B Exercises 2
Machines

Instructions for this tutorial

1. You should attempt this tutorial before coming to the tutorial.
2. You should be prepared to show other students in the tutorial how to do the exercise.

The objective of this set of tutorial exercises is to develop specifications as B machines. In all cases the resulting machines should be introduced into the B-Toolkit, analyzed, proof obligations generated, the autoprover run and any remaining undischarged proof obligations inspected carefully. In many cases it would be a good idea to animate the machine.

Not all of the following exercises will be discussed in tutorial periods. There will be solutions and the later exercises are discussed in Wordsworth.

1. A simple bank Produce a model, SimpleBank.mch, of a very simple bank with the following requirements. Follow the English very carefully.

 accounts the bank customers are represented by accounts. Having obtained an account a customer may use the other operations supported by the bank.
 balance the bank needs to maintain a balance for all accounts.
 NewAccount an operation by which a customer obtains an account identifier. Account identifiers are allocated from a pool (set) of identifiers maintained by the bank.
 Deposit an operation to add an amount to an account balance.
 WithDraw an operation withdraw an amount from an account. Customers cannot withdraw more than the balance in their account.
 Balance an enquiry operation for a customer to obtain the balance in their account.
 Holdings an operation that returns the total sum of all the balances held by the bank.

 Clearly this should be a privileged operation not able to be run by anyone, but we will keep things simple

 Note: the balance and all other money amounts can be represented by natural numbers.

2. Traffic lights Exercises in the use of preconditions to ensure safety. In a real system we would need more complex protocols and reactive systems. For example, when a light is switched on, it is necessary to receive feedback on whether the light did switch on. But we will not worry about any of that here.

 (a) A simple four way intersection Consider a four-way intersection with traffic light control in the two directions EastWest and NorthSouth. The lights in the East and West directions are identical; similarly with North and South.

 Specify a machine consisting of the following:

 i. A SETS component containing two enumerated sets

 \[\text{DIRECTION} = \{\text{NorthSouth, EastWest}\}\]

 \[\text{LIGHT} = \{\text{Red, Green, Amber}\}\]

 ii. A VARIABLES component containing lights, which will model the relation between directions and the lights showing in those directions.
iii. An **INVARIANT** component containing

\[\text{lights} \in \text{DIRECTION} \rightarrow \text{LIGHT} \]

and an expression of the safety condition

when a *Green* or *Amber* light is showing in any direction then *Red* must
be showing in the other direction.

The light sequencing is: *Red, Green, Amber, Red, ...*

iv. An appropriate **INITIALISATION** substitution.

v. **OPERATIONS** containing:

A. **ToRed**(dir): an operation that sets the light to *Red* in direction *dir*; similarly

B. **ToGreen**(dir) and

C. **ToAmber**(dir),

Each operation must have appropriate preconditions that ensure that the safety
conditions will be met. The proof obligations will contain checks of the consistency
of the machine invariant and the operations.

(b) **An intersection with right-turn lights** Suppose that we now wish to add *right-turn*
lights in the *North* and *South* directions.

Change **DIRECTION** to contain \{North, NorthRight, South, SouthRight, EastWest,\},
recognizing that we now need to split the *NorthSouth* direction into four directions.

Change the rest of the machine.

(c) **A generic intersection with multiple undetermined directions** Change **DIRECTION** to a deferred set, i.e. no identified specific directions.

Add

i. a **CONSTANTS** section containing:

 conflicts

ii. a **PROPERTIES** section containing:

 conflicts \in \text{DIRECTION} \leftrightarrow \text{DIRECTION}

 that is, *conflicts* relates a *direction* to all other *directions* that conflict with that
 direction. See box on relations.

 Add more predicates that identify properties of *conflicts*.

3. **Interpreting preconditions** The machine **Lift.mch** in **BDEMO/DEMO2/LIFT** specifies
the behaviour of a lift. The machine is not documented and it can be difficult to understand
the intention of the preconditions. The following exercises are suggested:

(a) Obtain the **BDEMOS** using the Unix command **installBdemos**, if you don’t already
have them.

