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We survey agglomerative hierarchical clustering algorithms and discuss effi-
cient implementations that are available in R and other software environments.
We look at hierarchical self-organizing maps, and mixture models. We review
grid-based clustering, focusing on hierarchical density-based approaches. Fi-
nally, we describe a recently developed very efficient (linear time) hierarchi-
cal clustering algorithm, which can also be viewed as a hierarchical grid-based
algorithm. C⃝ 2011 Wiley Periodicals, Inc.
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INTRODUCTION

A gglomerative hierarchical clustering has been
the dominant approach to constructing embed-

ded classification schemes. It is our aim to direct
the reader’s attention to practical algorithms and
methods—both efficient (from the computational and
storage points of view) and effective (from the appli-
cation point of view). It is often helpful to distinguish
between method, involving a compactness criterion
and the target structure of a two-way tree represent-
ing the partial order on subsets of the power set, as
opposed to an implementation, which relates to the
detail of the algorithm used.

As with many other multivariate techniques, the
objects to be classified have numerical measurements
on a set of variables or attributes. Hence, the analysis
is carried out on the rows of an array or matrix. If
we do not have a matrix of numerical values to begin
with, then it may be necessary to skilfully construct
such a matrix. The objects, or rows of the matrix,
can be viewed as vectors in a multidimensional space
(the dimensionality of this space being the number
of variables or columns). A geometric framework of
this type is not the only one which can be used to
formulate clustering algorithms. Suitable alternative
forms of storage of a rectangular array of values are
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not inconsistent with viewing the problem in geomet-
ric terms (and in matrix terms, e.g., expressing the
adjacency relations in a graph).

Motivation for clustering in general, covering
hierarchical clustering and applications, includes the
following: analysis of data, interactive user interfaces,
storage and retrieval, and pattern recognition.

Surveys of clustering with coverage also of hier-
archical clustering include Gordon,1 March,2 Jain and
Dubes,3 Gordon,4 Mirkin,5 Jain et al.,6 and Xu and
Wunsch.7 Lerman8 and Janowitz9 present overarch-
ing reviews of clustering including use of lattices that
generalize trees. The case for the central role of hierar-
chical clustering in information retrieval was made by
van Rijsbergen10 and continued in the work of Wil-
lett and coworkers.11 Various mathematical views of
hierarchy, all expressing symmetry in one way or an-
other, are explored by Murtagh.12

This paper is organized as follows. In section
Distance, Similarity, and Their Use, we look at the
issue of normalization of data, prior to inducing a
hierarchy on the data. In section Motivation, some
historical remarks and motivation are provided for
hierarchical agglomerative clustering. In section Al-
gorithms, we discuss the Lance–Williams formulation
of a wide range of algorithms, and show how these
algorithms can be expressed in graph theoretic terms
and in geometric terms. In section Efficient Hierarchi-
cal Clustering Algorithms Using Nearest Neighbor
Chains, we describe the principles of the reciprocal
nearest neighbor (RNN) and nearest neighbor (NN)
chain algorithm to support building a hierarchical
clustering in a more efficient manner compared to the
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Lance-Williams or general geometric approaches. In
section Hierarchical Self-Organizing Maps and Hier-
archical Mixture Modeling, we overview the hierar-
chical Kohonen self-organizing feature map, and also
hierarchical model-based clustering. We conclude this
section with some reflections on divisive hierarchi-
cal clustering, in general. Section Density- and Grid-
Based Clustering Techniques surveys developments in
grid- and density-based clustering. The following sec-
tion, A New, Linear Time Grid Clustering Method:
m-Adic Clustering, presents a recent algorithm of this
type, which is particularly suitable for the hierarchical
clustering of massive datasets.

DISTANCE, SIMILARITY, AND THEIR
USE
Before clustering comes the phase of data measure-
ment, or measurement of the observables. Let us look
at some important considerations to be taken into
account. These considerations relate to the metric or
other spatial embedding, comprising the first phase of
the data analysis stricto sensu.

To group data we need a way to measure the
elements and their distances relative to each other in
order to decide which elements belong to a group.
This can be a similarity, although on many occasions
a dissimilarity measurement, or a ‘stronger’ distance,
is used.

A distance between any pair of vectors or points
i, j, k satisfies the properties of symmetry, d(i, j) = d(j,
k); positive definiteness, d(i, j) > 0 and d(i, j) = 0 iff
i = j; and the triangular inequality, d(i, j) ≤ d(i, k) +
d(k, j). If the triangular inequality is not taken into
account, we have a dissimilarity. Finally, a similarity
is given by s(i, j) = maxi,j{d(i, j)} − d(i, j).

When working in a vector space, a traditional
way to measure distances is a Minkowski distance,
which is a family of metrics defined as follows:

Lp(xa, xb) =
(

n∑

i=1

|xi,a − xi,b|p

)1/p

; ∀p≥ 1, p∈ Z+,

(1)

where Z+ is the set of positive integers.
The Manhattan, Euclidean, and Chebyshev dis-

tances (the latter is also called maximum distance) are
special cases of the Minkowski distance when p = 1,
p = 2, and p → ∞.

