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$ we define $L_A : Q \to \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_A(q)$
- If $q \xrightarrow{a} q'$ and $w \in L_A(q')$ then $aw \in L_A(q)$

We then define

$$L(A) = L_A(q_0)$$
Example

A_1

$\{a, b\}$

$L(A_1) =$?
Examples

Example

\[L(A_1) = \{ w \in \{ a, b \}^* : w \text{ ends with } b \} \]
Examples

Example

A_2

$L(A_2) = ?$
Example

\[A_2 \]

\[\begin{array}{c}
q_0 \\
\uparrow \\
a \\
\rightarrow \\
q_1 \\
\downarrow \\
b \\
\rightarrow \\
q_0 \\
\end{array} \]

\[L(A_2) = \{ w \in \{a, b\}^* : w \text{ ends with } a \} \cup \{\lambda\} \]
Example

Find A_3 such that $L(A_3) = \emptyset$

Find A_4 such that $L(A_4) = \{\lambda\}$
Examples

Example

Find A_3 such that $L(A_3) = \emptyset$

Find A_4 such that $L(A_4) = \{ \lambda \}$
Example

Find A_3 such that $L(A_3) = \emptyset$

Find A_4 such that $L(A_4) = \{\lambda\}$
Example

Find A_5 such that $L(A_5) = \{ w \in \{a, b\}^* : \text{every odd symbol is } b \}$
Example

Find \(A_5 \) such that \(L(A_5) = \{ w \in \{a, b\}^* : \text{every odd symbol is } b \} \)
Example

Find A_6 such that

$L(A_6) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$
Example

Find A_6 such that

$L(A_6) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$
Example

Find A_6 such that
$L(A_6) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
A **non-deterministic finite automaton (NFA)** is a non-deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA
Formally, a **non-deterministic finite automaton (NFA)** is a tuple \((Q, \Sigma, \delta, q_0, F) \) where

- \(Q \) is a finite set of states
- \(\Sigma \) is the input alphabet
- \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q \) is the transition relation
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of final/accepting states
Non-deterministic Finite Automata

Formally, a **non-deterministic finite automaton (NFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states
Formally, a **non-deterministic finite automaton (NFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states
Non-deterministic Finite Automata

\[\delta = \{ (q_0, 0, q_0), (q_0, 1, q_0), (q_0, 1, q_1), (q_1, \epsilon, q_2), (q_1, 0, q_2), (q_1, 1, q_1), (q_2, 0, q_1) \} \]
Non-deterministic Finite Automata

Transition Table:

<table>
<thead>
<tr>
<th>δ</th>
<th>Σ</th>
<th>𝑞₀</th>
<th>𝑞₁</th>
<th>𝑞₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>𝑞₀</td>
<td></td>
<td>∅</td>
<td>{𝑞₀}</td>
<td>∅</td>
</tr>
<tr>
<td>𝑞₁</td>
<td>{𝑞₂}</td>
<td>{𝑞₂}</td>
<td>{𝑞₁}</td>
<td></td>
</tr>
<tr>
<td>𝑞₂</td>
<td></td>
<td>{𝑞₁}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Formally, a non-deterministic finite automaton (NFA) is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$
An NFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines several runs in the NFA and the word is accepted if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don’t count)

Note 2: An NFA will always “choose wisely”
Language of an NFA

\[w: 1000 \]
Language of an NFA

![NFA Diagram]

- Colour the state q_0

w: 1000
Language of an NFA

\[w: 1000 \]

- Colour the state \(q_0 \)
- Colour states reachable by one or more \(\epsilon \) transitions from \(q_0 \).
- For each symbol \(c \) of \(w \):
 - Colour all states reachable by a \(c \)-transition followed by 0 or more \(\epsilon \) transitions from the coloured states, and uncolour all other states.
Language of an NFA

![NFA Diagram]

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

$w: 1000$
Language of an NFA

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000
Language of an NFA

\[w: 1000 \]

- Colour the state \(q_0 \)
- Colour states reachable by one or more \(\epsilon \) transitions from \(q_0 \).
- For each symbol \(c \) of \(w \):
 - Colour all states reachable by a \(c \)-transition followed by 0 or more \(\epsilon \) transitions from the coloured states, and uncolour all other states.
Language of an NFA

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

$w: 1000$
Language of an NFA

Colour the state q_0

Colour states reachable by one or more ϵ transitions from q_0.

