B Exercises 3

Generalised Substitutions and Proof Obligations

The objective of this set of tutorial exercises is to use the semantics of generalised substitutions to compute proof obligations for operations.

The proof obligation for maintaining the machine invariant for the operation:

\[
\text{result} \leftarrow \text{Op}(\text{args}) \triangleq \text{PRE \ P \ THEN \ G \ END}
\]

is \(I \land P \Rightarrow [G] \ I\)

where \(I\) is the state invariant.

Remember that substitution distributes through conjunction, that is

\([G] \ (R_1 \land R_2) = [G] \ R_1 \land [G] \ R_2\)

This allows the computation of separate proof obligations for each conjunct, rather than one larger proof obligation.

1. The Simple machine

 (a) Calculate the proof obligations for each operation of the simple machine.

 (b) Remove the precondition of the Decrement operation and re-compute the proof obligation.

 Comment on the result.

2. The Bank machine. Compute the preconditions of the Deposit WithDraw and Balance operations.

 Note very carefully that

 \(f(x) := y \triangleq f := f \uparrow \{x \mapsto y\}\)

3. Assuming that \(\text{varA}\) and \(\text{varB}\) are both integers show that

 \(\text{varA} := \text{varB} - \text{varA} ; \text{varB} := \text{varB} - \text{varA} ; \text{varA} := \text{varA} + \text{varB}\)

 is equivalent to

 \(\text{varA}, \text{varB} := \text{varB}, \text{varA}\)

4. Traffic lights Compute the proof obligations for the operations of the simple SimpleTwoWay traffic light machine.

5. Examples from Wordsworth

 (a) Section 2.6: exercises 2.3 and 2.4.

 (b) Section 3.5: exercises 3.6, 3.7 and 3.8.
MACHINE Simple
VARIABLES num
INVARIANT num ∈ N
INITIALISATION num := 0

OPERATIONS
 Set (val) ≜
 PRE val ∈ N
 THEN num := val
 END;
 val ← Get ≜
 BEGIN val := num END;
 Increment ≜
 BEGIN num := num + 1 END;
 Decrement ≜
 PRE 1 ≤ num
 THEN num := num - 1
 END

END
MACHINE Bank (maxaccount)

CONSTRAINTS
maxaccount ∈ N_1

SETS
ACCOUNT

PROPERTIES
\text{card} (ACCOUNT) = maxaccount

VARIABLES
accounts, balance

INDOMAIN
accounts ⊆ ACCOUNT ∧
balance ∈ accounts → N

INITIALISATION
accounts, balance := \{\}, \{

OPERATIONS
account ← NewAccount ≝
\text{PRE} accounts ≠ ACCOUNT
\text{THEN}
\text{ANY} acc
\text{WHERE} acc ∈ ACCOUNT − accounts
\text{THEN}
account := acc ||
accounts := accounts ∪ \{ acc \} ||
balance (acc) := 0
\text{END}
\text{END};
Deposit (account, amount) ≝
\text{PRE} account ∈ accounts ∧ amount ∈ N
\text{THEN}
balance (account) := balance (account) + amount
\text{END};
WithDraw (account, amount) ≝
\text{PRE} account ∈ accounts ∧ amount ∈ N ∧ amount ≤ balance (account)
\text{THEN}
balance (account) := balance (account) − amount
\text{END};
bal ← Balance (account) ≝
\text{PRE} account ∈ accounts
\text{THEN}
bal := balance (account)
\text{END};
holdings ← Holdings ≝
\text{BEGIN}
holdings := \sum account. (account ∈ accounts | balance (account))
\text{END}
\text{END}

B course 7 April 2005

Generalised Substitutions and Proof Obligations
MACHINE SimpleTwoWay

SETS
 DIRECTION = { NorthSouth, EastWest } ;
 LIGHT = { Red, Green, Amber }

VARIABLES
 lights

IN Variant
 lights ∈ DIRECTION → LIGHT ∧
 (lights (NorthSouth) ∈ { Green, Amber } ⇒ lights (EastWest) = Red) ∧
 (lights (EastWest) ∈ { Green, Amber } ⇒ lights (NorthSouth) = Red)

Initialisation
 lights := { NorthSouth → Red, EastWest → Red }

Operations
 ToRed (dir) ≡
 PRE dir ∈ DIRECTION ∧ lights (dir) = Amber
 THEN lights (dir) := Red
 END ;
 ToGreen (dir) ≡
 PRE dir ∈ DIRECTION ∧ lights (dir) = Red ∧
 (dir = NorthSouth ⇒ lights (EastWest) = Red) ∧
 (dir = EastWest ⇒ lights (NorthSouth) = Red)
 THEN lights (dir) := Green
 END ;
 ToAmber (dir) ≡
 PRE dir ∈ DIRECTION ∧ lights (dir) = Green
 THEN lights (dir) := Amber
 END

END