An Introduction to the B Method

A Simple Library

Revision: 1.3, March 20, 2003

©Ken Robinson
mailto::k.robinson@unsw.edu.au
Objectives of this Lecture
Objectives of this Lecture
Objectives of this Lecture

• to expand the mathematical toolkit to enable modelling of relations
Objectives of this Lecture

- to expand the mathematical toolkit to enable modelling of relations
- to develop a case study that will widen our abstract machine repertoire
Objectives of this Lecture

- to expand the mathematical toolkit to enable modelling of relations
- to develop a case study that will widen our abstract machine repertoire
- to discuss the notions of fragile and robust operations
A Simple Library
A Simple Library

Let us model a very simple library with the following requirements:
A Simple Library

Let us model a very simple library with the following requirements:

1. Prospective borrowers must register and are given a unique identifier.
A Simple Library

Let us model a very simple library with the following requirements:

1. Prospective borrowers must register and are given a unique identifier.

2. Only registered users of the library may borrow books.
A Simple Library

Let us model a very simple library with the following requirements:

1. Prospective borrowers must register and are given a unique identifier.
2. Only registered users of the library may borrow books.
3. Borrowers may borrow more than one book at the same time.
A Simple Library

Let us model a very simple library with the following requirements:

1. Prospective borrowers must register and are given a unique identifier.
2. Only registered users of the library may borrow books.
3. Borrowers may borrow more than one book at the same time.

To simplify the model we will assume that there is a set BOOK that contains all the books that could be in the library. This could be thought of as similar to the set of all ISBN numbers, but as there will be at most only one copy of any book in the library it’s more appropriate to compare it with a shelf number, or a book barcode. When you borrow a book from a library, you don’t borrow a book title, you borrow a specific physical book.
A Simple Library

Let us model a very simple library with the following requirements:

1. Prospective borrowers must register and are given a unique identifier.
2. Only registered users of the library may borrow books.
3. Borrowers may borrow more than one book at the same time.

To simplify the model we will assume that there is a set \(\text{BOOK} \) that contains all the books that could be in the library. This could be thought of as similar to the set of all \(\text{ISBN} \) numbers, but as there will be at most only one copy of any book in the library it’s more appropriate to compare it with a shelf number, or a book barcode. When you borrow a book from a library, you don’t borrow a book title, you borrow a specific physical book.

The specification we are going to develop is probably not wrong when compared with a real library, nor inappropriate, rather it is incomplete.
Machine Parameters
Machine Parameters

Machine parameters represent information that is imported from outside the machine. There are two sorts of parameters:
Machine Parameters

Machine parameters represent information that is imported from outside the machine. There are two sorts of parameters:

SET parameters denoted by upper case identifiers, these represent non-empty finite sets
Machine Parameters

Machine parameters represent information that is imported from outside the machine. There are two sorts of parameters:

SET parameters denoted by upper case identifiers, these represent non-empty finite sets

numeric constants denoted by lower case identifiers, these represent natural number constants
Machine Parameters

Machine parameters represent information that is imported from outside the machine. There are two sorts of parameters:

SET parameters denoted by upper case identifiers, these represent non-empty finite sets

numeric constants denoted by lower case identifiers, these represent natural number constants

We will model the set **BOOK** as a set parameter of the machine.\(^a\)

\(^a\)This is not the correct way of modelling global sets, but we will defer discussing a more appropriate model until later.
Machine Parameters

Machine parameters represent information that is imported from outside the machine. There are two sorts of parameters:

SET parameters denoted by upper case identifiers, these represent non-empty finite sets

numeric constants denoted by lower case identifiers, these represent natural number constants

We will model the set BOOK as a set parameter of the machine.\(^{a}\)

We will also use a non-zero numeric constant maxuser to denote the size of the set of registered users.

\(^{a}\)This is not the correct way of modelling global sets, but we will defer discussing a more appropriate model until later
Machine Parameters

Machine parameters represent information that is imported from outside the machine. There are two sorts of parameters:

SET parameters denoted by upper case identifiers, these represent non-empty finite sets

numeric constants denoted by lower case identifiers, these represent natural number constants

We will model the set BOOK as a set parameter of the machine.\(^a\)

We will also use a non-zero numeric constant maxuser to denote the size of the set of registered users.