For each symbol c of w:

- Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000
Language of an NFA

w: 1000

- Colour the state q_0.
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.
Language of an NFA

w: 1000

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.
Language of an NFA

For each symbol c of w:

- Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000
Language of an NFA

Let $w: 1000$

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

Accept if there are no symbols left and a final state is coloured; otherwise, reject.
Language of an NFA

- Colour the state \(q_0 \)
- Colour states reachable by one or more \(\epsilon \) transitions from \(q_0 \).
- For each symbol \(c \) of \(w \):
 - Colour all states reachable by a \(c \)-transition followed by 0 or more \(\epsilon \) transitions from the coloured states, and uncolour all other states.

\[w: 1000 \]
Language of an NFA

\[w: 1000 \]

- Colour the state \(q_0 \)
- Colour states reachable by one or more \(\epsilon \) transitions from \(q_0 \).
- For each symbol \(c \) of \(w \):
 - Colour all states reachable by a \(c \)-transition followed by 0 or more \(\epsilon \) transitions from the coloured states, and uncolour all other states.
Language of an NFA

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0.
- For each symbol c of w:
 - Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.
- Accept if there are no symbols left and a final state is coloured; otherwise, reject.

w: 1000
Language of an NFA

Colour the state q_0

Colour states reachable by one or more ϵ transitions from q_0.

For each symbol c of w:

- Colour all states reachable by a c-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

Accept if there are no symbols left and a final state is coloured; otherwise, reject.
For an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the language of \mathcal{A}, $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}.
For an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the **language of \mathcal{A}**, $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}.
Language of an NFA: formally

Given an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ we define $L_\mathcal{A} : Q \to \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_\mathcal{A}(q)$
- If $q \xrightarrow{a} q'$ and $w \in L_\mathcal{A}(q')$ then $aw \in L_\mathcal{A}(q)$
- If $q \xrightarrow{\epsilon} q'$ and $w \in L_\mathcal{A}(q')$ then $w \in L_\mathcal{A}(q)$
Language of an NFA: formally

Given an NFA $A = (Q, \Sigma, \delta, q_0, F)$ we define $L_A : Q \to \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_A(q)$
- If $q \xrightarrow{a} q'$ and $w \in L_A(q')$ then $aw \in L_A(q)$
- If $q \xrightarrow{\epsilon} q'$ and $w \in L_A(q')$ then $w \in L_A(q)$

We then define

$$L(A) = L_A(q_0)$$
Examples

Example

\[L(\mathcal{B}_1) =? \]
Example

\[L(B_1) = \{ w \in \{ a, b \}^* : w \text{ ends with } b \} \]
Examples

Example

\[L(\mathcal{B}_2) = ? \]
Examples

Example

\[
L(B_2) = \{a, b\}^*
\]
Examples

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find B_3 such that $L(B_3) = \emptyset$</td>
</tr>
<tr>
<td>Find B_4 such that $L(B_4) = {\lambda}$</td>
</tr>
</tbody>
</table>
Examples

Example

Find B_3 such that $L(B_3) = \emptyset$

B_3

Find B_4 such that $L(B_4) = \{\lambda\}$
Examples

Example

Find B_3 such that $L(B_3) = \emptyset$

B_3

Find B_4 such that $L(B_4) = \{\lambda\}$

B_4
Example

Find B_5 such that $L(B_5) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$
Example

Find \mathcal{B}_5 such that $L(\mathcal{B}_5) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$
NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that $L(A) = L(B)$.

Theorem

For any NFA B there is a DFA A such that $L(A) = L(B)$.

Proof sketch: (Subset construction)

Given $B = (Q, \Sigma, \delta, q_0, F)$, construct $A = (Q', \Sigma, \delta', q'_0, F')$ as follows:

$Q' = \text{Pow}(Q)$

$\delta'((X, a)) = \{q'_\in Q' : \exists q_\in X, q''_\in Q : q_\xrightarrow{a} q'' \in \epsilon \rightarrow^* q'_\}$

$q'_0 = \{q'_\in Q' : q_0 \in \epsilon \rightarrow^* q'_\}$

$F' = \{X \in Q' : X \cap F \neq \emptyset\}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.
NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that $L(A) = L(B)$.