As an example of similarity, we have the cosine
similarity, which gives the angle between two vectors.
This is widely used in text retrieval to match vector
queries to the dataset. The smaller the angle between

a query vector and a document vector, the closer a
query is to a document. The normalized cosine simi-
larity is defined as follows:

s(xa, xb) = cos(θ ) = xa · xb

∥xa∥∥xb∥
, (2)

where xa · xb is the dot product and ∥ · ∥ is the norm.
Other relevant distances are the Hellinger,

variational, Mahalanobis, and Hamming distances.
Anderberg13 gives a good review of measurement and
metrics, where their interrelationships are also dis-
cussed. Also, Deza and Deza14 have produced a com-
prehensive list of distances in their Encyclopedia of
Distances.

By mapping our input data into a Euclidean
space, where each object is equiweighted, we can use
a Euclidean distance for the clustering that follows.
Correspondence analysis is very versatile in determin-
ing a Euclidean, factor space from a wide range of
input data types, including frequency counts, mixed
qualitative and quantitative data values, ranks or
scores, and others. Further reading on this is to be
found in Benzécri15 and Le Roux and Rouanet,16 and
Murtagh.17

AGGLOMERATIVE HIERARCHICAL
CLUSTERING

Motivation
Agglomerative hierarchical clustering algorithms can
be characterized as greedy, in the algorithmic sense. A
sequence of irreversible algorithm steps is used to con-
struct the desired data structure. Assume that a pair
of clusters, including possibly singletons, is merged
or agglomerated at each step of the algorithm. Then
the following are equivalent views of the same output
structure constructed on n objects: a set of n − 1 par-
titions, starting with the fine partition consisting of n
classes and ending with the trivial partition consisting
of just one class, the entire object set; a binary tree
(one or two child nodes at each nonterminal node)
commonly referred to as a dendrogram; a partially
ordered set (poset) which is a subset of the power set
of the n objects; and an ultrametric topology on the
n objects.

An ultrametric, or tree metric, defines a stronger
topology compared to, e.g., a Euclidean metric geom-
etry. For three points, i, j, k, metric and ultrametric
respect the properties of symmetry (d, d(i, j) = d(j, i))
and positive definiteness (d(i, j) > 0 and if d(i, j) =
0 then i = j). A metric though (as noted in section
Distance, Similarity, and Their Use) satisfies the tri-
angular inequality, d(i, j) ≤ d(i, k) + d(k, j) while
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an ultrametric satisfies the strong triangular or ul-
trametric (or non-Archimedean), inequality, d(i, j) ≤
max{d(i, k), d(k, j)}. In section Distance, Similarity,
and Their Use, there was further discussion on met-
rics.

The single linkage hierarchical clustering ap-
proach outputs a set of clusters (to use graph theoretic
terminology, a set of maximal connected subgraphs)
at each level—or for each threshold value which pro-
duces a new partition. The single linkage method with
which we begin is one of the oldest methods, its ori-
gins being traced to Polish researchers in the 1950s.18

The name single linkage arises as the interconnecting
dissimilarity between two clusters or components is
defined as the least interconnecting dissimilarity be-
tween a member of one and a member of the other.
Other hierarchical clustering methods are character-
ized by other functions of the interconnecting linkage
dissimilarities.

As early as the 1970s, it was held that about
75% of all published work on clustering employed
hierarchical algorithms.19 Interpretation of the infor-
mation contained in a dendrogram is often of one
or more of the following kinds: set inclusion rela-
tionships, partition of the object sets, and significant
clusters.

Much early work on hierarchical clustering was
in the field of biological taxonomy, from the 1950s
and more so from the 1960s onward. The central ref-
erence in this area, the first edition of which dates
from the early 1960s, is Ref 20. One major interpre-
tation of hierarchies has been the evolution relation-
ships between the organisms under study. It is hoped,
in this context, that a dendrogram provides a suf-
ficiently accurate model of underlying evolutionary
progression.

A common interpretation made of hierarchical
clustering is to derive a partition. A further type of
interpretation is instead to detect maximal (i.e., dis-
joint) clusters of interest at varying levels of the hi-
erarchy. Such an approach is used by Rapoport and
Fillenbaum21 in a clustering of colors based on se-
mantic attributes. Lerman8 developed an approach
for finding significant clusters at varying levels of a
hierarchy, which has been widely applied. By devel-
oping a wavelet transform on a dendrogram,22 which
amounts to a wavelet transform in the associated
ultrametric topological space, the most important—
in the sense of best approximating—clusters can be
determined. Such an approach is a topological one
(i.e., based on sets and their properties) as contrasted
with more widely used optimization or statistical ap-
proaches.

In summary, a dendrogram collects together
many of the proximity and classificatory relationships
in a body of data. It is a convenient representation
which answers such questions as: ‘How many useful
groups are in this data?’ and ‘What are the salient
interrelationships present?’ But it can be noted that
differing answers can feasibly be provided by a den-
drogram for most of these questions, depending on
the application.