Thus the machine header is

```
MACHINE SimpleLibrary(BOOK,maxuser)
```

\(^a\)This is not the correct way of modelling global sets, but we will defer discussing a more appropriate model until later
CONSTRAINTS Clause
CONSTRAINTS Clause

In order to constrain the machine parameter `maxuser` to be non-zero, we add a **CONSTRAINTS** clause to the machine containing the constraint

\[maxuser \in \mathbb{N}_1 \]
In order to constrain the machine parameter `maxuser` to be non-zero, we add a `CONSTRAINTS` clause to the machine containing the constraint

\[maxuser \in \mathbb{N}_1 \]

\textbf{CONSTRAINTS} \hspace{1cm} \texttt{maxuser : NAT1}
Representing Registered Users
Representing Registered Users

To represent the set of all possible registered users of the library we will specify a deferred set `USER`.

\[SETS \quad USER\]
Representing Registered Users

To represent the set of all possible registered users of the library we will specify a deferred set USER.

$$SETS \quad USER$$

Such a set is local to the machine, and cannot be seen from outside the machine, although elements of the set may be passed as tokens through machine operations.
Representing Registered Users

To represent the set of all possible registered users of the library we will specify a deferred set USER.

\[\text{SETS USER} \]

Such a set is local to the machine, and cannot be seen from outside the machine, although elements of the set may be passed as tokens through machine operations.

Such sets are described as deferred, as the exact structure of the set is deferred until the later design (refinement) phases. Deferred sets must be non-empty sets.
Representing Registered Users

To represent the set of all possible registered users of the library we will specify a deferred set USER.

$$SETS \ \ USER$$

Such a set is local to the machine, and cannot be seen from outside the machine, although elements of the set may be passed as tokens through machine operations.

Such sets are described as deferred, as the exact structure of the set is deferred until the later design (refinement) phases. Deferred sets must be non-empty sets.

We wish the set USER to have exactly maxuser elements, and we use the PROPERTIES clause to constrain the cardinality of the set.

$$\text{card} (USER) = \text{maxuser}$$
Representing Registered Users

To represent the set of all possible registered users of the library we will specify a **deferred** set USER.

\[
\text{SETS USER}
\]

Such a set is local to the machine, and cannot be seen from outside the machine, although elements of the set may be passed as tokens through machine operations.

Such sets are described as **deferred**, as the exact structure of the set is deferred until the later design (refinement) phases. Deferred sets must be non-empty sets.

We wish the set USER to have exactly **maxuser** elements, and we use the **PROPERTIES** clause to constrain the cardinality of the set.

\[
\text{card(USER)} = \text{maxuser}
\]

SETS USER

PROPERTIES card(USER) = maxuser
Variables
Variables

We need to model
Variables

We need to model

the set of registered users: the set of currently registered users.
Variables

We need to model

the set of registered users: the set of currently registered users.

books in the library: the set of books acquired by the library.
Variables

We need to model:

the set of registered users: the set of currently registered users.

books in the library: the set of books acquired by the library.

books on the shelf: the subset of the library books that are currently on the shelves, i.e. not on loan.
Variables

We need to model

the set of registered users: the set of currently registered users.

books in the library: the set of books acquired by the library.

books on the shelf: the subset of the library books that are currently on the shelves, ie not on loan.

books on loan: information on what books have been borrowed and who has borrowed them.
Registered Users
Registered Users

Variable: users
Constraint: $users \subseteq USER$
Registered Users

Variable: $users$

Constraint: $users \subseteq USER$

The variable $users$ will “keep track” of the people who have been registered.
Registered Users

Variable: users

Constraint: users \subseteq USER

The variable users will "keep track" of the people who have been registered.

Note: $users \subseteq USER$ is equivalent to $users \in \mathbb{P}(USER)$.
Books in the Library
Books in the Library

Variable: books_in_library

Constraint: books_in_library ⊆ BOOK
Books in the Library

Variable: books_in_library

Constraint: books_in_library ⊆ BOOK

The variable books_in_library will “keep track” of the books acquired by the library.
Books in the Library

Variable: books_in_library

Constraint: \(books_in_library \subseteq BOOK \)

The variable \(books_in_library \) will “keep track” of the books acquired by the library.

Note: \(books_in_library \subseteq BOOK \) is equivalent to \(books_in_library \in \mathbb{P}(BOOK) \).
Books on the Shelf
Books on the Shelf

Variable: \textit{books_on_shelf}

Constraint: \textit{books_on_shelf} \subseteq \textit{books_in_library}
Books on the Shelf

Variable: books_on_shelf

Constraint: books_on_shelf \subseteq books_in_library

Books must be acquired before they may appear on the shelf.
Books on the Shelf

Variable: books_on_shelf
Constraint: books_on_shelf ⊆ books_in_library

Books must be acquired before they may appear on the shelf.