Theorem

*For any NFA B there is a DFA A such that $L(A) = L(B)$.***
NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that $L(A) = L(B)$.

Theorem

*For any NFA B there is a DFA A such that $L(A) = L(B)$.***

Proof sketch: (Subset construction)
Given $B = (Q, \Sigma, \delta, q_0, F)$, construct $A = (Q', \Sigma, \delta', q'_0, F')$ as follows:

- $Q' = \text{Pow}(Q)$
- $\delta'(X, a) = \{q' \in Q : \exists q \in X, q'' \in Q. q \xrightarrow{a} q'' \xrightarrow{\epsilon}^* q'\}$
- $q'_0 = \{q' \in Q : q_0 \xrightarrow{\epsilon}^* q'\}$
- $F' = \{X \in Q' : X \cap F \neq \emptyset\}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.
NFA to DFA Example

Example

\[B_5 \]

\[q_0 \rightarrow b \rightarrow q_1 \rightarrow a, b \rightarrow q_2 \]
NFA to DFA Example

Example

\[B_5 \]

\[\begin{array}{ccc}
\delta' & a & b \\
\emptyset & \{q_0\} & \{q_0\} \\
\{q_0\} & \{q_1\} & \{q_2\} \\
\{q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_2\} & \{q_1, q_2\} & \{q_0, q_1, q_2\} \\
\end{array} \]
NFA to DFA Example

Example

\[\delta' \]

\[
\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & \emptyset & \emptyset \\
\{q_0\} & \emptyset & \emptyset \\
\{q_1\} & \emptyset & \emptyset \\
\{q_2\} & \emptyset & \emptyset \\
\{q_0, q_1\} & \emptyset & \emptyset \\
\{q_0, q_2\} & \emptyset & \emptyset \\
\{q_1, q_2\} & \emptyset & \emptyset \\
\{q_0, q_1, q_2\} & \emptyset & \emptyset \\
\end{array}
\]
Example

\[
\begin{array}{cccc}
\delta' & a & b \\
\emptyset & \emptyset & \emptyset \\
\{q_0\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1\} & \{q_0, q_1\} & \{q_0, q_1, q_2\} \\
\{q_2\} & \{q_0, q_1, q_2\} & \{q_0, q_1, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_2\} & \{q_0, q_1, q_2\} \\
\{q_1, q_2\} & \{q_1, q_2\} & \{q_1, q_2\} \\
\{q_0, q_1, q_2\} & \{q_0, q_1, q_2\} & \{q_0, q_1, q_2\} \\
\end{array}
\]
NFA to DFA Example

Example

\[B_5 \]

- \(q_0 \)
- \(q_1 \)
- \(q_2 \)

\[\delta' \]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q_0 })</td>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
</tr>
<tr>
<td>({ q_1 })</td>
<td>({ q_2 })</td>
<td>({ q_2 })</td>
</tr>
<tr>
<td>({ q_2 })</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({ q_1, q_2 })</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({ q_0, q_1, q_2 })</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\(\mathcal{B}_5 \)

\[
\begin{array}{ccc}
\delta' & a, b & \emptyset \\
\emptyset & \emptyset & \emptyset \\
\{ q_0 \} & \{ q_0 \} & \{ q_0, q_1 \} \\
\{ q_1 \} & \{ q_2 \} & \{ q_2 \} \\
\{ q_2 \} & \emptyset & \emptyset \\
\{ q_0, q_1 \} & \emptyset & \emptyset \\
\{ q_0, q_2 \} & \{ q_0, q_1 \} & \emptyset \\
\{ q_1, q_2 \} & \emptyset & \emptyset \\
\{ q_0, q_1, q_2 \} & \emptyset & \emptyset \\
\end{array}
\]
NFA to DFA Example

Example

\[\delta' \]

<table>
<thead>
<tr>
<th>(\emptyset)</th>
<th>(\emptyset)</th>
<th>(\emptyset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ q_0 })</td>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
</tr>
<tr>
<td>({ q_1 })</td>
<td>({ q_2 })</td>
<td>({ q_2 })</td>
</tr>
<tr>
<td>({ q_2 })</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_2 })</td>
<td>({ q_0, q_1, q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td>({ q_0, q_1, q_2 })</td>
<td></td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