(b) Move to the directory **BDEMO/DEMO2/LIFT** and run the B-Toolkit (**btkit**).

(c) Introduce **Lift.mch** from **SRC**, and analyze the machine.

(d) Inspect the machine in your editor, and animate the machine.

(e) Document the machine in English by describing the machine invariant and the precondi-
tions in behavioural terms, not mathematical terms. For example you might explain
the invariant predicate **dor[mov]** \(<\{\text{clo}\}** by saying, *Doors of moving lifts are always closed.*
4. Examples from Wordsworth

If you haven’t already got them, install the Wordsworth demos by running `installBdemos` in an appropriate directory. This will install the demos from the floppy disc provided with the book. They have been edited to make them compatible with the current releases for the B-Toolkit.

(a) Exercises 3.1 and 3.2. Extend the CMA, Class Manager Assistant, machine by providing operations for

i. recording that a student has done the exercises.

ii. recording that a student has left the class.

(b) Exercise 3.4. Define a machine to represent an array. The machine should have two parameters, a natural number to fix the upper limit of the indexes (the lower limit is 1) and a set for the type of values to be stored in the array. Use a partial function from indexes to values for the model. There should be operations to read the value at a given index, to store a value at a given index, and to exchange the values at two indexes. The initialization and the operations to read values from the array and to exchange values in the array should warn the user of the array not to look at the values at an index that has not previously had a value stored.
Relations and Functions

Given sets X and Y, $X \leftrightarrow Y$ is the set of all possible relations between elements of X and Y. A relation is a set of pairs relating—in this case—elements of X to elements in Y. Notice that relations are directional: from X to Y; even though the symbol \leftrightarrow might suggest bidirectional mappings. Notice that $X \leftrightarrow Y$ is identical to $P(X \times Y)$.

Relations are, in general, many-to-many expressing the possibility of one element of X mapping to many elements of Y, and many elements X mapping to the same element of Y.

An example of a relation is $factors \in \mathbb{N} \leftrightarrow \mathbb{N}$ the set of all mappings from non-zero natural numbers to their factors.

$$factors = \{1 \leftrightarrow 1, 2 \leftrightarrow 1, 2 \leftrightarrow 2, 3 \leftrightarrow 1, 3 \leftrightarrow 3, 4 \leftrightarrow 1, 4 \leftrightarrow 2, 4 \leftrightarrow 4, \ldots \}$$

If $r \in X \leftrightarrow Y$ then r^{-1} is the inverse of r—written r^- in ASCII—in which all the maplets are reversed.

In many situations we want a relation that is at most many-to-one, that is a relation where elements of the domain map to at most one element in the range. This is called a functional mapping.

$X \rightarrow Y$ is the set of all partial functions mapping from X to Y. A function is partial if not all elements of the domain set, X, are required to have mappings.

$X \rightarrow Y$ is the set of all total functions mapping from X to Y. A total function must map every element of X to some element of Y.

$X \rightarrow Y$ is the set of all partial injective functions from X to Y. An injective function is one-to-one in which at most one element of X maps to any particular element of Y.

Notice that, if $f \in X \rightarrow Y$ then in general, f^{-1} is not a function, but if $f \in X \rightarrow Y$ then f^{-1} is a function.

For functions we have the notation of function application, $f(x)$. If $f \in X \rightarrow Y$ then $\exists (x, y).(x \in X \land y \in Y \land x \leftrightarrow y \in f \Rightarrow f(x) = y)$. What do we have for relations?

Since general relations are many-to-many, function application cannot work. Instead we have relational image. If $r \in X \leftrightarrow Y$ and $s \subseteq X$, then $r[s]$, the image of s under r, is the subset of Y to which the elements of s are mapped under r.

$$factors[\{6\}] = \{1, 2, 3, 6\}$$

Note: $r[s] = \text{ran}(s \triangleleft r)$