Note: books_on_shelf ⊆ books_in_library is equivalent to books_on_shelf ∈ \mathbb{P}\left(\text{books_in_library}\right).
Books on Loan
Books on Loan

Variable: books_on_loan

Constraint: books_on_loan ∈ books_in_library → users
Books on Loan

Variable: books_on_loan

Constraint: books_on_loan ∈ books_in_library → users

We should note the following:
Books on Loan

Variable: books_on_loan

Constraint: \(books_{\text{on_loan}} \in books_{\text{in_library}} \mapsto users \)

We should note the following:

Each book that is borrowed must be borrowed by exactly one registered user.
Books on Loan

Variable: books_on_loan

Constraint: books_on_loan ∈ books_in_library ↦ users

We should note the following:

Each book that is borrowed must be borrowed by exactly one registered user.

A borrower may borrow more than one book.
Books on Loan

Variable: books_on_loan

Constraint: books_on_loan ∈ books_in_library → users

We should note the following:

Each book that is borrowed must be borrowed by exactly one registered user.

A borrower may borrow more than one book.

This indicates a functional relation between books and borrowers.
Strengthening the Constraints
Strengthening the Constraints

The constraints on the variables are not yet strong enough.
Strengthening the Constraints

The constraints on the variables are not yet strong enough.

Clearly, a book that is borrowed may not also be on the shelf in the library.
Strengthening the Constraints

The constraints on the variables are not yet strong enough.

Clearly, a book that is borrowed may not also be on the shelf in the library.

Also, a book acquired by the library is either on the shelf or on loan. At least in our simple library.
Strengthening the Constraints

The constraints on the variables are not yet strong enough.

Clearly, a book that is borrowed may not also be on the shelf in the library.

Also, a book acquired by the library is either on the shelf or on loan. At least in our simple library.

Both of these can be expressed by saying that \texttt{books_on_shelf} must be exactly the difference between \texttt{books_in_library} and the domain of the \texttt{books_on_loan} function.
Strengthening the Constraints

The constraints on the variables are not yet strong enough.

Clearly, a book that is borrowed may not also be on the shelf in the library.

Also, a book acquired by the library is either on the shelf or on loan. At least in our simple library.

Both of these can be expressed by saying that \(books_{on_shelf} \) must be exactly the difference between \(books_{in_library} \) and the domain of the \(books_{on_loan} \) function .

Thus we need the following constraint

\[
books_{on_shelf} = books_{in_library} - \text{dom}(books_{on_loan})
\]
Thus we obtain the following header for the SimpleLibrary machine.

MACHINE SimpleLibrary(BOOK,maxuser)
CONSTRAINTS maxuser : NAT1
SETS USER
PROPERTIES card(USER) = maxuser
VARIABLES users, books_in_library, books_on_shelf, books_on_loan
INVARIANT
users <: USER &
books_in_library <: BOOK &
books_on_shelf <: books_in_library &
books_on_loan : books_in_library +-> users &
books_on_shelf = books_in_library - dom(books_on_loan)
Initialisation
Initialisation

An appropriate initialisation of the variables that will satisfy the machine state invariant is to set all the variables to the empty set.
Initialisation

An appropriate initialisation of the variables that will satisfy the machine state invariant is to set all the variables to the empty set.

INITIALISATION
users,
books_in_library,
books_on_shelf,
books_on_loan := {},{},{},
Adding a Book to the Library
Adding a Book to the Library

We want to model an operation \texttt{AddBook(book)} that adds book to the libraries collection, the set \texttt{books_in_library}.
Adding a Book to the Library

We want to model an operation `AddBook(book)` that adds book to the libraries collection, the set `books_in_library`.

`book` must be a new book —one that is not already contained in the libraries collection— to the library collection.
Adding a Book to the Library

We want to model an operation \texttt{AddBook(book)} that adds book to the libraries collection, the set \texttt{books_in_library}.

\texttt{book} must be a new book —one that is not already contained in the libraries collection— to the library collection.