Given the NFA with states q_0, q_1, q_2, alphabet $\{a, b\}$, and transition function δ':

<table>
<thead>
<tr>
<th>δ'</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${q_0}$</td>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
</tr>
<tr>
<td>${q_1}$</td>
<td>${q_2}$</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>${q_2}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
</tr>
<tr>
<td>${q_1, q_2}$</td>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_2}$</td>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\[B_5 \]

\[q_0 \rightarrow a, b \rightarrow q_1 \rightarrow b \rightarrow q_2 \rightarrow a, b \rightarrow q_2 \]

\[\delta' \]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q_0 })</td>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
</tr>
<tr>
<td>({ q_1 })</td>
<td>({ q_2 })</td>
<td>({ q_2 })</td>
</tr>
<tr>
<td>({ q_2 })</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_2 })</td>
<td>({ q_0, q_1, q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
</tr>
<tr>
<td>({ q_1, q_2 })</td>
<td>({ q_2 })</td>
<td>({ q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_1, q_2 })</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\[\delta' \]

\[\begin{array}{ccc}
\emptyset & \emptyset & \emptyset \\
\{ q_0 \} & \{ q_0 \} & \{ q_0, q_1 \} \\
\{ q_1 \} & \{ q_2 \} & \{ q_2 \} \\
\{ q_2 \} & \emptyset & \emptyset \\
\{ q_0, q_1 \} & \{ q_0, q_2 \} & \{ q_0, q_1, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0 \} & \{ q_0, q_1 \} \\
\{ q_1, q_2 \} & \{ q_2 \} & \{ q_2 \} \\
\{ q_0, q_1, q_2 \} & \{ q_0, q_2 \} & \{ q_0, q_1, q_2 \}
\end{array} \]
NFA to DFA Example

Example

\[B_5 \]

\[\begin{array}{c}
\delta' \\
\emptyset & A & A & A \\
\{ q_0 \} & B & B & E \\
\{ q_1 \} & C & D & D \\
\{ q_2 \} & D & A & A \\
\{ q_0, q_1 \} & E & F & H \\
\{ q_0, q_2 \} & F & B & E \\
\{ q_1, q_2 \} & G & D & D \\
\{ q_0, q_1, q_2 \} & H & F & H \\
\end{array} \]
NFA to DFA Example

Example

\[\mathcal{B}_5 \]

\[q_0 \rightarrow b \rightarrow q_1 \rightarrow a, b \rightarrow q_2 \]

\[\delta' \]

<table>
<thead>
<tr>
<th>[\emptyset]</th>
<th>[q_0]</th>
<th>[q_1]</th>
<th>[q_2]</th>
<th>[q_0, q_1]</th>
<th>[q_0, q_2]</th>
<th>[q_1, q_2]</th>
<th>[q_0, q_1, q_2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\emptyset]</td>
<td>[q_0]</td>
<td>[q_1]</td>
<td>[q_2]</td>
<td>[q_0, q_1]</td>
<td>[q_0, q_2]</td>
<td>[q_1, q_2]</td>
<td>[q_0, q_1, q_2]</td>
</tr>
<tr>
<td>[\emptyset]</td>
<td>[q_0]</td>
<td>[q_1]</td>
<td>[q_2]</td>
<td>[q_0, q_1]</td>
<td>[q_0, q_2]</td>
<td>[q_1, q_2]</td>
<td>[q_0, q_1, q_2]</td>
</tr>
<tr>
<td>[\emptyset]</td>
<td>[q_0]</td>
<td>[q_1]</td>
<td>[q_2]</td>
<td>[q_0, q_1]</td>
<td>[q_0, q_2]</td>
<td>[q_1, q_2]</td>
<td>[q_0, q_1, q_2]</td>
</tr>
<tr>
<td>[\emptyset]</td>
<td>[q_0]</td>
<td>[q_1]</td>
<td>[q_2]</td>
<td>[q_0, q_1]</td>
<td>[q_0, q_2]</td>
<td>[q_1, q_2]</td>
<td>[q_0, q_1, q_2]</td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\[
\begin{align*}
\mathcal{B}_5 \quad & a, b \quad b \quad a, b
\end{align*}
\]