Algorithms
A wide range of agglomerative hierarchical cluster-
ing algorithms have been proposed at one time or
another. Such hierarchical algorithms may be con-
veniently broken down into two groups of methods.
The first group is that of linkage methods—the single,
complete, weighted, and unweighted average linkage
methods. These are methods for which a graph rep-
resentation can be used. Sneath and Sokal20 may be
consulted for many other graph representations of the
stages in the construction of hierarchical clusterings.

The second group of hierarchical clustering
methods are methods which allow the cluster centers
to be specified (as an average or a weighted average
of the member vectors of the cluster). These methods
include the centroid, median, and minimum variance
methods.

The latter may be specified either in terms of dis-
similarities, alone, or alternatively in terms of cluster
center coordinates and dissimilarities. A very conve-
nient formulation, in dissimilarity terms, which em-
braces all the hierarchical methods mentioned so far,
is the Lance–Williams dissimilarity update formula. If
points (objects) i and j are agglomerated into cluster
i∪j, then we must simply specify the new dissimilarity
between the cluster and all other points (objects or
clusters). The formula is

d(i ∪ j, k) = αi d(i, k) + α j d( j, k) + βd(i, j)

+ γ | d(i, k) − d( j, k) |,

where αi, αj, β, and γ define the agglomerative crite-
rion. Values of these are listed in the second column
of Table 1. In the case of the single link method, using
αi = α j = 1

2 , β = 0, and γ = − 1
2 gives us

d(i ∪ j, k) = 1
2

d(i, k) + 1
2

d( j, k)

− 1
2

| d(i, k) − d( j, k) |,

which, it may be verified, can be rewritten as

d(i ∪ j, k) = min{d(i, k), d( j, k)}.

Volume 00, January /February 2011 3c⃝ 2011 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

TABLE 1 Specifications of Seven Hierarchical Clustering Methods

Coordinates of Center of
Hierarchical Clustering
Methods (and Aliases)

Lance–Williams Dissimilarity
Update Formula

Cluster, which Agglomerates
Clusters i and j

Dissimilarity between
Cluster Centers gi and gj

Single link (nearest
neighbor)

αi = 0.5
β = 0
γ = −0.5
(More simply: min{di k , d j k})

Complete link (diameter) αi = 0.5
β = 0
γ = 0.5
(More simply: max{di k , d j k})

Group average (average
link, UPGMA)

αi = | i |
| i | + | j |

β = 0
γ = 0

McQuitty’s method
(WPGMA)

αi = 0.5
β = 0
γ = 0

Median method (Gower’s,
WPGMC)

αi = 0.5
β = −0.25
γ = 0

g =
gi + g j

2
∥gi − gj∥2

Centroid (UPGMC) αi = | i |
| i | + | j |

β = − | i || j |
(| i | + | j |)2

γ = 0

g =
| i | gi + | j | g j

| i | + | j |
∥gi − gj∥2

Ward’s method (minimum
variance, error sum of
squares)

αi = | i | + | k |
| i | + | j | + | k |

β = − | k |
| i | + | j | + | k |

γ = 0

g =
| i | gi + | j | g j

| i | + | j |
| i || j |

| i | + | j |
∥gi − g j ∥2

|i| is the number of objects in cluster i; gi is a vector in m-space (m is the set of attributes), either an initial point or a cluster center; ∥.∥
is the norm in the Euclidean metric. The names UPGMA, etc. are because of Sneath and Sokal.20 Coefficient αj , with index j, is defined
identically to coefficient αi with index i. Finally, the Lance and Williams recurrence formula is (with |.| expressing absolute value)

di ∪ j,k = αi di k + α j d j k + βdi j + γ | di k − d j k | .

Using other update formulas, as given in column
2 of Table 1, allows the other agglomerative methods
to be implemented in a very similar way to the imple-
mentation of the single link method.

In the case of the methods which use cluster
centers, we have the center coordinates (in column
3 of Table 1) and dissimilarities as defined between
cluster centers (column 4 of Table 1). The Euclidean
distance must be used for equivalence between the
two approaches. In the case of the median method,
for instance, we have the following (cf. Table 1).

Let a and b be two points (i.e., m-dimensional
vectors: these are objects or cluster centers) which
have been agglomerated, and let c be another point.
From the Lance–Williams dissimilarity update for-

mula, using squared Euclidean distances, we have

d2(a ∪ b, c) = d2(a, c)
2

+ d2(b, c)
2

− d2(a, b)
4

= ∥a − c∥2

2
+ ∥b − c∥2

2
− ∥a − b∥2

4
. (3)

The new cluster center is (a + b)/2, so that its
distance to point c is

∥∥∥∥c − a + b
2

∥∥∥∥
2

. (4)

That these two expressions are identical is read-
ily verified. The correspondence between these two
perspectives on the one agglomerative criterion is
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