We will assume that at the same time as we add the book to the library collection we add it to the library shelves.
AddBook(book) =
 THEN books_in_library := books_in_library \ {book} \| |
 books_on_shelf := books_on_shelf \ {book}
 END
Registering a New User
Registering a New User

We want to model an operation \texttt{NewUser} that will register a new user, provided that we have not exhausted our set of user tokens.
Registering a New User

We want to model an operation `NewUser` that will register a new user, provided that we have not exhausted our set of user tokens.

This operation will return the user token that must be used when borrowing a book.
Registering a New User

We want to model an operation \texttt{NewUser} that will register a new user, provided that we have not exhausted our set of user tokens.

This operation will return the user token that must be used when borrowing a book.

In modelling this operation we choose any user token that has not yet been allocated. We then add this to the set \texttt{user} and return the value to the invoker of the operation.
newuser <-- NewUser =

PRE users /= USER

THEN

ANY user
WHERE user : (USER - users)
THEN users := users \ {user} ||

 newuser := user

END

END
Borrowing a Book
Borrowing a Book

We want to model a borrow operation, \texttt{Borrow(user,book)}, that involves a borrower, \texttt{user}, and a book to be borrowed, \texttt{book}.
Borrowing a Book

We want to model a borrow operation, \textit{Borrow(user,book)}, that involves a borrower, \textit{user}, and a book to be borrowed, \textit{book}.

The \textit{user} must be a registered user.
Borrowing a Book

We want to model a borrow operation, \(\text{Borrow}(\text{user}, \text{book}) \), that involves a borrower, \text{user}, and a book to be borrowed, \text{book}.

The \text{user} must be a registered user.

The \text{book} must be available for loan, \text{ie} it must be a book that is currently on the shelf.
Borrowing a Book

We want to model a borrow operation, \texttt{Borrow}\texttt{(user,book)}, that involves a borrower, \texttt{user}, and a book to be borrowed, \texttt{book}.

The \texttt{user} must be a registered user.

The \texttt{book} must be available for loan, \texttt{ie} it must be a book that is currently on the shelf.

After the operation, the book is no longer on the shelf of the library, and the state records the relation between the book and the borrower.
We want to model a borrow operation, \(\text{Borrow}(\text{user}, \text{book}) \), that involves a borrower, \(\text{user} \), and a book to be borrowed, \(\text{book} \).

The \(\text{user} \) must be a registered user.

The \(\text{book} \) must be available for loan, i.e., it must be a book that is currently on the shelf.

After the operation, the book is no longer on the shelf of the library, and the state records the relation between the book and the borrower.

Notice that we replace \(\text{books_on_loan} \) by the union of two functions, and this must be a function. In general, the union of two functions is not a function. Why?
Borrowing a Book

We want to model a borrow operation, \texttt{Borrow(user,book)}, that involves a borrower, \texttt{user}, and a book to be borrowed, \texttt{book}.

The \texttt{user} must be a registered user.

The \texttt{book} must be available for loan, ie it must be a book that is currently on the shelf.

After the operation, the book is no longer on the shelf of the library, and the state records the relation between the book and the borrower.

Notice that we replace \texttt{books_on_loan} by the union of two functions, and this must be a function. In general, the union of two functions is not a function. Why?

Why is it in this case?
Borrow(user, book) =

PRE user : users & book : books_on_shelf

THEN books_on_shelf := books_on_shelf - {book} ||
 books_on_loan := books_on_loan \{book \mapsto user\}

END
Returning a Book
Returning a Book

We want to model a return operation, Return(book), that returns a book to the library.
Returning a Book

We want to model a return operation, Return(book), that returns a book to the library.

The book to be returned must currently be on loan.
Returning a Book

We want to model a return operation, \texttt{Return(book)}, that returns a book to the library.

The book to be returned must currently be on loan.

We do not care who returns the book, so only a book appears as an argument to the operation.
Returning a Book

We want to model a return operation, Return(book), that returns a book to the library.

The book to be returned must currently be on loan.

We do not care who returns the book, so only a book appears as an argument to the operation.

Note the use of domain subtraction to remove all maplets $\text{book} \mapsto \text{anyone}$ that records the borrowing of the book by anyone. Since this is a function there will be at most one such maplet. In this case there will be exactly one. Why?
Return(book) =
 PRE book : dom(books_on_loan)
 THEN books_on_shelf := books_on_shelf \ {book} ||
 books_on_loan := {book} <| books_on_loan
 END
Who’s Borrowed this Book?
Who’s Borrowed this Book?

We will model an enquiry operation that reports the borrower of a book.
Who’s Borrowed this Book?