<table>
<thead>
<tr>
<th>δ'</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>${q_0}$</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>${q_1}$</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>${q_2}$</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>${q_1, q_2}$</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>${q_0, q_1, q_2}$</td>
<td>H</td>
<td>F</td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\[B_5 \]

\[
\begin{align*}
q_0 & \xrightarrow{a, b} q_1 \\
q_1 & \xrightarrow{a, b} q_2 \\
\end{align*}
\]

\[
\begin{align*}
B & \xrightarrow{a} E \\
E & \xrightarrow{b} H \\
F & \xrightarrow{a} B \\
G & \xrightarrow{a, b} D \\
C & \xrightarrow{a, b} A \\
\end{align*}
\]
NFAs vs DFAs

Theorem

- For any NFA with \(n \) states there exists a DFA with at most \(2^n \) states that accepts the same language.
- There exist NFAs with \(n \) states such that the smallest DFA that accepts the same language has at least \(2^n \) states.
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA A such that $L = L(A)$.
Regular languages

A language $L \subseteq \Sigma^*$ is regular if there is some DFA \mathcal{A} such that $L = L(\mathcal{A})$.

Equivalently, there is some NFA \mathcal{B} such that $L = L(\mathcal{B})$.
Non-regular languages

Are there languages which are not regular?

“Simple” counting argument: there are uncountably many languages, and only countably many DFAs.

An example of a non-regular language:

\[\{ 0^n 1^n : n \in \mathbb{N} \} \]

Intuitively: need arbitrary large memory to “remember” the number of 0's.
Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many languages, and only countably many DFAs
Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many languages, and only countably many DFAs

An example of a non-regular language: $\{0^n1^n : n \in \mathbb{N}\}$
Intuitively: need arbitrary large memory to “remember” the number of 0’s
Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(A) = L$.
- Consider $A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$.
- For any word $w \in \Sigma^*$, the corresponding run in A is unique, so:
 - If $w \in L(A)$ then $w \notin L(A')$, and
 - If $w \notin L(A)$ then $w \in L(A')$.
- Therefore $L(A') = \Sigma^* \setminus L(A) = L^c$.

NB

This argument does not apply for NFAs (see B_1 and B_2).
Union

Theorem

If \(L_1 \) and \(L_2 \) are regular languages, then \(L_1 \cup L_2 \) is regular.

Proof:

- Let \(B_1 \) and \(B_2 \) be NFAs such that \(L(B_1) = L_1 \) and \(L(B_2) = L_2 \).
- Construct an NFA \(B \) by having a new start state with \(\epsilon \)-transitions to the start states of \(B_1 \) and \(B_2 \).
- Consider \(w \in L_1 \cup L_2 \):
 - If \(w \in L_1 \) then there is a run in \(B_1 \), and hence in \(B \), which ends in a final state.
 - If \(w \in L_2 \) then there is a run in \(B_2 \), and hence in \(B \), which ends in a final state.
 - In either case \(w \in L(B) \).
- Conversely, any accepting run in \(B \) will be either an accepting run in \(B_1 \) or in \(B_2 \); so if \(w \in L(B) \) then \(w \in L_1 \cup L_2 \).
Theorem

If \(L_1 \) and \(L_2 \) are regular languages, then \(L_1 \cap L_2 \) is regular.

Proof:
Intersection

Theorem

If \(L_1 \) and \(L_2 \) are regular languages, then \(L_1 \cap L_2 \) is regular.

Proof:

\[
L_1 \cap L_2 = (L_1^c \cup L_2^c)^c
\]
Concatenation

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

Proof:

- Let B_1 and B_2 be NFAs such that $L(B_1) = L_1$ and $L(B_2) = L_2$.
- Construct an NFA B by adding ϵ-transitions from the final states of B_1 to the start state of B_2. Let the start state of B be the start state of B_1; and let the final states of B be the final states of B_2.
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in B_1 and v has an accepting run in B_2, so wv has an accepting run in B.
- Conversely, any word w with an accepting run in B can be broken up into an accepting run in B_1 followed by an accepting run in B_2. Thus w can be broken up into two words $w = xy$ where $x \in L_1$ and $y \in L_2$.
Kleene star

Recall for a language X:

$X^* = \{ w : w \text{ is the concatenation of 0 or more words in } X \}$

Theorem

If L is regular languages, then L^ is regular.*

Proof:

- Let B be an NFA such that $L(B) = L$
- Construct an NFA B' by:
 - creating a new start state which is accepting;
 - adding an ϵ-transition from the new start state to the start state of B
 - adding ϵ-transitions from the final states of B to the new start state.
- Similar arguments as before show that $L(B') = L(B)^*$
Regular operations

Concatenation, union, and Kleene star are collectively known as the **regular operations**.
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
Regular expressions

Regular expressions are a way of describing “finite automaton” patterns:

- Second-last letter is b
- Every odd symbol is b

Many applications in CS:

- Lexical analysis in compiler construction
- Search facilities provided by text editors and databases; utilities such as `grep` and `awk`
- Pattern matching on strings
Regular expressions

Given a finite set Σ, a regular expression (regexp) over Σ is defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- a is a regular expression for all $a \in \Sigma$
- If E_1 and E_2 are regular expressions, then E_1E_2 is a regular expression
- If E_1 and E_2 are regular expressions, then $E_1 + E_2$ is a regular expression
- If E is a regular expression, then E^* is a regular expression

We use parentheses to disambiguate regexps, though \ast binds tighter than concatenation, which binds tighter than \pm.
Examples

Example

The following are regular expressions over $\Sigma = \{0, 1\}$:

- \emptyset
- $101 + 010$
- $(\epsilon + 10)^*01$
A regexp defines a language over Σ: the set of words which “match” the expression:

- Concatenation = sequences of expressions
- Union = choice of expressions
- Star = 0 or more occurrences of an expression

Example

The following words match $(000 + 10)^*01$:

- 01
- 101001
- 000101000001
Language of a Regular Expression

Formally, given a regexp, E, over Σ, we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If $E = a$ where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

$L(010 + 101) =$?

$L((\epsilon + 10)^*01) =$?
Language of a Regular Expression

Formally, given a regexp, E, over Σ, we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If $E = a$ where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

$L(010 + 101) = \{010, 101\}$

$L((\epsilon + 10)^*01) = ?$
Language of a Regular Expression

Formally, given a regexp, E, over Σ, we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If $E = a$ where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1 E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

$L(010 + 101) = \{010, 101\}$

$L((\epsilon + 10)^*01) = \{01, 1001, 101001, \ldots\}$
Theorem (Kleene’s theorem)

- For any regular expression E, $L(E)$ is a regular language.
- For any regular language L, there is a regular expression E such that $L = L(E)$.
Proof of Kleene’s theorem

Given E, $L(E)$ is a regular language. Proof by induction on E.

Let $L_X q, q' = \{ w \in \Sigma^* : q w \rightarrow^* q' \text{ with all intermediate states in } X \}$

Define $E_X q, q'$ such that $L(E_X q, q') = L_X q, q'$:

When $q = q'$:

$E_{\emptyset} q, q' = \epsilon + a_1 + a_2 + \ldots + a_k$ where $q a_i \rightarrow q'$

When $q \neq q'$:

$E_{\emptyset} q, q' = \emptyset + a_1 + a_2 + \ldots + a_k$ where $q a_i \rightarrow q'$

For $X \neq \emptyset$:

$E_X q, q' = E_X - \{ r \} q, q' \cup E_X - \{ r \} r \cdot (E_X - \{ r \} r, q') \cup (E_X - \{ r \} r, q')$
Proof of Kleene's theorem

Given E, $L(E)$ is a regular language. Proof by induction on E.

Given L, find E such that $L = L(E)$

- Let
 \[L_{q,q'}^{X} = \{ w \in \Sigma^* : q \xrightarrow{w}^* q' \text{ with all intermediate states in } X \} \]

- Define $E_{q,q'}^{X}$ such that $L(E_{q,q'}^{X}) = L_{q,q'}^{X}$:
 - When $q = q'$: $E_{q,q'}^{\emptyset} = \epsilon + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_i} q$
 - When $q \neq q'$: $E_{q,q'}^{\emptyset} = \emptyset + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_i} q'$
 - For $X \neq \emptyset$:
 \[
 E_{q,q'}^{X} = \underbrace{E_{q,q'}^{X-\{r\}} + E_{q,r}^{X-\{r\}} \cdot (E_{r,r}^{X-\{r\}})^* \cdot E_{r,q'}^{X-\{r\}}}_{(1)}
 \]

- The required expression is then $E = \sum_{q \in F} E_{q_0,q}^{Q}$