We will model an enquiry operation that reports the borrower of a book.

Clearly, this operation has to assume that the book has been borrowed.
Who’s Borrowed this Book?

We will model an enquiry operation that reports the borrower of a book.

Clearly, this operation has to assume that the book has been borrowed.

An enquiry operation is an operation that does not change the state of the machine.
user <-- Borrowed(book) =
 PRE book : dom(books_on_loan)
 THEN user := books_on_loan(book)
 END
A Note on Constraining Predicates
A Note on Constraining Predicates

Predicates constraining a set, constant, variable, or operation argument must contain a constraining predicate. A constraining predicate allows the determination of the basic set to which the entity belongs. This is required by the type analyzer in the BToolkit. It’s also required by mere mortals reading a specification.
A Note on Constraining Predicates

Predicates constraining a set, constant, variable, or operation argument must contain a constraining predicate. A constraining predicate allows the determination of the basic set to which the entity belongs. This is required by the type analyzer in the BToolkit. It’s also required by mere mortals reading a specification.

Constraining predicates have the form:

\[x \in S, \quad x \subseteq S, \quad x \subset S, \quad \text{or} \quad x = E \] where \(x \notin S \) and \(x \notin E \)

\(^a\) \(x \notin E \) ("not free in" \(E \)) means that any instances of \(x \) in \(E \) are bound by quantifiers such as \(\exists x \), or \(\forall x \).
A Note on Constraining Predicates

Predicates constraining a set, constant, variable, or operation argument must contain a constraining predicate. A constraining predicate allows the determination of the basic set to which the entity belongs. This is required by the type analyzer in the BToolkit. It’s also required by mere mortals reading a specification.

Constraining predicates have the form:

\[x \in S, \ x \subseteq S, \ x \subset S, \ \text{or} \ x = E \ \text{where} \ x \not\in S \ \text{and} \ x \not\in E^a \]

Consider the book argument to any operation.

We could write \(book \in BOOK \land book \in books_on_shelf \)

\(^a\) \(x \not\in E \) (\(x \ “\text{not free in}” \ E \)) means that any instances of \(x \) in \(E \) are bound by quantifiers such as \(\exists x \), or \(\forall x \).
A Note on Constraining Predicates

Predicates constraining a set, constant, variable, or operation argument must contain a constraining predicate. A constraining predicate allows the determination of the basic set to which the entity belongs. This is required by the type analyzer in the BToolkit. It’s also required by mere mortals reading a specification.

Constraining predicates have the form:

\[x \in S, \ x \subseteq S, \ x \subset S, \text{ or } x = E \] where \(x \not\in S \) and \(x \not\in E \)

Consider the book argument to any operation.

We could write \(book \in BOOK \land book \in books_on_shelf \)

but we could also write simply \(book \in books_on_shelf \)

since \(books_on_shelf \subseteq books_in_library \subseteq BOOK \).

\(^a x \not\in E \ (x \ "\text{not free in}" \ E) \text{ means that any instances of } x \text{ in } E \text{ are bound by quantifiers such as } \exists x, \text{ or } \forall x.\)
A Note on Constraining Predicates

Predicates constraining a set, constant, variable, or operation argument must contain a constraining predicate. A constraining predicate allows the determination of the basic set to which the entity belongs. This is required by the type analyzer in the BToolkit. It’s also required by mere mortals reading a specification.

Constraining predicates have the form:

\[x \in S, \ x \subseteq S, \ x \subset S, \text{ or } x = E \] where \(x \not\in S \) and \(x \not\in E \).

Consider the book argument to any operation.

We could write

\[\text{book} \in \textit{BOOK} \land \text{book} \in \textit{books_on_shelf} \]

but we could also write simply

\[\text{book} \in \textit{books_on_shelf} \]

since \(\textit{books_on_shelf} \subseteq \textit{books_in_library} \subseteq \textit{BOOK} \).

We cannot write simply \(\text{book} \not\in \textit{books_on_shelf} \), we must write

\[\text{book} \in \textit{BOOK} \land \text{book} \not\in \textit{books_on_shelf} \].

\(x \not\in E \) (\(x \) “not free in” \(E \)) means that any instances of \(x \) in \(E \) are bound by quantifiers such as \(\exists x \), or \(\forall x \).
Check Proof Obligations
Check Proof Obligations

Having completed the machine:
Check Proof Obligations

Having completed the machine:

Analyze the machine until the machine is syntactically and type correct.
Check Proof Obligations

Having completed the machine:

Analyze the machine until the machine is syntactically and type correct.

Generate the proof obligations This step after analysis should be standard.
Check Proof Obligations

Having completed the machine:

Analyze the machine until the machine is syntactically and type correct.

Generate the proof obligations This step after analysis should be standard.

Run the AutoProver to determine any “residual” proof obligations.
Check Proof Obligations

Having completed the machine:

Analyze the machine until the machine is syntactically and type correct.

Generate the proof obligations This step after analysis should be standard.

Run the AutoProver to determine any “residual” proof obligations.

Run the BToolProver on the remaining proof obligations —possibly not doing complete proofs— to determine if there are any proof obligations that are unprovable. These will be the consequence of inconsistencies, or incompleteness in the specification.
Check Proof Obligations

Having completed the machine:

Analyze the machine until the machine is syntactically and type correct.

Generate the proof obligations This step after analysis should be standard.

Run the AutoProver to determine any “residual” proof obligations.

Run the BToolProver on the remaining proof obligations —possibly not doing complete proofs— to determine if there are any proof obligations that are unprovable. These will be the consequence of inconsistencies, or incompleteness in the specification.

In the case of the SimpleLibrary machine there is one undischarged Context proof obligation

\[\text{cst}(\text{SimpleLibrary}) \Rightarrow \exists \text{USER}.(\text{card}(\text{USER}) = \text{maxuser} \land \text{card}(\text{USER}) \in \mathbb{N}_1) \]
Check Proof Obligations

Having completed the machine:

Analyze the machine until the machine is syntactically and type correct.

Generate the proof obligations. This step after analysis should be standard.

Run the AutoProver to determine any “residual” proof obligations.

Run the BToolProver on the remaining proof obligations—possibly not doing complete proofs—to determine if there are any proof obligations that are unprovable. These will be the consequence of inconsistencies, or incompleteness in the specification.

In the case of the SimpleLibrary machine there is one undischarged Context proof obligation

\[cst(\text{SimpleLibrary}) \Rightarrow \exists \text{USER}.(\text{card(USER)} = \text{maxuser} \land \text{card(USER)} \in \mathbb{N}_1) \]

A very simple rewrite rule, \((P \land Q) = (Q \land P)\) leads to a proof!
Animation
Animation

Try animating the SimpleLibrary machine.
Animation

Try animating the SimpleLibrary machine.

Instantiate maxuser to something small, say 10. It is always wise to instantiate constants to something small.
Animation

Try animating the SimpleLibrary machine.

Instantiate maxuser to something small, say 10. It is always wise to instantiate constants to something small.

Don’t bother instantiating any of the deferred sets.
Try animating the *SimpleLibrary* machine.

Instantiate `maxuser` to something small, say 10. It is always wise to instantiate constants to something small.

Don’t bother instantiating any of the deferred sets.

Populate the books and users of the library by using symbolic names such as `BigBlueBook`, `LittleRedBook` for books and `john`, `jill` for users. All deferred sets are in reality sets of natural numbers and the names suggested above are natural number constants.
books_on_shelf: A Dependent Variable
books_on_shelf: A Dependent Variable

Given

\[
books_in_library \subseteq BOOK \land \\
books_on_loan \in books_in_library \rightarrow users \land \\
books_on_shelf = books_in_library - \text{dom}(books_on_loan)
\]
books_on_shelf: A Dependent Variable

Given

\[
\begin{align*}
books_in_library & \subseteq BOOK \land \\
books_on_loan & \in books_in_library \rightarrow users \land \\
books_on_shelf & = books_in_library - \text{dom}(books_on_loan)
\end{align*}
\]

we can derive

\[
books_on_shelf \subseteq books_in_library
\]
books_on_shelf: A Dependent Variable

Given

\[\text{books_in_library} \subseteq \text{BOOK} \land \]
\[\text{books_on_loan} \in \text{books_in_library} \rightarrow \text{users} \land \]
\[\text{books_on_shelf} = \text{books_in_library} - \text{dom(books_on_loan)} \]

we can derive

\[\text{books_on_shelf} \subseteq \text{books_in_library} \]

This shows that *books_on_shelf* is a dependent variable.
books_on_shelf: A Dependent Variable

Given

\[
\begin{align*}
\text{books_in_library} & \subseteq \text{BOOK} \land \\
\text{books_on_loan} & \in \text{books_in_library} \rightarrow \text{users} \land \\
\text{books_on_shelf} & = \text{books_in_library} - \text{dom}(\text{books_on_loan})
\end{align*}
\]

we can derive

\[
\text{books_on_shelf} \subseteq \text{books_in_library}
\]

This shows that \text{books_on_shelf} is a dependent variable.

There is nothing wrong with having a dependent variable, but we could remove \text{books_on_shelf} as a variable, and leave the concept of \text{books_on_shelf} by inserting a definitions clause:

\[
\text{books_on_shelf} \triangleq \text{books_in_library} - \text{dom}(\text{books_on_loan})
\]

\text{books_on_shelf} == \text{books_in_library} - \text{dom}(\text{books_on_loan}) \text{ in ASCII.}
Fragile and Robust Operations
Fragile and Robust Operations

Operations with non-trivial preconditions are fragile and must be used in contexts in which the preconditions can be proved to be satisfied.
Fragile and Robust Operations

Operations with non-trivial preconditions are fragile and must be used in contexts in which the preconditions can be proved to be satisfied.

Invoking a fragile operation in a context in which the preconditions are not known to be satisfied will lead to unpredictable results.
Fragile and Robust Operations

Operations with non-trivial preconditions are fragile and must be used in contexts in which the preconditions can be proved to be satisfied.

Invoking a fragile operation in a context in which the preconditions are not known to be satisfied will lead to unpredictable results.

It should be observed that developments conducted completely within the B Method will entail proving that all preconditions are satisfied.
Adding an Interface to Simplelibrary
Adding an Interface to Simplelibrary

We can develop a machine with robust operations that could be used as an application programmer interface (API).
Adding an Interface to Simplelibrary

We can develop a machine with robust operations that could be used as an application programmer interface (API).

A robust operation is an operation that has only a trivial precondition. Such an operation may be invoked in any state of the machine and for any argument values.
Adding an Interface to Simplelibrary

We can develop a machine with robust operations that could be used as an application programmer interface (API).

A robust operation is an operation that has only a trivial precondition. Such an operation may be invoked in any state of the machine and for any argument values.

The standard technique for converting a fragile operation to a robust operation is to add a response value to the return list of the operation. The response value indicates whether the operation has been successful.
Adding an Interface to Simplelibrary

We can develop a machine with robust operations that could be used as an application programmer interface (API).

A robust operation is an operation that has only a trivial precondition. Such an operation may be invoked in any state of the machine and for any argument values.

The standard technique for converting a fragile operation to a robust operation is to add a response value to the return list of the operation. The response value indicates whether the operation has been successful.

It should be noted that all return values must have appropriate values, although the validity of those values will depend on the response value.
Adding an Interface to Simplelibrary

We can develop a machine with robust operations that could be used as an application programmer interface (API).

A robust operation is an operation that has only a trivial precondition. Such an operation may be invoked in any state of the machine and for any argument values.

The standard technique for converting a fragile operation to a robust operation is to add a response value to the return list of the operation. The response value indicates whether the operation has been successful.

It should be noted that all return values must have appropriate values, although the validity of those values will depend on the response value.

The following slides show an API version of SimpleLibrary.
MACHINE SimpleLibraryAPI (BOOK, maxuser)
CONSTRAINTS maxuser ∈ N
INCLUDES SimpleLibrary (BOOK, maxuser)
SETS
 RESPONSE = { OK,
 BookInLibrary,
 NoNewUsers,
 NotRegisteredUser,
 BookNotForLoan,
 BookNotOnLoan }

OPERATIONS
response ← AddBookR (book) \equiv
PRE \quad book \in BOOK
THEN \quad IF \quad book \notin \text{books_in_library} \quad THEN
 \quad \text{AddBook} (\text{book}) \parallel
 \quad \text{response} := \text{OK}
ELSE \quad \text{response} := \text{BookInLibrary}
END
END ;
response, newuser ← NewUserR ⩵

IF users ≠ USER
THEN newuser ← NewUser ||
response := OK
ELSE newuser ∈ USER ||
response := NoNewUsers
END ;
response ← BorrowR (user, book) ≜

PRE user ∈ USER ∧ book ∈ BOOK

THEN

SELECT

user ∉ users THEN response := NotRegisteredUser

WHEN

book ∉ books_on_shelf THEN response := BookNotForLoan

ELSE

Borrow (user, book) ||

response := OK

END

END ;
response ← ReturnR (book) ≜

PRE book ∈ BOOK

THEN IF book ∈ dom (books_on_loan) THEN
 Return (book) ||
 response := OK
ELSE response := BookNotOnLoan
END

END ;
response, user ← BorrowedR (book)

PRE book ∈ BOOK

THEN IF book ∈ dom (books_on_loan) THEN
 response := OK ||
 user ← Borrowed (book)
ELSE response := BookNotOnLoan ||
 user ∈ USER
END

END

END
Use of SELECT Substitution
Use of SELECT Substitution

Notice the use of a SELECT substitution within the BorrowR operation.
Use of SELECT Substitution

Notice the use of a SELECT substitution within the BorrowR operation. This achieves non-deterministic choice in the case that both guards $user \notin users$ and $book \notin books_on_shelf$ are true, ie a person who is not a registered user is attempting to borrow a book that is not available for loan.
Use of SELECT Substitution

Notice the use of a SELECT substitution within the BorrowR operation. This achieves non-deterministic choice in the case that both guards \(user \not\in users \) and \(book \not\in books_on_shelf \) are true, ie a person who is not a registered user is attempting to borrow a book that is not available for loan.

The specification says that either NotRegisteredUser or BookNotForLoan are valid responses and we don’t care which is chosen.
Enumerated Sets
Enumerated Sets

Notice the use of an enumerated set for the response values.
Enumerated Sets

Notice the use of an enumerated set for the response values.

Enumerated sets are sets of natural numbers with the symbolic values being mapped onto 0, 1 etc.
Machine Inclusion
Machine Inclusion

Notice that SimpleLibraryAPI includes the SimpleLibrary machine.
Machine Inclusion

Notice that SimpleLibraryAPI includes the SimpleLibrary machine.

At the point where the machine is included, any parameters of the included machine must be instantiated. In this case the parameters of SimpleLibrary are instantiated to the parameters of SimpleLibraryAPI.
Machine Inclusion

Notice that SimpleLibraryAPI includes the SimpleLibrary machine.

At the point where the machine is included, any parameters of the included machine must be instantiated. In this case the parameters of SimpleLibrary are instantiated to the parameters of SimpleLibraryAPI.

The including machine inherits the state and operations of the included machine.
Machine Inclusion

Notice that SimpleLibraryAPI includes the SimpleLibrary machine.

At the point where the machine is included, any parameters of the included machine must be instantiated. In this case the parameters of SimpleLibrary are instantiated to the parameters of SimpleLibraryAPI.

The including machine inherits the state and operations of the included machine. The state variables of the included machine may be referenced in predicates, but the values may be changed only by using operations of the included machine. Thus we have partial hiding of the state.
Machine Inclusion

Notice that *SimpleLibraryAPI* includes the *SimpleLibrary* machine.

At the point where the machine is included, any parameters of the included machine must be instantiated. In this case the parameters of *SimpleLibrary* are instantiated to the parameters of *SimpleLibraryAPI*.

The including machine inherits the state and operations of the included machine.

The state variables of the included machine may be referenced in predicates, but the values may be changed only by using operations of the included machine. Thus we have partial hiding of the state.

Notice that when a machine operation is used, the syntax is the same as that used for the specification of the operation. See, for example, the use of *Borrowed* within *BorrowedR*.
Non-deterministic Choice from a Set
Arbitrarily choose a value from the set S, and substitute in the variable v. This substitution is used in NewUserR, the robust version of the operation NewUser, in the event that it is not possible to choose a new user token.
Proof Obligations of the Robust Operations
Proof Obligations of the Robust Operations

When the proof obligations for SimpleLibraryAPI are generated it will be noted that there are no proof obligations for the operations.
Proof Obligations of the Robust Operations

When the proof obligations for SimpleLibraryAPI are generated it will be noted that there are no proof obligations for the operations. This is a consequence of the guards on the IF THEN ELSE substitutions satisfying the preconditions of the referenced fragile operations from SimpleLibrary.
Proof Obligations of the Robust Operations

When the proof obligations for SimpleLibraryAPI are generated it will be noted that there are no proof obligations for the operations.

This is a consequence of the guards on the IF THEN ELSE substitutions satisfying the preconditions of the referenced fragile operations from SimpleLibrary.

If you wish you can reset the machine, and choose generate all proof obligations in the Options/Provers menu, and then regenerate the proof obligations. You will now get proof obligations for the operations. They are trivial, but display the proof obligations thrown up by the preconditions of the fragile operations.